Pentest-Report Subrosa 05.2014

Cureb53, Dr.-Ing. Mario Heiderich / Dr. Jonas Magazinius

Index

Intro

ntro

Scope

Test Chronicle

Identified Vulnerabilities
SR-01-001 XSS via unfiltered Display Name in Camera View Overlay (High)
SR-01-002 XSS via unfiltered Display Name in Call Notification (Critical
SR-01-004 XSS via unfiltered Display Name in online Natification (Critical)
SR-01-007 WebSocket Protocol vulnerable to Replay Attacks (Critical)
SR-01-008 Manipulation of IV changes Decryption Qutput (Critical)
SR-01-009 Password update leads to full account compromise (Critical
SR-01-013 Call Extension Attack allows for covert Surveillance (High)

Miscellaneous Issues
SR-01-003 Possible passive XSS via unfiltered News Item URL (Low)
SR-01-005 Reliance on Server-Sanity causes tremendous XSS Risk (Medium)
SR-01-006 Subrosa Version Check can be bypassed (Low)
SR-01-010 User information partially sent in Cleartext (Medium)
SR-01-011 UI can be broken using localStorage.sidebarWidth (Info)
SR-01-012 No X-Frame-Options Headers or any Form of CSP is used (L ow)

Conclusion

“Subrosa is an encrypted communication platform. Reclaim your privacy and talk freely.
It's free and open source, with no ads.”

“With Subrosa, reclaim your privacy and dignity. All your communications are encrypted,
and your encryption keys are never sent to Subrosa, and we can't read your messages
or listen to your calls without your encryption keys, even with guns pointed.”

From https://subrosa.io/

This penetration test was carried out by two testers of the Cure53 team over the period
of six days. The test identified six vulnerabilities of which five were classified as critical.
Tests were carried out against the Subrosa application itself, its locally modified
versions, the provided source-code and parts of the server-side code.

https://subrosa.io/
https://subrosa.io/
https://subrosa.io/
https://subrosa.io/
https://subrosa.io/
https://subrosa.io/

Scope
* Subrosa Chat Application

o https://subrosa.io/app
o Source-code provided by the Subrosa team

Test Chronicle

» 2014/05/16 - Penetration-Test begins

* 2014/05/17 - Standard XSS tests using malformed display name

* 2014/05/18 - Ongoing XSS tests, first Live-Reporting

* 2014/05/18 - Documented SR-01-001, SR-01-002, SR-01-004

* 2014/05/18 - WebSocket Debugging

» 2014/05/19 - Documented SR-01-003

* 2014/05/19 - Ongoing WebSocket Tests

* 2014/05/19 - JavaScript Source Code Audit

* 2014/05/20 - Analysis of login procedure

» 2014/05/20 - Analysis of crypto usage

* 2014/05/20 - Tested and verified XSS fixes in 0.16

* 2014/05/21 - Ongoing JavaScript Source Code Audit

* 2014/05/21 - Tests with rogue online status using api.emit() calls

* 2014/05/21 - Test for cross-site WebSocket hijacking

* 2014/05/21 - Analysis of WebSocket protocol

* 2014/05/21 - XSS Tests assuming server / TLS compromise

* 2014/05/21 - Added SR-01-005

» 2014/05/21 - Tested reliability of version check, added SR-01-006
* 2014/05/22 - Added SR-01-007, SR-01-008 and SR-01-009

* 2014/05/25 - Tested and verified XSS fixes in 0.17

* 2014/05/25 - Tested MitM capabilities for WebSockets

* 2014/05/25 - Tested against spoofed screen-sharing calls / phishing
* 2014/05/25 - Tests against extension of call duration / Info leakage
* 2014/05/26 - Security tests against website, FAQ and periphery

* 2014/05/26 - CSP compatibility tests, creation of SR-01-012

* 2014/05/26 - Tested array access security with users “constructor” and “__proto__"
* 2014/05/27 - Added SR-01-013

* 2014/05/29 - Finalization of Pentest-Report

https://subrosa.io/app
https://subrosa.io/app
https://subrosa.io/app
https://subrosa.io/app
https://subrosa.io/app
https://subrosa.io/app
https://subrosa.io/app

Identified Vulnerabilities

The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact, which is simply given in brackets following the title
heading for each vulnerability. Each vulnerability is additionally given a unique identifier
for the purpose of facilitating future follow-up correspondence.

