
Cure53 Public Pentest Report: Cryptocat 2

Testing & Documentation: Dr.-Ing. Mario Heiderich, Krzysztof Kotowicz & Maxim Rupp
Proof-Read & Editing: Paula Pustulka · 9th of November 2012

Table of Contents
Cure53 Public Pentest Report: Cryptocat 2...1

Introduction...2

Vulnerabilities..3

Stored XSS/HTML Injection via Conversation-/Nick-Name (High)..3

Remote Code Execution via Conversation-/Nick-Name (Critical)...4

De-Anonymization / Local Exploits via malformed Data URIs (High) ..4

Math.random() usage for unpredictable numbers (Medium)...6

Potential DOM XSS within user nickname alteration (Medium)...7

Invalid HTML code in link markup decorator (Low)..8

Multi-party HMAC implementation inconsistent with specs (Low)...9

Typo in multiparty key request implementation (Low)..9

Remote kick / user impersonalization in multipart chat (Critical)..10

Usernames capable of altering the logic of Cryptocat 2 (Low)..12

XMPP request IDs potential disclosure of OTR chat activity (High)...13

Cryptocat Chrome extension's cross-origin detection (Low) ..14

OTR implementation vulnerable to poisoning in rare cases (Medium)..15

Other findings..15

Entropy Pool Misuse...15

Multiparty public key distribution inconsistent with the specification...16

General Comments and Security Advice...17

Avoid untrusted input in jQuery selectors..17

Avoid all non-alphanumeric characters in nicknames...18

Implement centralized filtering method..18

Avoid allowing SVG files...18

Consider removing wildcard host permissions in Chrome extension..19

Consider moving key storage
 and encryption logic to WebWorker thread...19

Develop protection against timing attacks..19

Conclusion...20

Introduction
Cryptocat 2 is an open source web application intended to allow secure and encrypted
online chatting. Utilizing client’s side for the encryption purposes, Cryptocat 2 trusts and
uses the already encrypted data on the server only. Cryptocat 2 is delivered as a
browser extension, offering plugins for Google Chrome, Mozilla Firefox and Apple Safari.
The aim of Cryptocat 2 is to provide means for impromptu encrypted communication that
guarantees more privacy than services such as Google Talk and the like. In comparison
to various high-level encryption platforms, Cryptocat 2 strives to maintain a high degree
of accessibility, while preserving various functionalities, such as that of multiple users
connecting to a single chat room.

During the testing, the Cryptocat's 2 source code was analyzed and audited. The code
was specifically monitored for concatenation patterns, suspicious function calls, string-to-
code sinks, DOMXSS sources and implementation flaws in cryptographic protocols used
(Multiparty Protocol Specification, OTR). In addition, for debugging purposes, the
incoming server messages were tampered with or simulated, all in the attempt to see
whether a malicious server can compromise this client-level security. The following tools
were employed during the debugging process: Firefox with Firebug, Google Chrome with
Debug Tools.

Note that all vulnerabilities mentioned in this final report and pentest overview are
currently repaired and fixes are being consequently verified at the time of writing.

Vulnerabilities

Stored XSS/HTML Injection via Conversation-/Nick-Name (High)

A malicious Cryptocat 2 user can disable the client-side conversation-/nick-name
validation feature by removing the following code from the file /cryptocat.js:

else if (!$('#conversationName').val().match(/^\w{1,20}$/)) {
 loginFail(Cryptocat.language['loginMessage']['conversationAlphanumeric']);
 $('#conversationName').select();
 }

It is through this removal that HTML can be submitted to a server of attacker's choice.
This HTML is displayed in the conversation overview without any additional encoding or
filtering. Based on the CSP protection in place for the Chrome extension, we may
assume that executing JavaScript within the application context is impossible; however,
an attacker can inject an HTML form and thereby intercept conversations, collect
keystrokes and affect the privacy promise given by Cryptocat 2 in other respects.

http://www.cypherpunks.ca/otr/
https://github.com/kaepora/cryptocat/wiki/Multiparty-Protocol-Specification

Note that the Chrome Extension CSP permits form submissions to external HTTP
resources, therefore enabling successful data exfiltration.

