

ASSESSMENT REPORT
THE C PLUS PLUS ALLIANCE, INC.

BOOST.JSON SECURITY ASSESSMENT 2021
MARCH 17, 2021

 2021/03/17 2

This engagement was performed in accordance with the Statement of Work, and the procedures were limited

to those described in that agreement. The findings and recommendations resulting from the assessment are

provided in the attached report. Given the time-boxed scope of this assessment and its reliance on client-

provided information, the findings in this report should not be taken as a comprehensive listing of all security

issues.

This report is intended solely for the information and use of The C Plus Plus Alliance, Inc.

Bishop Fox Contact Information:

+1 (480) 621-8967

contact@bishopfox.com

8240 S. Kyrene Road

Suite A-113

Tempe, AZ 85284

mailto:contact@bishopfox.com

 2021/03/17 3

TABLE OF CONTENTS

Table of Contents.. 3

Executive Report ... 4

Project Overview.. 4

Approach .. 4

Assessment Report ... 9

Hybrid Application Assessment .. 9

Type representation ... 9

Appendix A — Measurement Scales ... 11

Finding Severity ...11

Appendix B — Test Plan ... 12

 2021/03/17 4

EXECUTIVE REPORT

Project Overview

The C Plus Plus Alliance, Inc. engaged Bishop Fox to assess the

security of the Boost.JSON C++ library. The following report

details the findings identified during the course of the

engagement, which started on February 8, 2021.

Goals

• Ensure the Boost.JSON parser is secure against untrusted

inputs and that undefined behavior and crashing are not

possible

• Review the container, as in theory it could be the target of

algorithmic complexity attacks

• Look for buffer overflows and other vulnerabilities in the

Boost.JSON parser

• Thoroughly fuzz the Boost.JSON library

• Provide best practices for users of the Boost.JSON library

FINDING COUNTS

1 Low

1 Total finding

SCOPE

Boost.JSON library v.1.75.0

Commit:
edbf86641b7217676eceb
6582ee486e31bb42745

DATES

02/08/2021

Kickoff

02/08/2021 – 02/23/2021

Active testing

03/17/2021

Report delivery

Approach

The assessment team conducted a hybrid application assessment of the Boost.JSON library.

Bishop Fox’s hybrid application assessment methodology leverages real-world attack

techniques of application penetration testing in combination with targeted source code

review. These full-knowledge assessments begin with automated scans of the deployed

application and source code. Next, analyses of the scan results are combined with manual

review to thoroughly identify potential application security vulnerabilities. In addition, the

team conducts a review of the application architecture and business logic to locate any

design-level issues. Finally, the team performs manual exploitation and review of these

issues to validate the findings.

For this engagement, the team made use of the current fuzzing implementation, which the

repository used with LLVM’s AddressSanitizer (ASAN) and UndefinedBehaviorSanitizer

(UBSAN) by running the fuzzing tests for extended periods of time. In conjunction with

LLVM, the team made use of alternate fuzzers such as AFL++ with guidance from a symbolic

execution framework, angr, to help extend coverage that was not provided by LLVM. The

https://cppalliance.org/
https://www.bishopfox.com/
https://github.com/boostorg/json/tree/boost-1.75.0
https://github.com/boostorg/json/commit/edbf86641b7217676eceb6582ee486e31bb42745
https://github.com/boostorg/json/commit/edbf86641b7217676eceb6582ee486e31bb42745
https://github.com/AFLplusplus/AFLplusplus
https://github.com/angr/angr

 2021/03/17 5

use of these fuzzers in conjunction with manual review helped the team to explore the core

functionality of the library and to identify memory management or corruption issues.

Strategic Approach
Fuzzing Strategy

One of the assessment goals was to identify vulnerabilities that can occur when Boost.JSON

parses JSON input and serializes to JSON output. The assessment team found that the

majority of Boost.JSON fuzzing programs and examples were set up in a similar fashion to

tackle these ideas. This allowed the team to deploy the already-existing fuzzing harnesses

into other fuzzing platforms for extended periods of time. The team modified the examples

by adding a thread for executing AFL++ in persistent mode. Further modifications allowed

harnesses to run in LibFuzz, AFL++, and AFL_IJON. All were guided with angr for further

code coverage.

