
Smart Contract Security Review
Annihilat.io ANNI Salary Tokens

CLIENT

Annihilat.io

BRAZIL +55 81 3071.7148
R. VISCONDE DE JEQUITINHONHA 279 / EMPRESARIAL TANCREDO NEVES / ROOM 701 / RECIFE-PE

PORTUGAL +351 22 120 1335
PRAÇA MOUZINHO DE ALBUQUERQUE 113 / 5TH FLOOR / PORTO

SUMMARY

1.0 DOCUMENT CONTROL ..3

1.1 DOCUMENT CONTROL .. 3

1.2 DOCUMENT DISTRIBUTION ... 3

2.0 INTRODUCTION..3

3.0 EXECUTIVE SUMMARY ...4

4.0 SCOPE ...5

5.0 METHODOLOGY - SMART CONTRACT SECURITY REVIEW..5

6.0 TECHNICAL SUMMARY...6

6.1 DESCRIPTION OF THE SMART CONTRACTS... 6

6.1.1 MULTISIG WALLET.. 6

6.1.2 TOKEN .. 6

6.2 OBSERVATIONS ABOUT MULTISIG_FLAT.SOL.. 6

7 VULNERABILITIES ...7

7.1 IMPOSSIBILITY TO TRADE ANNI TOKENS BACK INTO ETH WILL HOLD INVESTOR'S FUNDS . 7

7.2 DEVIATION FROM TECHNICAL SPECIFICATIONS OF THE CONTRACT AND CODE FOR
LIQUIDATING TOKENS ... 9

7.3 ABSENCE OF EXPLICIT VISIBILITY IN SOME FUNCTION DECLARATIONS11

8.0 ADDITIONAL REMARKS..12

9.0 CONCLUSION..12

10.0 APPENDIX A - VULNERABILITY CRITERIA CLASSIFICATION...13

11.0 APPENDIX B - AUTOMATED ANALYSIS RESULTS..13

11.1 SOL-FUNCTION-PROFILER ...13

11.2 SOLGRAPH...14

11.3 OYENTE...14

11.4 MYTH ...17

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security

1.0 DOCUMENT CONTROL
1.1 DOCUMENT CONTROL

1.2 DOCUMENT DISTRIBUTION

2.0 INTRODUCTION

Authors
Delivery

Date Pages Version Status

Victor Farias and Julio

Fort

20/12/2017 16 0.9 Preliminary

report

Victor Farias and Julio

Fort

22/12/2017 17 1.0 Final report

Name Title Organisation

Julio Fort Director of Professional Services Blaze Information Security

Vlad Smirnov Founder Annihilat.io

This document presents the results of a Smart Contract Security Review for Annihilat.io.
This engagement aimed to verify whether the smart contract only does what it is intended
to do, and to discover security vulnerabilities that could negatively affect the Annihilat.io’s
ANNI token before the contract gets deployed into the blockchain network.

Annihilat.io is an idea of funding based on the concept of Initial Development Offering
(IDO). Essentially, it works as a salary token for contributors of a project that raised
capital in an IDO. Annihilat.io uses an Ethereum ERC20-based token and contracts were
written in Solidity. Details about Annihilat.io and IDO can be found in the whitepaper:
https://github.com/annihilatio/ido/blob/master/article.pdf

The analysis focused on vulnerabilities related to implementation and on issues caused
by architecture and design errors, as well as inconsistencies between the documentation
and the code.

For each code pattern non-compliant with the Ethereum token standard or to the contract
specification, deviation of best practices and vulnerability discovered during the
assessment, Blaze Information Security attributed a risk severity rating and, whenever
possible, validated the existence of the vulnerability with a working exploit code.

The main objectives of the assessment were the following:

• Identify the main security-related issues present in the smart contract
• Assess the level of secure coding practices present in the project
• Obtain evidences for each vulnerability and, if possible, develop a working exploit

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 3

https://github.com/annihilatio/ido/blob/master/article.pdf

3.0 EXECUTIVE SUMMARY

• Document, in a clear and easy to reproduce manner, all procedures used to
replicate the issue

• Recommend mitigation factors and fixes for each defect identified in the analysis
• Provide context with a real risk scenario based on a realistic threat model

The engagement was performed in a period of five business days, including report
writing. The smart contract security review commenced on 12/12/2017 and ended on 18/
12/2017, finishing with the preliminary version of this report.