Examplary Screenshot:

Any input coming from the server or different users should be considered untrusted and
should therefore be displayed only when a condition of the proper output filtering is met.
In this situation, usage of DOM methods such as escape() is recommended.

Remote Code Execution via Conversation-/Nick-Name (Critical)

Unfortunately, Firefox Cryptocat 2 extension has proven vulnerable to the very same
problem with unfiltered reflection of user-name and/or conversation name. In addition,
unlike the Chrome browser, Firefox provides no CSP or similar browser protection.

This elevates this bug in severity, making it a potential RCE vulnerability, as the injected
JavaScript can access objects available exclusively in the privileged code. This way, the
attacker can create and execute arbitrary files and code segments on the victim’s
machine, running in the normally sanctioned privileged context of the Firefox browser
hosting the Cryptocat 2 extension.

Examplary Screenshot:

As a result, only with proper output filtering in place can an input coming from the server
or different users be displayed, as it clearly must be considered untrusted. Analogically
to a previous case, this situation also calls for usage of DOM methods such as escape().

De-Anonymization / Local Exploits via malformed Data URIs (High)

Cryptocat 2 allows encrypted file transfers between its users. The feature relies on a file
upload form (inactive in the tested version), which is capable of converting files to data
URIs through the DOM functionality. Upon successful upload and conversion, the data
URI string is sent to the recipient.

Although the feature itself is not active, the recipient will be able to download the
received file because Cryptocat 2 - despite inactive file transfer feature - converts all
messages that follow a certain pattern into a link pointing to the mentioned data URI.
The vulnerability is caused by the regular expression testing for occurrences of data
URIs in the received messages.

/data:image\/\w+\;base64,(\w|\\|\/|\+|\=)*$/

This regular expression allows an attacker to, for instance, transmit arbitrary content
applied with the MIME part image/foo. A click on the link will trigger a download. In the
event that the user opens the downloaded file, the operating system will attempt to sniff
its content and, based on internal heuristics, it will decide on how to open or execute that
very file.

During the tests, the following data URI was used:


vbS8iPjwvaWZyYW1lPjwvaHRtbD4NCg

The file string contains HTML data that will lead the operating system or display
manager to store the file locally in a /tmp folder. It will then be opened with the default
browser, thus displaying the embedded content. The result is a possible de-
anonymization and local exploitation for cases when the attacker decides to embed
JavaScript, Java applets or similar malicious content. The following three screens
illustrate the process in stages - from reception of the data URI to the payload execution.

The feature should be fixed through an application of the following best practices:
• A proper whitelist should be used for the permitted MIME types

• /data:image\/(png|jpeg|gif)\;

• Cryptocat 2 should not blindly accept arbitrary base64 transported in data URIs

• File data should be validated with use of MIME type & magic bytes of the data URI

Math.random() usage for unpredictable numbers (Medium)

There are still occurrences of Math.random() usage in the libraries, clearly pinpointing to
an insecure PRNG. These should be replaced by Cryptocat.random(). In the example
below, Math.random() is used to generate request ID (rid) for BOSH. As per BOSH
documentation [link]:

“The session identifier (SID) and initial request identifier (RID) are security-critical and
therefore MUST be both unpredictable and non-repeating (see RFC 1750 for
recommendations regarding randomness of SIDs and initial RIDs use for security
purposes).”

Math.random() is not considered unpredictable and the state-recovery attacks
happening in the past, e.g. in early Chrome, stand to prove this point.