To fuzz the JSON parser, the team created a fuzzing harness based on the harnesses that

already existed in the fuzzing folder within the Boost.JSON repository. This harness, based

on the fuzzer_parse, fuzzer_basic_parser, and fuzzer_parser files in the fuzzing

folder, was instrumented with the custom clang compiler afl-clang-fast++ to assist

with fuzzing the library with AFL. Parameters such as AFL_PERSISTENT were also

introduced into the program to speed up fuzzing cycles.

The harnesses read in content from files generated by the fuzzer, then parse, stream parse,

and validate the given JSON. These programs run until the number of identified paths stops

growing and the number of completed cycles matches the paths discovered. The use of

angr gave AFL the ability to find more "interesting" paths and avoided a "stuck" state,

thereby allowing further code coverage within the library. The team determined that the

fuzzing conducted was sufficient to produce reliable results in the time provided.

Static Source Code Analysis

The assessment team used Checkmarx against the Boost.JSON codebase for additional

coverage and to supplement the fuzzing and manual code review process. Checkmarx

flagged 219 issues. However, after review, the team determined that these were negligible

and irrelevant to the goals of the engagement.

The team moved forward to check for known bad code practices, such as the use of

unconstrained buffers and the use of unsafe execution of calls to the system. The library

used innovative practices for dynamic memory management and properly deallocated

memory created in the JSON objects. Since this library needed only basic functionality, it did

not make any calls risky to the OS such as execve or system function.

A benefit of the Boost.JSON library, as of 1.75.0, is its limited list of dependencies to the

Boost Library Collection. The only dependencies found were to boost/system,

boost/assert, boost/exception, boost/container, and boost/align. This helped to

https://www.checkmarx.com/
https://www.boost.org/

 2021/03/17 6

strengthen the integrity of Boost.JSON, since any potential future vulnerabilities found in

addition to the Boost Library Collection would not affect the Boost.JSON library. If

vulnerabilities are found in the general Boost Library Collection, it is recommended to

ensure that boost/system, boost/assert, boost/exception, boost/container,

and boost/align have not been affected.

Investigations of the current bugs and issues posted to the repository indicated that they

were negligible to the integrity of the Boost.JSON library. The team built out small programs

based on the bugs described and noted the success or failures of each. No failures were

found, and the bugs were negligible to the operation and did not cause any undefined

behavior. This suggests that the bugs either were patched or had occurred but could not be

reproduced by the team. Any bugs that are already patched should be documented as such

in the issues posted to the repository.

Dynamic Source Code Analysis

Aside from static code analysis, the team also took a dynamic approach to finding potential

issues in the library. The team thoroughly reviewed the library to identify issues relating to

type confusion, deserialization attacks, and improper deserialization/serialization of objects.

The assessment team found a common issue with JSON parsing that happens with most

JSON parsers. Deserializing the following string resulted in a type confusion where the

JSON parser within Boost.JSON interpreted 1E400 as an INF value instead of a semi-precise

integer value. The following proof-of-concept code demonstrates an edge-case that users of

the Boost.JSON library may run into:

#include <boost/json.hpp>
#include <iostream>

using namespace boost::json;

int main() {
 // Testing some type confusion issues
 std::string experiment = "{\"description\": \"Float (exp)\", \"test\": 1E400}";

 value test = parse(experiment);
 std::string real = serialize(test);
 std::cout << "[!] EXPECTED: " << experiment << std::endl;
 std::cout << "[-] Result: " << real << std::endl;
}

FIGURE 1 - Demo code to show potential type representation issues

There is a potential for this use-case to cause issues in developer implementations. RFC

8259 section 6 specifies that the use of values such as INF, pi, or 1E400 may cause

"interoperability problems," and the receiver may not be able to properly interpret the data

sent by the sender. This would need to be verified by the user of the Boost.JSON library.

Security Considerations

 2021/03/17 7

The assessment team found that Boost.JSON was a mature and stable library. The security

issues that are most likely to emerge with the library relate to several key areas that are

outside of the scope that Boost.JSON can provide the developer.

The following sections address some of the more pertinent issues and provide examples of

what developers should be aware of.