On 21/12/2017 all findings reported by Blaze Information Security were fixed
accordingly by Annihilat.io. The issues are no longer present in the code of the
contracts and were fixed in commits b287f07393f8b5b67cbde5c1d70dfc31b9cd5aa1
and afdf264d030e8313fd65e1c8c236d2a958eff7c7.

The audit was done with the assistance of automated tools as well as subjected to manual
review. The generated EVM code was not inspected in this assessment.

There were three issues discovered in the contracts audited in this engagement. Overall,
the contracts under scope contained significant vulnerabilities that could lead to loss
of tokens and cause a significant impact to the operations of Annihilat.io. They also
lacked defensive security coding patterns and had other non-recommended Solidity
programming practices.

The following table summarizes the issues found in the smart contracts under scope for
this audit.

It is important to notice these vulnerabilities are no longer present, as they have been
corrected by Annihilat.io and the fixes reviewed by the auditors.

POINT TITLE SEVERITY

1 Impossibility to trade ANNI tokens back into ETH will hold

investor’s funds

CRITICAL

2 Deviation from technical specifications of the contract and code

for liquidating tokens

MEDIUM

3 Absence of explicit visibility in some function declarations LOW

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 4

4.0 SCOPE

5.0 METHODOLOGY - SMART CONTRACT
SECURITY REVIEW

The scope of this security review is comprised of two smart contracts written in Solidity.

• Project name: annihilatio
• Commit: 8ad0a1bdc7dff7e40ad5cf61aea89deaa982eab5

Filename Lines of code

Token_flat.sol 345

Multisig_flat.sol 498

The code audited is open source and can be found at https://github.com/annihilatio/ido/
tree/8ad0a1bdc7dff7e40ad5cf61aea89deaa982eab5/smart-contracts

Our security-oriented smart contract review follows an organized methodology with the
intent to identify the largest number of vulnerabilities in the contracts under scope from
the perspective of a motivated, technically capable and persistent adversary.

Special attention is directed towards critical areas of the smart contract such as burning
of tokens and functioning of the multi-signature. Our process also looks into other
common implementation issues that lead to problems like reentrancy, mathematical
overflows and underflows, gas-related denial of service, etc.

Blaze’s smart contract review methodology involves automated and manual audit
techniques.

The applications are subjected to a round of dynamic analysis using tools like linters,
program profilers and source code security scanners.

The contracts have their source code manually inspected for security flaws. This type of
analysis has the ability to detect issues that are missed by automated scanners and static
analyzers, as it can discover edge-cases and business logic-related problems.

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 5

https://github.com/annihilatio/ido/tree/8ad0a1bdc7dff7e40ad5cf61aea89deaa982eab5/smart-contracts
https://github.com/annihilatio/ido/tree/8ad0a1bdc7dff7e40ad5cf61aea89deaa982eab5/smart-contracts

6.0 TECHNICAL SUMMARY
6.1 DESCRIPTION OF THE SMART CONTRACTS

6.1.1 MULTISIG WALLET

6.1.2 TOKEN

6.2 OBSERVATIONS ABOUT MULTISIG_FLAT.SOL

In order to safely store the funds and balance consensus among the owners,
annihilat.io uses a multi-signature wallet to control the token. This contract
can be used to change the configuration of the token, for example to set new
values for the share that goes to the investor, founders and to the project, call
TGE to go live, etc.

This contract is the ANNI token per se. It contains all functions related to
minting, transference of tokens among wallets, function to check balance of
a wallet, burning of tokens, and other functionalities outlined in the token
specification.

There were numerous errors when trying to run Multisig_flat.sol in automated tools.
Blaze Information Security suggests the developers should review the code of the
contract to understand why most Solidity security tools could not parse it.

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 6

7.0 VULNERABILITIES
7.1 IMPOSSIBILITY TO TRADE ANNI TOKENS BACK INTO ETH WILL HOLD

INVESTOR'S FUNDS

SEVERITY CRITICAL

AFFECTED POINTS Token_flat.sol

DESCRIPTION

Fixed Comments

Yes Fixed in commit afdf264d030e8313fd65e1c8c236d2a958eff7c7

The contract has a function for token holders to convert their ANNI tokens into Ether
(ETH).