SR-01-001 XSS via unfiltered Display Name in Camera View Overlay (High)

There is an issue with the display name of a conversation partner in a video chat. Once
it is shown in the camera overlay that displays the incoming video stream, it is not being
escaped properly. This allows an attacker to inject arbitrary HTML and JavaScript
whenever a video conversation between two or more participants is being initiated.

Steps to reproduce:

1. Log in with user A
Log in with user B
Log in with user C (malicious display hame)
Have user A, B and C start a video conference
JavaScript executes

aprwbd

Affected Code:

app-webrtc.js #62ff
var id = "panel" + Math.round(Math.random()*999999999);

$("body") .append("<div id='" + id + "' class='videoPanel'><video></video><div
class='videoPanelActions'><div class='videoName'>" + (me ? "You" :
userdisplay)

+ "</div><div class='videoHangup'>End</div></div></div>");
var videoPanel = $("#" + id);

Result:

<div class="videoPanelActions"><div class="videoName"><iframe
onload="alert(1)">&1t;/div><div
class="'videoHangup'>End</div>&1lt;/div>&1t;/div></iframe></div></d
iv>

It is recommended to fix the vulnerability by using the escapeText() method on the
userdisplay variable prior to echoing it:

$("body").append("<div id='" + id + "' class='videoPanel'><video></video><div
class='videoPanelActions'><div class='videoName'>" + (me ? "You" :
escapeText (userdisplay))
+ "</div><div class='videoHangup'>End</div></div></div>");
var videoPanel = $("#" + id);

In the long run, it should be considered to use a JS MVC framework with auto-escaping
to build the Ul. A recommendation for a fitting and secure JSMVC framework is
mentioned in the conclusion.

Note: Following our report, this issue was fixed in Release 0.16.

SR-01-002 XSS via unfiltered Display Name in Call Notification (Critical)

There is no proper escaping of the display name after it has been show in the call
notification. An attacker can abuse this by first setting their own display name to be a
malicious HTML string, and, secondly, calling the victim. Then and there, HTML and
injected JavaScript will execute upon being rendered as part of the call notification.

Steps to reproduce:
1. Log in with user A
2. Login in with user B (malicious display name)
3. Have user B call user A
4. JavaScript executes

Affected Code:
app-view.js #1041ff

var icon = appcore.list[appcore.listHash[data.target]].avatar ||
"img/noavatar.png";

var name = appcore.list[appcore.listHash[data.target]].name ||
appcore.list[appcore.listHash[data.target]].displayname;

newNotification(icon, "Call from " + name, name + " is rining you..", 0, false);
startTitleAlert("CALL | Subrosa");

app-view.js #894ff
title = $("#htmlEscape").html(title).text();
content = $("#htmlEscape").html(content).text();

Result:
<div class="hide" id="htmlEscape'"><svg onload="alert(4)"> is rining
you. .</svg></div>

It is recommended to escape the value of the variable name using the global method
escapeText():

name = escapeText(name);
newNotification(icon, "Call from " + name, name + " is rining you..", 0, false);

Note: After we communicated this finding, the issue was fixed in Release 0.16.

SR-01-004 XSS via unfiltered Display Name in online Notification (Critical)

When pre-rendered for online-naotifications, the display name is not being escaped
properly. This gives an attacker the possibility to execute arbitrary JavaScript in the
victim’s browser by simply going online. An obligatory condition is that the attacker is a
contact of the victim.