/cryptocat-chrome/js/strophe/strophe.js:
1771 this.jid = "";
1772 /* request id for body tags */
1773: this.rid = Math.floor(Math.random() * 4294967295);
1774 /* The current session ID. */
1775 this.sid = null;

1839 reset: function ()
1840 {
1841: this.rid = Math.floor(Math.random() * 4294967295);
1842
1843 this.sid = null;

2746 this.sid = null;
2747 this.streamId = null;
2748: this.rid = Math.floor(Math.random() * 4294967295);
2749
2750 // tell the parent we disconnected

Next example depicts Math.random() usage for generating client nonce for HTTP Digest
Authentication scheme. Although there are no specific requirements for unpredictability
of client nonces in RFC 2617, the safest bet is to use a secure PRNG for the generation
purposes.

/cryptocat-chrome/js/strophe/strophe.js:
....
3071
3072 var challenge = Base64.decode(Strophe.getText(elem));
3073: var cnonce = MD5.hexdigest("" + (Math.random() * 1234567890));
3074 var realm = "";
3075 var host = null;

http://dl.packetstormsecurity.net/papers/general/Google_Chrome_3.0_Beta_Math.random_vulnerability.pdf
http://tools.ietf.org/html/rfc1750

A few other Math.random() calls exist for generating unique IDs yet those usage
instances are considered safe.

/cryptocat-chrome/js/strophe/strophe.js:
1808 this._data = [];
1809 this._requests = [];
1810: this._uniqueId = Math.round(Math.random() * 10000);
1811
1812 this._sasl_success_handler = null;

1863
1864 this._requests = [];
1865: this._uniqueId = Math.round(Math.random()*10000);
1866 },
1867

Potential DOM XSS within user nickname alteration (Medium)

The function handlePresence() is defined in cryptocat.js processes for notifications that
arrive from XMPP server. This includes the nickname change which might potentially
pose a threat. While nickname alterning is not implemented in Cryptocat, it is possible to
request a change via another XMPP client or a rogue XMPP server. New nickname is
being processed without sanitization.

// Detect nickname change (which may be done by non-Cryptocat XMPP clients)
if ($(presence).find('status').attr('code') === '303') {

var newNickname = $(presence).find('item').attr('nick');
console.log(nickname + ' changed nick to ' + newNickname);
changeNickname(nickname, newNickname); // reassigns OTR keys etc.
return true;

}

For this problem to be solved, the code should be change to the following:

var newNickname = Strophe.xmlescape($
(presence).find('item').attr('nick').match(/\w+/)[0])

This certifies that only alphanumeric characters are used during nickname-changing
process.

Invalid HTML code in link markup decorator (Low)

The function addLinks() is used for converting plaintext links sent in message contents to
HTML <a> elements. If links with same prefixes are inserted multiple times, the function
is being abused in hopes of producing an invalid HTML code. In combination with other

vulnerabilities and/or HTML parsing issues, it might be come useful in an exploitation of
a DOM XSS / HTML injection vulnerability.

// Convert message URLs to links. Used internally.
function addLinks(message) {

if ((URLs = message.match(/((mailto\:|(news|(ht … \/){1}\S+)/gi))) {
for (var i in URLs) { // all links are processed one by one

var sanitize = URLs[i].split('');
for (var l in sanitize) {

if (!sanitize[l].match(/\w|\d|\:|\/ … \.|\&|\;|\%/)) {
sanitize[l] = encodeURIComponent(sanitize[l]);

}
}
sanitize = sanitize.join('');
message = message.replace(

sanitize, '<a target="_blank" href="'
 + sanitize + '">' + URLs[i] + ''

);
// current link text is replaced globally (i.e. multiple times)

}
}
return message;

}

The code was later being fixed by using a simple transformation algorithm, allowing the
regular expression to determine whether a URL-string was already decorated or had
decoration pending.