This function, known as burn() is expected to work by first transferring the amount
requested in tokens to a “burn address” and subsequently transferring ETH to whoever
called the function.

Nevertheless, during the code review Blaze Information Security noticed that the
transfer() function does not allow a transfer to a zero address, so the balance of the
sender is never updated, and an exception will take place due to a missing condition to
satisfy a require(), hence his or hers can call the function to burn tokens multiple times
but no action will happen.

From Token_Flat.sig:

line 135:

address constant public burnAddress = 0×0;

[…]

line 217:

function burn(uint _amount)

public

isNotTgeLive

noAnyReentrancy

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 7

returns(bool _success)

{

require(balances[msg.sender] >= _amount);

transfer(burnAddress, amount); // here
a transfer is supposed to happen to the burn address

msg.sender.transfer(amount);

Burn(msg.sender, _amount);

return true;

}

[…]

line 59:

function transfer(address _to, uint value) isNotFrozenOnly
onlyPayloadSize(2 * 32) returns (bool success) {

require(_to != address(0)); // the
burn address is 0×0, require() will not be satisfied and
will throw

require(value <= balances[msg.sender]); // this
line will never be executed

Given the code constructs above, when a burn() function is called it will attempt
to execute a transfer like transfer(0×0, _amount) and the statement require(_to !=
address(0)); will not complete as expected.

The impact of this issue is severe, as investors that hold ANNI tokens will never be able
to convert their tokens back to ETH.

SOLUTION

There may be different solutions to this issue. Blaze recommends not calling the
transfer function in burn() but instead verify the amount and deduct it from the
account:

require(value <= balances[msg.sender]);

balances[msg.sender] = balances[msg.sender].sub(value);

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 8

7.2 DEVIATION FROM TECHNICAL SPECIFICATIONS OF THE CONTRACT AND
CODE FOR LIQUIDATING TOKENS

SEVERITY MEDIUM

AFFECTED POINTS Token_flat.sol

DESCRIPTION

Fixed Comments

Yes Fixed in commit b287f07393f8b5b67cbde5c1d70dfc31b9cd5aa1

According to the specifications of the smart contract (https://github.com/annihilatio/
ido/blob/master/SMART-CONTRACT-SPECS.md#burning):

The tokens can be liquidated at any time by a token
holder, at this stage tokens are burnt and the token
contract sends the same amount of ETH to token holder.
Token holder obviously can not burn more tokens than he
owns. Also as tokens are burnt total supply is decreased
by the same number of tokens.

From Token_flat.sol:

/// @dev Burn tokens to burnAddress from msg.sender wallet

/// @param _amount Amount of tokens

function burn(uint _amount)

public

isNotTgeLive

noAnyReentrancy

returns(bool _success)

{

require(balances[msg.sender] >= _amount);

transfer(burnAddress, amount);

msg.sender.transfer(amount);

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 9

https://github.com/annihilatio/ido/blob/master/SMART-CONTRACT-SPECS.md#burning
https://github.com/annihilatio/ido/blob/master/SMART-CONTRACT-SPECS.md#burning

Burn(msg.sender, _amount);

return true;

}

According to the code above the token liquidation (burn event) cannot be called
anytime, as opposed to what the documentation says, but only when TGE (Token
Generation Event) is not live.

The auditing team understands this issue does not bring any negative security impact
to the contract per se, but it is certainly a deviation from the intended functionality
outlined in the technical specifications of the smart contract.

SOLUTION

Consider removing the modifier isNotTgeLive from the function burn(). If the code
is actually what reflects the business logic, change the documentation to reflect it
accurately.

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 10

7.3 ABSENCE OF EXPLICIT VISIBILITY IN SOME FUNCTION DECLARATIONS

SEVERITY LOW

AFFECTED POINTS Token_flat.sol

DESCRIPTION

Fixed Comments

Yes Fixed in commit b287f07393f8b5b67cbde5c1d70dfc31b9cd5aa1

The audit revealed that with the exception of two functions, _finishTge() and
_mint(uint,uint,uint), both marked as internal, all other functions of the contracts are
public as some of them have not been explicitly labelled. Many of these functions are
state changing.