Steps to reproduce:
1. Log in with a user A
2. Make sure that a user B is a contact of the user A
3. Log in with the user B (malicious display nhame)
4. JavaScript executes

Affected Code:
app-view.js #1095ff

var icon = appcore.list[appcore.listHash["conv" + sortUID(data.uid,

appcore.uid)]].avatar || "img/noavatar.png";

newNotification(icon, data.displayname + " is online",
statusText[data.newStatus], 5000, true);

app-view.js #894ff
title = $("#htmlEscape").html(title).text();
content = $("#htmlEscape").html(content).text();

The escaping method escapeText() should be used to mitigate this vulnerability as
follows:

newNotification(icon, escapeText(data.displayname) + " is online",
statusText[data.newStatus], 5000, true);

Note: Following our report, Release 0.16. benefits from this issue being successfully
fixed.

SR-01-007 WebSocket Protocol vulnerable to Replay Attacks (Critical)

Subrosa claims to be resistant to Man-in-the-Middle attacks (MitM). While that may be
true from a confidentiality standpoint, it does not hold from an integrity perspective. The
communication protocol allows an attacker to replay a previously recorded
communication. The “replayable” communication messages include, e.g., chat
messages, and logins. An attacker who has a capacity to intercept an exchange of login
messages between a client and the server can then replay these messages and
effectively accomplish a successful authentication of the WebSocket session.

While the attacker cannot decrypt the users’ information or messages, it allows for
impersonation and grants an additional possibility for sending messages over a now-
authenticated WebSocket session.

There are multiple consequences of this attack. One scenario is that the attacker replays
further intercepted messages to, for example, spoof chat messages in the name of the
victim-user.

Steps to reproduce chat message spoofing:

1. User B (the attacker) is performing a MitM attack between user A (the victim) and
Subrosa.io

2. User Alogs in

3. User B records the authentication message
["{\"step\":2,\"username\":\"internot\",\"hash\":
\"b4f298d4afbde6a6888a2b19cc14fa39c8fd879f500aa44d29ebda39019fdg41\",
\"sockType\":\"loginMain\"}"]

4. User A sends a chat message to C (either a user or a group chat)

5. User B records the encrypted chat message

["{\"target\":\"conv2ecSPdGMr8Qgf5ry-FT3wBSx9x1lyQxrLi\", \"type\":2,

\"data\":\".4\\u000e20\\u00140c\\u601a3i\\uoeoe Hw\",

\"auxdata\" :\"i90u00DPANGT\\uGEOb ' L\\ue01f\\b\",

\"sockType\":\"comm\"}"]

User A logs out

User B replays the authentication message

User B replays the chat message

C receives the chat message that appears to originate from user A

© 0N

A scenario of greater impact empowers the attacker enough for a complete hijacking of
the victim’'s account. After using the replay attack to authenticate a WebSocket, the
attacker follows the attack strategy detailed in SR-01-009 to replace given user’s profile
with a one encrypted with the attacker’s password. Including a time-stamp in the
encrypted message is an effective way of preventing replay attacks. Consequently, each
encrypted message is unique and the time-stamp is easily verifiable on the receiving
side.

SR-01-008 Manipulation of IV changes Decryption Output (Critical)

In AES CBC mode the first block is “XORed” with an initialization vector (V) before
encryption. This is to ensure that the encryption of two messages with identical first
blocks produces the same cipher-text. Consequently, the output is again XORed with the
IV as the last step of decryption. This gives the IV a direct influence over the decrypted
plain-text. By manipulating the IV, an attacker can now arbitrarily alter the first block of
the plain-text. The first block is limited to the initial 16 characters of the output, and the
implications depend entirely on what information is contained in these characters.

Subrosa is impacted in a way that chat messages can be forged to a certain extent. In
combination with SR-01-007 this allows an attacker to forge messages in the name of
another user. In the example below, the second message is the encryption of the plain-
text chat message “wow”. By manipulating the IV as follows, the received message
becomes “vov”:

["{\"target\":\"conv2ecSPdGMr8Qgf5ry-FT3wBSx9x1lyQxrLi\", \"type\":2,
\"data\":\".4\\u000e20\\u00140c\\uc01a3i\\uceoe mw\",
\"auxdata\":\"i9u00DPALOT\\u010b ' L\\uee1f\\b\", \"sockType\":\"comm\"}"]

Two components assist in mitigation of this issue, namely signing the messages and
verifying the signatures upon receipt. This issue can be mitigated by signing the
messages and verify the signatures upon receipt. Thereby a message with manipulated
IV would be decrypted to a plain-text with an incorrect signature.