Multi-party HMAC implementation inconsistent with specs (Low)

According to Multiparty Protocol Specification, messages are authenticated with HMAC.
The authenticated text is “the concatenation of all cipher-text arranged by sorting the
recipient nicknames lexicographically”. However, the Cryptocat nicknames are not sorted
at all. Instead, the sharedSecret properties are just disorderly iterated:

multiParty.sendMessage = function(message) {
var encrypted = {};
var concatenatedCiphertext = '';
for (var user in sharedSecrets) { // no key order guaranteed
encrypted[user] = {}; // new property will be set in msg

encrypted[user]['message'] = encryptAES(
message, sharedSecrets[user]['message'], 0

);
concatenatedCiphertext += encrypted[user]['message'];

}

https://github.com/kaepora/cryptocat/wiki/Multiparty-Protocol-Specification

In multiParty.receiveMessage() HMACs are validated according to the order in which the
users are specified in the (untrusted!) message:

var concatenatedCiphertext = '';
for (var user in message) {

concatenatedCiphertext += message[user]['message'];
}
if (message[myName]['hmac'] === HMAC(concatenatedCiphertext,
sharedSecrets[sender]['hmac'])) {...

This makes Cryptocat implementation incorrect as far as specifications are considered.
Additionally, any future implementations of the application might not be inter-operable
since different cipher-texts would be signed and validated each time. Use of
Object.keys() and Array.sort() for sorting array keys lexicographically is highly
recommended.

Typo in multiparty key request implementation (Low)

In multiparty.js there are two occurrences of key requests strings:
11: multiParty.publicKeyRegEx = /^\?:3multiParty:3\?:PublicKey:(\w|=)+$/;
149: answer[user]['message'] = '?:3multiParty:3?:PublicKey:' + myPublicKey;

Per specification, public key message uses publicKey with lowercase character p:

{nickb:{"message":"?:3multiParty:3?:publicKey:publicKeya"}}

While this minor error has currently no real impact, in presence of other implementations
of the specifications, Cryptocat might send and process public key messages differently,
potentially allowing a Denial-Of-Service and resulting in no interoperability among
clients.

Remote kick / user impersonalization in multipart chat (Critical)

Cryptocat can only allow the creation of users through alphanumeric nicknames. This is
assured during the login form verification. Upon receiving messages from XMPP server,
the user nickname is truncated on first non-alphanumeric character.

var nickname = Strophe.xmlescape(
 $(presence).attr('from').match(/\/\w+/)[0].substring(1)
);

Only the first alphanumeric substring is used for processing as the user’s nickname (in
handleMessage and handlePresence functions). Thus, Cryptocat will, for example,
interpret foo@conference.crypto.cat/user-imposter as user. By abusing this functionality
with modified Cryptocat client (or other XMPP client), one may be able to remotely kick a
user of other users’ members lists and instantaneously replace them. New multiparty
keys will be generated and all future conversations will be made with the new user.
Present users of the chat will only notice a slight animation happening as the user is
being replaced.

Having exemplary users ‘alice’ and ‘bob’, the procedure is as follows:

● Step 1: Join a chat as a user ‘bob-kickout’ and immediately log out. That will
generate <presence type=”unavailable”> message with varied implications. For
‘alice’, user bob will be logged out, his keys destroyed and so and forth, whereas
for ‘bob’ user, the chat is now a black hole as he will not get new messages from
other members who have had his key removed.

● Step 2: Immediately log in as the user bob-imposter. ‘Alice’ will create a user
entry ‘bob’ with imposter keys. This will subsequently generate a race-condition
situation with old bob* user’s <presence> messages coming in, yet it is perfectly
feasible to win the race.

The screenshots below serve as illustrations of the procedure’s effects.

User Alice only sees bob user with group fingerprint EDF22989

Original Bob can still see alice but has a different (old) key

With modified client, bob-go can communicate with alice, pretending to be (original) bob

To conclude, Cryptocat 2 should deny processing of <presence> and <message>
messages from users with non-alphanumeric characters, ceasing the truncating of the
nickname on the first such character.