By default Solidity marks as public all non-labelled functions, making them being
callable by external agents in the network. In order to restrict this behavior, a developer
should use the labels internal or private to prevent them for being called from the
outside.

While Blaze Information Security noticed there were different checks in the functions
to prevent abuse from external parties calling them, not labelling functions explictly is
considered a bad programming practice and should be avoided.

This recommendation hopefully will also provide the development team with an
opportunity to review the visibility of the functions and reconsider their current label.

A function profiling of the audited contracts, including the visibility status of each
function, can be found in the Appendix B of this report.

REFERENCE

• https://consensys.github.io/smart-contract-best-practices/recommendations/

SOLUTION

Add explicit visibility of functions and state variables.

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 11

https://consensys.github.io/smart-contract-best-practices/recommendations/

8.0 ADDITIONAL REMARKS

9.0 CONCLUSION

• At MultiSigWallet contract notNull() modifier could be moved from
addTransaction(address destination, uint value, bytes data) to functions
submitTransaction(), setLiveTx() and setFinishedTx() to verify it at an earlier
stage.

• At MultiSigWallet function isConfirmed() does not explicitly return false.

• At MultiSigWallet in the loop inside getTransactionIds() function, the var ‘i’ could
be initialized with the value of variable ‘from’ instead 0 to save gas.

• At MultiSigWallet could the “IToken token” variable be changed through function
“setToken” by any owner without a election? This seems to defeat the purpose of
multi-signature and the idea of reaching a consensus in order to perform an action
in the wallet.

• Both contracts start with the following code construct:

pragma solidity ^0.4.15;

According to the best practices outlined in https://consensys.github.io/smart-contract-
best-practices/recommendations/#lock-pragmas-to-specific-compiler-version it should
be:

pragma solidity 0.4.15;

The ultimate goal of a security assessment is to bring the opportunity to better illustrate
the risk of an organization and help make it understand and validate its security posture
against potential threats to its business.

With that in mind, Blaze Information Security provides the following recommendations
that we believe should be adopted as next steps to further enhance the security posture
of the Annihilat.io smart contracts:

• Fix all issues presented in the report and consider the observations made in the
remarks section;

• Perform another round of audit to verify the fixes;
• Consider establishing a bug bounty program, as it is becoming increasingly

common among companies in the smart contract and blockchain field.

Blaze Information Security would like to thank the team of Annihilat.io for their support
and assistance during the entire engagement. We sincerely hope to work with Annihilat.io
again in the near future.

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 12

https://consensys.github.io/smart-contract-best-practices/recommendations/#lock-pragmas-to-specific-compiler-version
https://consensys.github.io/smart-contract-best-practices/recommendations/#lock-pragmas-to-specific-compiler-version

10.0 APPENDIX A - VULNERABILITY CRITERIA
CLASSIFICATION

11.0 APPENDIX B - AUTOMATED ANALYSIS
RESULTS

11.1 SOL-FUNCTION-PROFILER

Below the risk rating criteria used to classify the vulnerabilities discussed in this report:

Severity Description

CRITICAL Leads to the compromise of the system and the data it handles.

Can be exploited by an unskilled attacker using publicly available

tools and exploits. Must be addressed immediately.

HIGH Usually leads to the compromise of the system and the data it

handles.

MEDIUM Does not lead to the immediate compromise of the system but

when chained with other issues can bring serious security risks.

Nevertheless, it is advisable to fix them accordingly.

LOW Do not pose an immediate risk and even when chained with other

vulnerabilities are less likely to cause serious impact.