Data/Input Validation

The Boost.JSON library has two unique ways of handling user input. The first way is using

the API to catch error codes, which should be done when the user input is coming from a

trusted or untrusted source. The Boost.JSON error codes are defined in error.hpp, which

inherits from std::error_code. These error codes are returned when a problem occurs in

functions such as write or serialize, as shown in the pretty and validate example files. Error

codes are lighter on resources than using exceptions, which is beneficial for programs that

need to be as efficient as possible. To properly make use of the error codes, the user's

program should read the error code value, which will be a 0 or a non-zero value. The user's

program should then pass this error code to the error::make_error_code() function

and print the results, which will inform the user what the error is.

The second way of handling user input is by utilizing exceptions. Exceptions should not be

used when the user input is coming from an untrusted source as the exception will

terminate the program. Users should throw an exception when the program can identity an

external problem that prevents execution. The exception mechanism has a minimal

performance cost if no exception is thrown. If an exception is thrown, the cost of the stack

traversal and unwinding is roughly comparable to the cost of a function call. It is ultimately

up to the user to handle data input validation.

The assessment team identified that it was possible for deserialization attacks to occur if an

object was mishandled after being parsed whenever the input was trusted by the user. This

implementation was specific to the developer using the library and by default, was not a

security risk within the library itself. Developers should validate objects that are being

parsed with the Boost.JSON library.

General Guidance

The validation and parsing of JSON can be implemented with the Boost.JSON library in a

safe and secure fashion. As previously mentioned, developers should be aware of the

limitations on the range of representable values for integer and floating-point types. This

could cause implementation issues and undefined behavior for programs that use the JSON

parser within their project.

Although the team did not find any crashes, the CI system for the library should fuzz for

longer durations, potentially allowing for additional vulnerabilities to be identified during

the fuzzing sessions. The current configuration in the Boost.JSON repository runs the built-

https://www.boost.org/doc/libs/1_75_0/libs/json/doc/html/json/examples.html
https://www.boost.org/doc/libs/1_75_0/libs/json/doc/html/json/examples.html

 2021/03/17 8

in Clang LibFuzz for 30 seconds. It is recommended to run for longer periods of time

(greater than an hour if possible) to get the most benefit from fuzzing.

Summary of Findings
The assessment team identified one low-risk issue during the time-boxed assessment of

Boost.JSON library version 1.75.0. The team identified a type representation vulnerability

that may cause issues in implementations by users of the library. The team found that the

Boost.JSON library was resilient to the memory attacks that can plague native libraries.

Static analysis returned negligible informational results that did not warrant reporting.

The sections below detail the strategy used by Bishop Fox during the assessment, as well as

other security considerations and recommendations for the production use of the

Boost.JSON library.

RECOMMENDATIONS

• Users must decide how to handle errors returned by the parser upon receiving

invalid JSON. The user must check for the errors, then handle them or allow the

library to throw an exception and terminate the program.

• Users should be aware of the limitations with numeric representation for integers

and floating-point values used by the library.

 2021/03/17 9

ASSESSMENT REPORT

Hybrid Application Assessment

The assessment team performed an application penetration test with the following target

in scope:

• Boost.JSON v.1.75.0:

https://github.com/boostorg/json/commit/edbf86641b7217676eceb6582

ee486e31bb42745

Identified Issues

1 TYPE REPRESENTATION LOW

Definition

The representation of numbers is like that used in most programming languages. A

number is represented in base 10 using decimal digits. It contains an integer component

that may be prefixed with an optional minus sign, which may be followed by a fraction

part and/or an exponent part. Leading zeros are not allowed.

Details

The assessment team identified a common issue with JSON parsing that happens with

most JSON parsers. When deserializing a user given input, a type-confusion can happen

when the JSON parser within Boost.JSON interprets 1E400 as an INF value instead of a

semi-precise integer value. The following proof-of-concept code demonstrates an edge-

case that users of the Boost.JSON library may run into:

#include <boost/json.hpp>
#include <iostream>

using namespace boost::json;

int main() {

 std::string experiment =
 "{\"description\": \"Float (exp)\", \"test\": 1E400}";
 value test = parse(experiment);
 std::string real = serialize(test);
 std::cout << "[!] EXPECTED: " << experiment << std::endl;
 std::cout << "[-] Result: " << real << std::endl;
}