Usernames capable of altering the logic of Cryptocat 2 (Low)

In multiple parts of an application, nicknames are used as keystore object keys. For
example:

// handlePresence
if (nickname !== 'main-Conversation' && otrKeys[nickname] === undefined) {

//multiParty.receiveMessage
if (!publicKeys[sender]) {

var publicKey = message[myName]['message'].substring(27);
if (checkSize(publicKey)) {

publicKeys[sender] = publicKey;

Due to Javascript prototype-chain behavior, keystore objects (e.g. publicKeys, otrKeys,
sharedSecrets) equally have alphanumeric properties of Object.prototype e.g. valueOf,
toString, constructor etc. By using these names as nicknames, it is possible to trigger
unspecified logic flaws in Cryptocat. For example, chat ceases to work when a
‘constructor’ user joins in. It is advisable to use Object.hasOwnProperty instead of array
access operator when verifying property’s existence.

XMPP request IDs potential disclosure of OTR chat activity (High)

Multi-party (group chat) and OTR messages share the same XMPP-over-BOSH
connection implemented via Strophe.js library. Each message from a user is sent to the
server with a unique ID value. Server then redistributes the message to the appropriate
chat participants accordingly. Due to the implementation details in Strophe.js, the ID is
not only unique but it is an incrementing number, starting from a random value.

// strophe.muc.js, in various places
message: function(room, nick, message, html_message, type) {

var msg, msgid, parent, room_nick;
room_nick = this.test_append_nick(room, nick);
type = type || (nick != null ? "chat" : "groupchat");
msgid = this._connection.getUniqueId(); //

// strophe.js
getUniqueId: function (suffix)
{

if (typeof(suffix) == "string" || typeof(suffix) == "number") {
return ++this._uniqueId + ":" + suffix;

} else {
return ++this._uniqueId + "";

}
},...

http://xmpp.org/extensions/xep-0206.html
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Object/hasOwnProperty

For that reason, tracking user message IDs is possible through this property. Details as
to whether a user is currently engaged in an OTR conversation and how many
messages has he sent in such conversation thus far can be detected and extracted
through tracking processes. With next ‘groupchat’ message of such user, missing ID
numbers will be observed.

var oldId = (typeof window.lastIds[nickname] !== "undefined") ?
window.lastIds[nickname] : 0;
window.lastIds[nickname] = parseInt($(message).attr('id'), 10);
if ((oldId + 1) !== window.lastIds[nickname]) {

console.warn(nickname, window.lastIds[nickname]);
// missing IDs detected

}

Even an unskilled attacker can periodically force every user to send invisible public
messages by asking for OTR fingerprints in the likes of:

for (var nickname in otrKeys)
otrKeys[nickname].sendQueryMsg();

Combining these two methods may appear quite trivial, but it serves it purpose of
building a modified Cryptocat client that constantly monitors users of a group chat,
detecting their OTR activities as they happen.

Modified Cryptocat client detects that Alice and Charlie are engaged in OTR
conversation. To simply eradicate that behavior, message IDs should not be
incrementing numbers. To guarantee uniqueness, a keyed hash of an incrementing
number could be sent instead.

Cryptocat Chrome extension's cross-origin detection (Low)

Cryptocat Chrome extension uses manifest version 2, which by default offers protection
from Chrome extensions fingerprinting. Nevertheless, img/keygen.gif image file, used in
Cryptocat notifications, has a specific permission in the manifest.json, so that it can be a
web_accessible_resource. This gives any website the possibility to determine if current
visitor has the extension installed. The code for such detection routine is demonstrated
below:

<img src="chrome-extension://[extension-id-from-chrome-web-
store]/img/keygen.gif" onload=alert(/hascat/) onerror=alert(/hasnot/) >

If the premise of Cryptocat is for it not to be detected by other websites,
web_accessible_resources array should be left empty.

The Cryptocat team has evaluated and accepted this risk; the problem will not be
addressed in the foreseeable future.