Contract Function Visibility Constant Returns Modifiers

ERC20 transfer(address,uint) public false success isNotFrozenOnly,onlyPayloadSize

ERC20 transferFrom(address,address,uint) public false success isNotFrozenOnly,onlyPayloadSize

ERC20 balanceOf(address) public true balance

ERC20 approve_fixed(address,uint,uint) public false success isNotFrozenOnly,onlyPayloadSize

ERC20 approve(address,uint) public false success isNotFrozenOnly,onlyPayloadSize

ERC20 allowance(address,address) public true remaining

ERC20 totalSupply() public true totalSupply

Token Token(address,address) public false

Token () public false

Token setFinished() public false only,isNotFrozenOnly,isTgeLive

Token tgeSetLive() public false only,isNotTgeLive,isNotFrozenOnly

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 13

11.2 SOLGRAPH

11.3 OYENTE

Token burn(uint) public false _success isNotTgeLive,noAnyReentrancy

Token multiTransfer(address,uint) public false uint isNotFrozenOnly

Token goLive() public false bool only,isNotFrozenOnly

Token withdrawFrozen() public false isFrozenOnly,noAnyReentrancy

Token executeSettingsChange(uint,uint,uint) public false success only,isNotTgeLive,isNotFrozenOnly

Token tgeStageBlockLeft() public false uint isTgeLive

Token isLive() public false bool

Token tgeCurrentPartInvestor() public false uint isTgeLive

Token tgeNextPartInvestor() public false uint isTgeLive

Token _finishTge() internal false

Token _mint(uint,uint,uint) internal false

• Token_flat.sol

• Multisig_flat.sol

solgraph could not generate a call graph of this contract due to numerous syntax
errors.

• Token_flat.sol

INFO:root:Contract Token_flat.sol:Base:

INFO:oyente.symExec:Running, please wait…

INFO:oyente.symExec: ==== Results ===

INFO:oyente.symExec: EVM code
coverage: 100.0%

INFO:oyente.symExec: Callstack bug:
False

INFO:oyente.symExec: Money concurrency bug:
False

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 14

INFO:oyente.symExec: Time dependency
bug: False

INFO:oyente.symExec: Reentrancy bug:
False

INFO:root:Contract Token_flat.sol:ERC20:

INFO:oyente.symExec:Running, please wait…

INFO:oyente.symExec: ==== Results ===

INFO:oyente.symExec: EVM code
coverage: 99.9%

INFO:oyente.symExec: Callstack bug:
False

INFO:oyente.symExec: Money concurrency bug:
False

INFO:oyente.symExec: Time dependency
bug: False

INFO:oyente.symExec: Reentrancy bug:
False

INFO:root:Contract Token_flat.sol:SafeMath:

INFO:oyente.symExec:Running, please wait…

INFO:oyente.symExec: ==== Results ===

INFO:oyente.symExec: EVM code
coverage: 100.0%

INFO:oyente.symExec: Callstack bug:
False

INFO:oyente.symExec: Money concurrency bug:
False

INFO:oyente.symExec: Time dependency
bug: False

INFO:oyente.symExec: Reentrancy bug:
False

INFO:root:Contract Token_flat.sol:Token:

INFO:oyente.symExec:Running, please wait…

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 15

INFO:oyente.symExec: ==== Results ===

INFO:oyente.symExec: EVM code
coverage: 76.1%

INFO:oyente.symExec: Callstack bug:
False

INFO:oyente.symExec: Money concurrency bug:
False

INFO:oyente.symExec: Time dependency
bug: False

INFO:oyente.symExec: Reentrancy bug:
False

INFO:oyente.symExec: == Analysis Completed ==

INFO:oyente.symExec: == Analysis Completed ==

INFO:oyente.symExec: == Analysis Completed ==

INFO:oyente.symExec: == Analysis Completed ==

• Multisig_flat.sol

oyente’s analysis could not be completed.

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 16

11.4 MYTH

• Token_flat.sol

The scan was completed successfully. No issues were
detected.

• MultiSigWallet.sol

== CALL with gas to dynamic address ==

Type: Warning

Contract: MultiSigWallet

Function name: executeTransaction(uint256)

PC address: 10750

The function executeTransaction(uint256) contains a
function call to an address provided as a function
argument. The available gas is forwarded to the called
contract. Make sure that the logic of the calling
contract is not adversely affected if the called
contract misbehaves (e.g. reentrancy).

== Integer Underflow ==

Type: Warning

Contract: MultiSigWallet

Function name: removeOwner(address)

PC address: 3328

A possible integer underflow exists in the function
removeOwner(address).

The SUB instruction at address 3328 may result in a
value < 0.

-————————-

++++ Debugging info ++++

(storage_3) – (1).]

SMART CONTRACT SECURITY REVIEW

@2017 Blaze Information Security 17