SR-01-009 Password update leads to full account compromise (Critical)

In a scenario where the attacker can successfully carry out a MitM attack, he or she can
either inject messages into the open channel or, alternatively use the replay attack
(described in SR-01-007) to fully compromise the account. By abusing the password
update functionality the attacker can “change” the password. This is done when a
sequence of messages (“updateBlob” and “changeProfile”) is sent with a completely new
profile controlled by the attacker. As a result, the original (real) profile is replaced with a
forged one encrypted with the attacker’s password. The existing profile is destroyed in
the process, however, the victim’s contacts remain unaware of the switch and have no
reason to mistrust the username. The attacker can abuse this confidence to engage in
communication with the unknowingly tricked contacts. The attack works because the
server sees the WebSocket as trusted and there is no server-side verification of the
channel’s integrity in place.

To mitigate this issue it is recommended that the profile is encrypted with both the old
and the newly-derived key, rather than relying on the newly created derived key
exclusively. Ultimately, this should ensure that the user has knowledge of both the old
and the new passwords.

Injected messages:
The following two messages are required to replace a profile’s password with the string
“testtesttest”

1. The updateBlob message:

["O\"iv\":\"ooo-e\\uee15p°Q0wa
o;12\",\"blob\":\"rvZr4vCxEteloUgjuXR42pjSLrgMKZnm07V3Wzz4VUtJ87zzGLuUn3CUK2BOAQQ
JddNC2c09IMgtkRqzPs7BP/JdglrUV/PB9jHp9RknfSSzym4pMc3a8x+mwOGvn/UDVIMYL+z3GhUThqgn
j4209GTFVNcDgMdGATORSWACNbCtKkv/391/DzeA75AJkUyN4jXkdJIPaVv8ej2BK/gkucfkb/1YIHjuxFS
sDt+sPa@p0zT5BcaQhPgIgUFtHFSzs/1w2/w4QailUqoCtHiMURISWMSIr/SwzGXzA+
+sTfZanFHRS8ZtLnHtfiUeBnKbua9iVGaw5D2hSR5TdOLb8qJIt08E6gOhu+sF3V36SBkIBMFCRCEKOKO
F1uDPOsGTgygq9rx8ZmEV8GhSavxpWPYBHcOr fkPWL6rMcuDiat7jR64/uqt421/GezdITQUYGp3YeO+
XxwzFRQFOOUFpTFIOKWINIUU7QIcvT5x/1Ksgo0Sg6SEGQFWuUidnQQHpVpPZEzGNyinytj+0vpzDvIz21ZR
mxeS+T4f+2jHUABADIPYprH/pwWOaCTKkxD+AQv1fxmgXVCeMcpKXHTAC9jLDz1shNKOGRMxD3UIQI7qgc
FYSebb. ..
wwCtEm5mboassg13owW33goIyoMyCLaAu+35610qvdODZTWuUBUV2ECOALhB3JwyLKkYirJWFCLiig+3CQJ
3aubYddoOUtI+Ed5Uyp4r840I1spjVD90aduUBgZgg40e3Q9Rge4HvUawgivyY/3P10+n2Dr1p4KtJI8bDa+
91CtII0S8Zb/ekkfnzimr6zerMq/R8uH1Wspbi2GeTx1lrywl+CPkKxpdb9LP6gJRMo5APe9cwnRIdot5
f/C8M9ud726MJIqYVrjZ10CB2nPO8XY+
+GIIcR+M1PocBjz3GQO1wNbY3ENQngakt+Wjv79IgP/wjnIYw3ngGnS5WEKIg5CL5uTob79a8KIHIuUL
XEEQHrYScqPEOkk8BUMJLUO4+X+g2BPyapYL9VfylNUOG/ebT26V+U5(qs2c8g09te8CI9KIUVZOt2900q