OTR implementation vulnerable to poisoning in rare cases (Medium)

OTR uses Socialist Millionnaire protocol for a key exchange. This protocol is “vulnerable

to poisoning whereby either Alice or Bob chooses (,) or (,) to be zero to be
able to predict the result” (Wikipedia). a2 and a3 are chosen randomly in otr.js:

HLP.randomExponent = function () {
 return BigInt.randBigInt(1536)
}

this.a2 = HLP.randomExponent()
this.a3 = HLP.randomExponent()

To make sure that neither party chose (or deliberately set) , to zero, a verification
check should be made on the values of (g2a, g3a) (own) and (g3a, g3b) (incoming). All
of them should not be equal to 1. This check is currently missing in the code. However,
during rudimentary testing it seems that Socialist Millionaire protocol never gets
triggered when using OTR chat within Cryptocat (further testing needed).

http://en.wikipedia.org/wiki/Socialist_millionaire
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html

Other findings
The following paragraphs will list potential problems that might at some point lead to
bugs and/or vulnerabilities. Future versions of the software might be tackling these
issues.

Entropy Pool Misuse

Application uses a secure PRNG provided by window.crypto.getRandomBytes().
Unfortunately, due to the way it is used, a lot of entropy is wasted when converting raw
byte values to a float in Cryptocat.random() occurs. Each random byte produces one
decimal digit for a float value, thus reducing 8 bits entropy to 3.32 bits.

// cryptocatRandom.js , Cryptocat.random()
var buffer = new Uint8Array(1);
while (output.length < 16) {

window.crypto.getRandomValues(buffer);
if (buffer[0] < 250) {

output += buffer[0] % 10;
}

}

Cryptocat.random() is mostly used for choosing an array key.

// bigint.js
r=pows[Math.floor(Cryptocat.random()*512)];

The same could be obtained with Math.floor(Cryptocat.randomByte()/255 * array_size)
without the entropy pool being wasted.

Another usage method is to simply get a random 32-bit word, so that raw bytes would be
even more useful, improving the overall performance.

// crypto-js/core.js:
274 var words = [];
275 for (var i = 0; i < nBytes; i += 4) {
276 words.push((Cryptocat.random() * 0x100000000) | 0);
277 }

The suggestion would be to add Cryptocat.randomByte() / randomWord() functions and
use them throughout the application, especially for key generation. The clear benefit will
be in the improved process speed.

Multiparty public key distribution inconsistent with the specification

Public key distribution is different than described in the specification which reads:

“Once a user receives another user's public key, they must send them their own public
key in return. Therefore, a user a may demand another user b's public key by sending
them their own public key.”

On the contrary, in the code multiparty.receiveMessage() there is no sending back of the
key:

if (message[myName]['message'].match(multiParty.publicKeyRegEx)) {
if (!publicKeys[sender]) {

var publicKey = message[myName]['message'].substring(27);
if (checkSize(publicKey)) {

publicKeys[sender] = publicKey;
multiParty.genFingerprint(sender);
multiParty.genSharedSecret(sender);

}
}
return false;

}

Additionally, there is no key sent in exchange to a specific key requesting message:

else if (message[myName]['message'].match(multiParty.requestRegEx)) {
multiParty.sendPublicKey(sender); // this doesn’t send, just generates!

}

Instead, one’s own public key is distributed to a new user whenever they are added to a
buddy list (newBuddy function), which is an effect of a different <presence> message.

It is worth noting that following the specification will make it possible to separate joining
a multiparty chat (currently shown in the UI) from the process of distributing keys.
Potentially, this allows for e.g. joining a chat as an invisible user (attacker sends
<presence type=unavaliable> followed by multiparty public key requests).
Recommended action is to mark when the keys are added / dropped from the keystore
in the UIs, especially when the other party remains outside of the displayed users-list.

General Comments and Security Advice
The following paragraphs will cover general security recommendations and discuss
several findings that were not exploitable but may become so if the luck is pushed one
day. In other words, the here-described issues are defense-in-depth recommendations ,
deemed to be of low priority but worth looking into when spare time is available for
development. We will list our suggestions one by one in the advice-style format.