FIGURE 2 – Demo code to show potential type representation issues

https://github.com/boostorg/json/tree/boost-1.75.0
https://github.com/boostorg/json/commit/edbf86641b7217676eceb6582ee486e31bb42745
https://github.com/boostorg/json/commit/edbf86641b7217676eceb6582ee486e31bb42745

 2021/03/17 10

The output of running the above code is shown below:

[!] EXPECTED: {"description": "Float (exp)", "test": 1E400}

[-] Result: {"description": "Float (exp)","test": Infinity}

FIGURE 3 – Demo code output

There is a potential for this use-case to cause issues in developer implementations. RFC

8259 section 6 specifies that the use of values such as INF, pi, or 1E400 may cause

"interoperability problems," and the receiver may not be able to properly interpret the

data sent by the sender. This would need to be verified by the implementor of the

Boost.JSON library.

Affected Locations

Application

Boost.JSON v. 1.75.0

Total Instances 1

Recommendations

To mitigate the risk of type representation, the assessment team recommends the

following actions:

• Integrate a type check between values fed into the JSON parser to verify there no

value was interpreted differently.

• Make use of exceptions when an INF value is found within the JSON. Per RFC 8259

mentioned below, this should not exist within the JSON spec.

Additional Resources

The JavaScript Object Notation (JSON) Data Interchange Format

https://tools.ietf.org/html/rfc8259#section-6

RFC 8259

https://tools.ietf.org/html/rfc8259

https://tools.ietf.org/html/rfc8259#section-6
https://tools.ietf.org/html/rfc8259

 2021/03/17 11

APPENDIX A — MEASUREMENT SCALES

Finding Severity

Bishop Fox determines severity ratings using in-house expertise and industry-standard

rating methodologies such as the Open Web Application Security Project (OWASP) and the

Common Vulnerability Scoring System (CVSS).

The severity of each finding in this report was determined independently of the severity of

other findings. Vulnerabilities assigned a higher severity have more significant technical

and business impact and achieve that impact through fewer dependencies on other flaws.

Critical Vulnerability is an otherwise high-severity issue with additional security

implications that could lead to exceptional business impact. Findings are marked

as critical severity to communicate an exigent need for immediate remediation.

Examples include threats to human safety, permanent loss or compromise of

business-critical data, and evidence of prior compromise.

High Vulnerability introduces significant technical risk to the system that is not

contingent on other issues being present to exploit. Examples include creating a

breach in the confidentiality or integrity of sensitive business data, customer

information, or administrative and user accounts.

Medium Vulnerability does not in isolation lead directly to the exposure of sensitive

business data. However, it can be leveraged in conjunction with another issue to

expose business risk. Examples include insecurely storing user credentials,

transmitting sensitive data unencrypted, and improper network segmentation.

Low Vulnerability may result in limited risk or require the presence of multiple

additional vulnerabilities to become exploitable. Examples include overly

verbose error messages, insecure TLS configurations, and detailed banner

information disclosure.

Informational Finding does not have a direct security impact but represents an opportunity to

add an additional layer of security, is a deviation from best practices, or is a

security-relevant observation that may lead to exploitable vulnerabilities in the

future. Examples include vulnerable yet unused source code and missing HTTP

security headers.

 2021/03/17 12

APPENDIX B — TEST PLAN

The following section contains the test cases completed for each methodology in scope.

HAA METHODOLOGY

COMPLETED TEST CASES

TEST CASE DESCRIPTION

Perform dynamic testing

for memory management

vulnerabilities

Attempt to identify user-supplied inputs that are unsafely

loaded into memory or that unsafely reference existing

memory.

Perform dynamic testing

for object deserialization

issues

Identify whether user-supplied inputs are used as serialized

objects and sent to an unsafe deserialization routine.

Conduct dynamic testing

for known vulnerabilities

Attempt to find known vulnerabilities in components of the

system.

Manually review source

code

Examine the application source code to find errors

overlooked in the initial development phase.

Run static analyzers and

review the results

Run Checkmarx and cppcheck against the Boost.JSON 1.75.0.

library.

Review the bugs attached

to the Boost.JSON GitHub

and identify if any of

them are security related.

Identify bugs that are listed on the Boost.JSON GitHub and

determine if they are valid.

https://www.checkmarx.com/
http://cppcheck.sourceforge.net/