ZQkOcc+tbtvrBLXSxw2PywwPbTNI3kU5cqLVVACRSF6YKGkk8HF70DXxZ+8ya/Z2ROwtaRkcnwMK9kaPo
njz7fv5pMCq/Z0Akh146Jy1JpK200bAE230UJ61Qj 7ZEtgqE1K4Xx1Q0icYNAXdE1TQZ8ysvOZall2as
nS9/x5qNkW1B900vQ5t8a0xt1lcsSASWIE4Amt+tE9LpkjZ503AGHtRqT202XCNXLS/NcCbhnXf8vIrG7IU+
bINFBGLIckmTZhLZDQKWF71M=\", \"sockType\":\"updateBlob\"}"]

2. The changeProfile message:

["{\"newpass\":\"\",\"oldpass\":\"\", \"derivedKeyHash\":\"b64097a49ad80c98cf4d37
9e201d427a103b993e5del14ch3e43a08357f282ecd\", \"derivedKeySalt\":\"0a?

EENX " xAN\\u0003cU#a1&d|0+0jAN\NT\\uG01ceEE\", \"sockType\" :\"changeProfile\"}"]

SR-01-013 Call Extension Attack allows for covert Surveillance (High)

It is possible for an attacker to make an ongoing call visually appear as though it has
been terminated. This allows the attacker to covertly surveil any audio in the vicinity of
the victim's computer. The browser will indicate that audio is still being recorded, but the
call is not visible in the interface.

When a call has been established, the interface uses a green indicator bar to convey
that the call is active and includes a button for hanging up. If the user receives a second
call from another user and decides to take it, the preceding call will be ceased. However,
if the second call is made by the same user, the indicator bar of the second call replaces
the one of the first call, whereas the original call remains connected. When the second
call is finished, the indicator bar disappears entirely, which not only makes the first call
appear as ‘hung up’ but also leaves the user (call recipient) with no controls to actually
terminate it. The call continues to be recorded until the caller decides to end it. By
logging in with the same account twice and setting the microphone to ‘mute’, an attacker
can use this vulnerability to covertly record audio from a victim’s computer for an
extended period of time.

Steps to reproduce:
1. The attacker logs in with his or hers account in one browser window or tab
The attacker makes an audio call to the victim
The victim answers the audio call
The attacker logs in with the same account in a separate window or tab
In the second window, the attacker makes a call and immediately hangs up
The attacker mutes the microphone
The first call now appears to have ended but, in fact, the connection remains
open

Noakwd

The only giveaway of the call being still ongoing is the browser’s recording indicator.

* For Chrome it takes shape of a small red recording icon shown on the tab hanger
* For Firefox it is in the form of a small green camera icon shown in the address
bar

To mitigate this vulnerability, the client must always verify that an existing call from the
same user is not already established.

Miscellaneous Issues

This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

SR-01-003 Possible passive XSS via unfiltered News Item URL (Low)

As the Subrosa news page receives news items via WebSocket and JSON, it displays
the resulting data on the index page immediately after login takes place. Under the
unlikely assumption that the Subrosa server is compromised, an attacker might be able
to inject non-HTTP URLs and thereby affect the victim’'s security and cause XSS.