Avoid untrusted input in jQuery selectors

During the JavaScript security code audit, several “almost injectable” entry points were
located. One of them needs to be mentioned specifically, mainly for two reasons. For
one, the barrier between security and vulnerability is rather slight and, secondly, it could
be broken in case the library maintainers - namely the jQuery authors - decide to handle
a specific critical feature differently.

The Cryptocat 2 application often employs user-generated content in code sequences
such as: $('#buddy-' + nickname. Here, the sole existence of the sharp character (#)
introducing an ID-based DOM query, results in preventing a jQuery-based DOMXSS
from being a possible tool to be used against Crypotcat 2 (given an unsanitized value for
nickname, s.a.). Once a complex query is utilized, for instance $('.buddy-' +
nickname), an attacker is capable of using the nickname
\x3cimg\x20src=\x20onerror=alert(1)\x3e to trigger a DOM element creation

via the jQuery selector. This instantly leads to a possibility of executing arbitrary
JavaScript and, eventually, a potential code execution issue in Firefox. While none of the
JavaScript files we examined during the code audit were vulnerable, it needs to be
underlined that this concatenation pattern might become dangerous in the future, in a
not-so-unlikely scenario where either jQuery changes its behavior or Cryptocat 2 starts
using new features where user input hits a complex selector. Detailed documentation for
this issue can be found at: http://ma.la/jquery_xss/

Avoid all non-alphanumeric characters in nicknames

Aside from what has been already said, it is worth mentioning the problems that may
arise when a user-name is passed directly to jQuery selector and even ‘innocent’
characters like “,” or whitespace can be used to trigger logic flaws.

Let’s have a look at the code below:

if (!$('#buddy-' + nickname).length) {
return true;

}

http://ma.la/jquery_xss/

Nickname whatever,div can be used here to return early from the function newBuddy().
This is currently unexploitable but may become important if validation rules for a
nickname change in the future. It is advisable to use dedicated document.
getElementById() functions instead of creating jQuery selectors with untrusted input in-
place.

Implement centralized filtering method

Another recommendation is to use a centralized filtering method for all values that can
be tampered with by adversaries and actors other than the potentially affected user. This
holds for the user-name, the conversation name as well as values being sent by a
potentially rogue communication server instance. One must take it into consideration
that even data such as the OTR key or other instances might be tampered with by
motivated attackers. Therefore, a centralized filter tool which would continuously ensure
proper output filtering for any incoming byte-string is urged, as it would assist in keeping
Cryptocat 2 and any upcoming versions of the tool as safe and secure as possible.
Depending on the usage scenario, even the browser locale might be considered a valid
attack vector which leads to an exploit against the concatenation in the language.js file.
Our tests have demonstrated Denial-of-Service (DoS) potential against Cryptocat 2 with
tampered locale values - the impact would thus be comparably low. At the same time, we
recognize Cryptocat 2 as an extremely security-critical application, which stands to
reason why even the most abstract attack vectors are worth mentioning.

Avoid allowing SVG files

Ultimately, it needs to be underscored that the task of properly securing the upcoming
file transfer feature is going to be critical and not an easy one at that. The damage
potential of unregistered MIME types as well as SVG images needs to be kept in mind.
While we already demonstrated the problems caused by unregistered MIME types in this
very report, future versions of Cryptocat 2 might allow SVG images to be transferred
from user to user. Depending on the specific browser in use, it could cause XSS and
even worse attacks to become possible. The security implications connected to SVG
images have been documented in depth in Heiderich et al. http://dl.acm.org/citation.cfm?
id=2046735

Consider removing wildcard host permissions in Chrome extension

Chrome extension port of Cryptocat uses wild card host permissions in manifest.json:

"permissions": [
"http://*/*",
"https://*/*"

]

http://dl.acm.org/citation.cfm?id=2046735
http://dl.acm.org/citation.cfm?id=2046735

In the event that HTML injection vulnerability is exploited, the extension may provide
means for launching a universal XSS against any domain. In effect, c&c / data
extraction backchannel pointing to any domain can be set up as well . As the most
common use case is a simple calling of the conference.crypto.cat and crypto.cat
domains, this could be prevented by exclusively specifying those domains in the
manifest. If a user tries to connect to a custom server, this could be allowed via optional
permissions mechanism. Surely it will impact the usability to a small degree, as the user
confirmation is required, but will only affect users connecting to their own servers.
Unfortunately, this in-depth defense mechanism cannot be used in Firefox.