Example JSON Data:

a["{\"news\":[{\"title\":\"Project v0.1 Prebeta!\",\"content\":\"Project v0.1
prebeta finalized! All that's left is putting this up on a host and purchasing
domains!\",\"1ink\":\"https://example.org\",\"time\":1397043420794},
{\"title\":\"meow Sample Article\",\"content\":\"This is just another news
article for Project. It should just be a paragraph or so, as a small sample.
There should not be too much content
here.\",\"1ink\":\"https://example.org\",\"time\":1396914700210}], \"sockType\":\
"news\"}"]

Malicious JSON data:

a["{\"news\":[{\"title\":\"Click me, I am a dolphin\",\"content\":\"Project v0.1
prebeta finalized! All that's left is putting this up on a host and purchasing
domains!\",\"1link\":\"javascript:alert(1)\", \"time\":1397043420794},
{\"title\":\"meow Sample Article\",\"content\":\"This is just another news
article for Project. It should just be a paragraph or so, as a small sample.
There should not be too much content
here.\",\"1link\":\"https://example.org\",\"time\":1396914700210}], \"sockType\":\
"neWS\"} n]

Resulting HTML:

<div class="homeNewsElem">Click me, I am a dolphin!Apr
9Project v0.1 prebeta finalized! All that's left is
putting this up on a host and purchasing domains!</div>

It should be ensured that URLs are either relative or cannot use schemes other than
HTTP and HTTPS. While being compromised as a result of this weakness is highly
unlikely, all necessary precautions should be taken to narrow the surface for user-
compromising.

Note: Following our report, this issue was fixed in due course for the Release 0.17.

SR-01-005 Reliance on Server-Sanity causes tremendous XSS Risk ()

In its current state, the security model Subrosa uses comes down to a strict reliance on
the fact that the server delivering content via WebSocket protocol is not a victim of an
attack. Once the server is in fact under attack, the entire security model falls and each
and every user of Subrosa will be prone to XSS attacks. The very same pattern is valid
for (hypothetical) successful attacks against SSL'. The reasons behind that lie in the
Subrosa client’s overly extended trust in the content sent by the WebSocket server and
using the received data in complex, unescaped HTML concatenations before rendering
them to the user.

An example of the described problem can be found in the file app-view-uisetters.js as
seen below.

Affected Code:

app-view-ui-setters.js #282ff
function createItemHTML(type, item){
if(type == "conv"){
var pinnedIcon = '<span class="listItemPinned fa fa-thumb-tack"'
+ (getProp(item.id + "-pinned") ? "'
' style="display: none"') + '>';

if(item.id.indexof("-") != -1){
var subtitle = (typeof item.displayname
I= 'undefined' ? item.username : "");

if(!subtitle){
if(item.contact == 0){
subtitle = "Not contacts";
} else if(item.myRequest){
subtitle = "Sent request";
} else {
subtitle = 'Contact request';
}
}

return '<div class="sidebarListItem'

(currentTab==item.id ? ' activeItem' : '')

'" data-item=""' + item.id

'" data-trigger="conv"><div class="unreadBadge">0</div><img src="'
(item.avatar ? item.avatar : 'img/noavatar.png')

'" class="listItemIcon" data-status="'

(typeof item.status != 'undefined' ? item.status : "")

'" />'

escapeText(item.displayname || item.username)

' ' + pinnedIcon + '
'
subtitle + '</div>';
} else {

+ 4+ o+ + o+ o+

1 http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx

http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx
http://carbonwind.net/blog/post/A-quickie-for-a-Friday-e28093-a-SSLTLS-timeline.aspx

Once an attacker has control over the data emitted by the WebSocket server or can
carry out a successful MitM attack, it is possible to inject arbitrary HTML and JavaScript
and take control over the user’s browser. This signifies getting access to contacts,
fingerprints and clear-text messages. An example response that would cause immediate
XSS hazard for the attacked users would look like this (and cause a new element to be
added to the sidebar, infected via the items.id property):

a["{\"object\":

{\"contact\":0,\"myRequest\":false, \"username\":\"x00mario2\",\"bgColor\":\"F2E8
FF\",\"uid\" :\"hrGuLjpF2x05Fx3u\",\"id\" :\"\\\"><img src=x
onerror=alert(1)>conv3ebDjU8ASf1kb1RG-

hrGuLjpF2x05Fx3u\", \"lastMyMessage\":\"0\", \"lastMessage\":\"1400676288877\",\"1
astRead\":\"O\",\"users\":
[1,\"usercount\":\"1\" ,\"created\":true}, \"autojoin\":true, \"sockType\":\"newLis
£\"}"]