Consider moving key storage
 and encryption logic to WebWorker thread

Cryptocat currently uses WebWorkers threads only to avoid blocking UI during DSA key
generation and processing of a file upload. They can also be used to separate all kinds
of private key generation, signing, encryption and validation of messages. This defense-
in-depth approach will become handy in case of a DOM XSS vulnerability being
discovered (in the environments where CSP is not available). When exploiting the main
thread of Cryptocat, the attacker would not be able to extract private keys used by the
application. This, however, requires a substantial reworking of the application code.

Develop protection against timing attacks

JavaScript libraries used by Cryptocat do not use constant-time calculations when
operating on cryptographic primitives. This creates the possibility of timing attacks.
Application, being just a browser extension, does not have a total control over execution
environment. To give an example, the application will be run under different JavaScript
engines, each with its own optimization techniques, further complicating the fixing of this
issue. It might be appropriate to introduce a time-padding when data is being sent over
the network in order to reduce the availability of a timing side-channel option for a
remote attacker.

http://developer.chrome.com/extensions/permissions.html
http://developer.chrome.com/extensions/permissions.html

Conclusion
Cryptocat 2 has reached a great maturity level in a very short period of time. It is
commendable that the development team has proven great expertise in the creation of
secure code, despite the complexity of the task at hand. While communication process is
critical in the dynamically updated framework of audits (both during the assignment and
following its completion), it was exceptionally well-handled in this case, resulting in the
discussed issues acquiring almost immediate fixes. Let us illustrate that by saying that
on several occasions feedback with successful fix notification has managed to reach us
concurrently to follow-up email's preparation!

Nevertheless, the problems we have spotted underline the importance of a well-planned
and thoroughly implemented security architecture within browser extensions. One has to
be reminded that a vulnerability that causes a rather harmless script execution in the
web application context, might turn out to become a detrimental privilege escalation or
remote code execution when it is discovered and exploited in a browser extension.
Cure53 would like to thank Radio Free Asia, the entire Cryptocat development team and
Nadim Kobeissi partciularly, for this challenging and all-round professionally-handled
project.

	Cure53 Public Pentest Report: Cryptocat 2
	Introduction
	Vulnerabilities
	Stored XSS/HTML Injection via Conversation-/Nick-Name (High)
	Remote Code Execution via Conversation-/Nick-Name (Critical)
	De-Anonymization / Local Exploits via malformed Data URIs (High)
	Math.random() usage for unpredictable numbers (Medium)
	Potential DOM XSS within user nickname alteration (Medium)
	Invalid HTML code in link markup decorator (Low)
	Multi-party HMAC implementation inconsistent with specs (Low)
	Typo in multiparty key request implementation (Low)
	Remote kick / user impersonalization in multipart chat (Critical)
	Usernames capable of altering the logic of Cryptocat 2 (Low)
	XMPP request IDs potential disclosure of OTR chat activity (High)
	Cryptocat Chrome extension's cross-origin detection (Low)
	OTR implementation vulnerable to poisoning in rare cases (Medium)

	Other findings
	Entropy Pool Misuse
	Multiparty public key distribution inconsistent with the specification

	General Comments and Security Advice
	Avoid untrusted input in jQuery selectors
	Avoid all non-alphanumeric characters in nicknames
	Implement centralized filtering method
	Avoid allowing SVG files
	Consider removing wildcard host permissions in Chrome extension
	Consider moving key storage and encryption logic to WebWorker thread
	Develop protection against timing attacks

	Conclusion