Note that this is not the only file where XSS becomes possible in case the server is
compromised. This ticket is intended to point out the general risk and suggest mitigation
strategies rather than simply list all related findings. In order to fulfil the crucial goal of
keeping Subrosa’s security promises, it is recommended to consider two approaches:

 Move away from creating template strings which employ HTML concatenation.
This has been repeatedly deemed ‘bad practice’ and should not be used in any
security-critical software. It is recommended to start making use of a templating
system that filters data by default and thereby takes over the developer’s burden
of fixing XSS reactively.

* Do not invest any trust in data that is being returned from the server. The long
history of SSL bugs to date and a shared expectation of there being more to
come put the server in danger. Currently, the server is posing a threat of being a
single point of failure. Each and any incoming bit of data should be considered
untrusted and validated or escaped accordingly.

Note: Our report inspired a fix to this issue in Release 0.17.

SR-01-006 Subrosa Version Check can be bypassed (Low)

Whenever Subrosa starts, it checks whether a new release is available. If this is the
case, the login button is being disabled. By re-enabling the button, a user can still log in
and use the software in the not up to date version. As such, users who never log out
might not notice a presence of an update and unknowingly stick to a vulnerable version.

It is recommended to have the application check for new releases regularly rather than
conditioning the check upon the login form being displayed. This could be implemented
via a heartbeat or similar mechanism to make sure that the time frame between
exposure to attacks and a message urging an upgrade is as short as possible.

SR-01-010 User information partially sent in Cleartext ()

While chat messages are encrypted, information such as the user names, user-1Ds, and
conversation-ids are communicated in plain-text. This does not disclose information on
the content of a conversation, but vitally grants access to potentially sensitive
information on who is communicating with whom. The severity of this issue depends on
the assumed threat model and the expectations of potential customers. This is a design
choice made by the developers, therefore classified as miscellaneous issue of medium
severity impact.

SR-01-011 Ul can be broken using localStorage.sidebarWidth (Info)

An attacker with short physical access to the victim’s browser can change the values
stored in Subrosa’s localStorage array. This means that an attacker can set the sidebar
width value to a negative value, thereby destroying the Ul after the victim has logged in
successfully. To avoid this, the value for the sidebar width should be validated to be a
positive integer in a range from 100 to screenWidth-n.

SR-01-012 No X-Frame-Options Headers or any Form of CSP is used (Low)

In its current state, Subrosa does not make use of any HTTP Security headers. While
Clickjacking has a very low risk factor for client-only apps, using CSP to avoid XSS and
script injections? should be considered. As it stands, Subrosa makes use of JavaScript
URIs but a quick analysis of the code for general compatibility with CSP yields a positive
impression. The following CSP rule example could be used as a template for the initial
experiments:

Content-Security-Policy:
default-src 'self';
img-src 'self' data:;
connect-src wss://subrosa.io/ https://subrosa.io/;
style-src 'self' 'unsafe-inline'

It needs to be kept in mind however, that the current way of handling form submits using
event handlers and “return false” should be avoided to make the app compatible with the
restrictions imposed by CSP. Using CSP essentially excludes the option of having
Subrosa vulnerable to a majority of XSS attack vectors. Templating frameworks, such as
AngularJS®, are meanwhile compatible with CSP and allow developers to benefit from
the security advantages of both worlds.

2
3

http://www.w3.0org/TR/CSP11/
https://angularjs.org/

https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
https://angularjs.org/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/
http://www.w3.org/TR/CSP11/

Conclusion

Subrosa aims to become a secure, privacy-aware and lean replacement for
communication tools such as Skype. Running entirely in the client, it is driven by modern
technologies like HTML5, WebSockets* and WebRTC®. As such, it allows users to chat,
conference, make calls, group calls and even video calls, without an actual client,
employing solely the browser. The Subrosa backend is designed in a way that almost no
information on what the users are doing is known. The browser utilizes the Forge library
to encrypt all sensitive data directly on the client and thereby maximizes the security and
privacy aspects that Subrosa is offering. However, by choosing this path, Subrosa is
confronted with security threats that normally affect classic web applications and
browser extensions. This signifies vulnerability to XSS, DOMXSS, and HTTP leaks, as
well as the presence of very easy ways for attackers to create rogue clients and send
arbitrary data to the Subrosa servers, potentially even transmitting it to other connected
clients.

The first tests yielded several severe XSS problems that allowed attackers to send
arbitrary HTML and JavaScript to other users and thereby gain control over the DOM of
their Subrosa clients. This means access to any information loaded in the Subrosa
domain, inclusive of the entirety of stored conversations in plaintext, hijacking audio and
video streams and other sensitive data. The identified and reported fixes were
addressed very quickly and professionally by the Subrosa Team. Continuously, the
current code-base can be considered XSS-free, as proven by thorough black-box tests
as well as a source code analysis, which encompassed an examination of all sources
and sinks for user-generated data.

Nevertheless, it should be considered to rebuild the Subrosa Ul and make use of a
secure-by-default template engine where each and every bit of user generated data is
being escaped unless explicity demanded otherwise. Furthermore, Subrosa does not
yet make use of any CSP policy despite the act that, for applications running entirely in
the browser, a strict policy is mandatory. Cure53 conceived a test-policy for Subrosa and
managed to create a fairly well-operating state, making the pairing of Subrosa and CSP
possible and highly recommended for future releases®. Ultimately, a rather unique threat
model for Subrosa is the fact that presently an attacker can log in to multiple instances at
the same time and perform almost unlimited amounts of actions, such as numerous calls
to the same users using the same account and the like. This caused the call extension
attack described in SR-01-013 to work and might yield additional issues if not handled

properly.

4
5

https://developer.mozilla.org/en/docs/WebSockets
http://www.webrtc.org/

6 SR-01-012 No X-Frame-Options Headers or any Form of CSP is used

http://www.webrtc.org/
http://www.webrtc.org/
http://www.webrtc.org/
http://www.webrtc.org/
http://www.webrtc.org/
http://www.webrtc.org/
http://www.webrtc.org/
http://www.webrtc.org/
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets
https://developer.mozilla.org/en/docs/WebSockets

Subrosa might still have a long refactoring-centered way to go, but is nevertheless a
highly attractive alternative to Skype even in its young state. Subrosa’s key strengths
pertain to the capacity of providing features that support productivity while at the same
time setting the security bar high. We believe that future versions will accomplish the
goal of tackling the remaining concerns and result in putting forward a communication
application that is ahead of its time, providing the level of security that the times we live
in demand.

Cure53 would like to thank the Subrosa Team for their support and assistance during
this assignment.

	Pentest-Report Subrosa 05.2014
	Index
	Intro
	Scope
	Test Chronicle
	Identified Vulnerabilities
	SR-01-001 XSS via unfiltered Display Name in Camera View Overlay (High)
	SR-01-002 XSS via unfiltered Display Name in Call Notification (Critical)
	SR-01-004 XSS via unfiltered Display Name in online Notification (Critical)
	SR-01-007 WebSocket Protocol vulnerable to Replay Attacks (Critical)
	SR-01-008 Manipulation of IV changes Decryption Output (Critical)
	SR-01-009 Password update leads to full account compromise (Critical)
	SR-01-013 Call Extension Attack allows for covert Surveillance (High)
	Miscellaneous Issues
	SR-01-003 Possible passive XSS via unfiltered News Item URL (Low)
	SR-01-005 Reliance on Server-Sanity causes tremendous XSS Risk (Medium)
	SR-01-006 Subrosa Version Check can be bypassed (Low)
	SR-01-010 User information partially sent in Cleartext (Medium)
	SR-01-011 UI can be broken using localStorage.sidebarWidth (Info)
	SR-01-012 No X-Frame-Options Headers or any Form of CSP is used (Low)
	Conclusion

