
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Dovecot 11.2016
Cure53, Dr.-Ing. M. Heiderich, M. Wege, BSc. D. Weißer, Dr. J. Magazinius, MSc. N. Krein

Index
Introduction
Scope
Test Methodology

Part 1 (Manual Code Auditing)
Part 2 (Code-Assisted Penetration Testing)

Identified Weaknesses
DOV-01-001 Format String Protection can be bypassed (Low)
DOV-01-002 Default Makefile fails to add Hardening Flags (Low)
DOV-01-003 Memorypool Allocator fails to check for Integer Overflows (Low)

Conclusion

Cure53, Berlin · 11/29/16 1/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Introduction
“Dovecot is an open source IMAP and POP3 email server for Linux/UNIX-like systems,
written with security primarily in mind. Dovecot is an excellent choice for both small and
large installations. It's fast, simple to set up, requires no special administration and it
uses very little memory.”

From http://www.dovecot.org/

This report documents the findings of a penetration test and source code audit against
the Dovecot email server software. The project was carried out by four testers of the
Cure53 team over the course of twenty days in October and November 2016.

In the broader web and security community, Dovecot is known for being very much
robust and secure1. With good reasons, the positive assessment of the software, which
is unlike many others regarding fulfilment of its security promises, is largely used for
promotional and advertising purposes. On the Index page of the Dovecot website, one
can read that

“Dovecot's design and implementation is highly focused on security. Rather than
taking the traditional road of just fixing vulnerabilities whenever someone
happens to report them, I offer 1000 EUR of my own money to the first person to
find a security hole from Dovecot.”

During this project, the Cure53 security investigations aimed at a thorough and in-depth
assessment of the selected parts of the Dovecot codebase. The scoped components
should be viewed as top priorities in further safe development, and, as such, they
pertained mostly to the POP and IMAP protocol stacks, SSL wrapper, implementations
of dcrypt and GUID, as well as other items elaborated on later in this report.

The tests proceeded in two distinct phases, with the first one dedicated to a manual
code review, and the second one centered on a penetration test. The latter component
took advantage of several running instances of Dovecot. The tests largely sought to spot
any vulnerabilities that could allow malicious attackers to benefit from memory
corruption, information leaks, authentication bypasses, and logical flaws. In scope was
the 2.2.26.0 version of the Dovecot email server software suite, which was released on
October 28, 2016. The date coincided with the start date of the Cure53 assignment2.

Despite much effort and thoroughly all-encompassing approach, the Cure53 testers only
managed to assert the excellent security-standing of Dovecot. More specifically, only

1 http://www.dovecot.org/security.html
2 http://www.dovecot.org/doc/NEWS

Cure53, Berlin · 11/29/16 2/10

https://cure53.de/
http://www.dovecot.org/doc/NEWS
http://www.dovecot.org/security.html
http://www.dovecot.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

three minor security issues have been found in the codebase, thus translating to an
exceptionally good outcome for Dovecot, and a true testament to the fact that keeping
security promises is at the core of the Dovecot development and operations.

It has to be mentioned that the analyzed code can be only characterized as highly
complex. Many parts are commonly interwoven and entangled together in the code
base, which makes it particularly hard to grasp. Against this backdrop, one should see
the audit process as slightly hindered in terms of the speed and pace it allows to external
security investigators. This was especially visible for the API code, while other areas
appeared to be less entwined and much more readable for the auditors.

Regardless of complexity, most of the issues and concerns prompted by the code have
ultimately turned out non-exploitable. For the most part, they have not warranted
creation of dedicated issue-tickets. It is important to underscore that even the areas
which looked exploitable at first glance were equipped with an important value of being
checked properly, thus having all attack potential successfully mitigated.

It is noticeable that Dovecot has already received a lot of scrutiny regarding its code
security. For a complex piece of software that Dovecot constitutes, it is an extremely rare
result to stand strong with so few problems. As the findings are few and far between, the
report can discuss both test methodologies in considerable detail and elaborate on the
logic and sequence of steps within the tests. Only then, it will move on to the coverage of
the three spotted weaknesses and their corresponding fix recommendations.

Scope
• Dovecot Sources & Signatures

◦ http://dovecot.org/releases/2.2/dovecot-2.2.26.0.tar.gz
◦ http://dovecot.org/releases/2.2/dovecot-2.2.26.0.tar.gz.sig
◦ (released on 28th of October 20163)

• General Info
◦ http://www.dovecot.org/security.html

• More detailed Scope
◦ The POP and IMAP protocol stacks
◦ The process architecture and particularly the login process
◦ The User/Password MySQL and LDAP plugins
◦ The internal dcrypt encryption API wrapper
◦ The GUID implementation

3 http://www.dovecot.org/list/dovecot-news/2016-October/000329.html

Cure53, Berlin · 11/29/16 3/10

https://cure53.de/
http://www.dovecot.org/security.html
http://www.dovecot.org/list/dovecot-news/2016-October/000329.html
http://dovecot.org/releases/2.2/dovecot-2.2.26.0.tar.gz.sig
http://dovecot.org/releases/2.2/dovecot-2.2.26.0.tar.gz
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Test Methodology
The following section describes the methodology that was used during this source code
audit and penetration test. The test was divided into two phases with specific two-fold
goals and focal points in scope. The first phase concentrated mostly on manual source
code reviews. These reviews aimed at spotting insecure code constructs with a capacity
to lead to memory corruption, information leakage or other similar flaws. The second
phase of the test was dedicated to classic penetration tests, which examined whether
the security promises made by Dovecot in fact hold in the real-life attack situations.

Part 1 (Manual Code Auditing)

A list of items below seeks to detail some of the noteworthy steps undertaken during the
first part of the test, which entailed the manual code audit against the sources of the
Dovecot software in scope. This is to underline that, in spite of the relatively low number
of findings, substantial thoroughness was achieved and considerable efforts have gone
into this test. The completed steps are listed next.

• The doc/documentation.txt files were studied. It was verifying whether the
content of doc/securecoding.txt is sane. While this component was found rather
complete, it lacked a few points, e.g. regarding the implementation of the
refcounter assertions4

• Existing mitigation against standard memory corruption attacks was analyzed.
Using secure wrapper functions instead of direct memory access is considered
best practice in this realm. One issue regarding the protection against format
string exploits was discovered in this area and is documented in DOV-01-001.
Heap management appeared reasonable. The additional hardening against 0-
sized and large allocations inside the mempool were certainly considered useful
and appropriate. Similarly, making sure that memory is always zero-initialized
paired with the strategy of having the free'd pointers nulled, effectively aided the
prevention of additional problems. Another idea pertinent to hardening and aimed
at increasing general memory safety was added to the report.

• The checks of the default Makefiles revealed them to be lacking all sorts of
hardening flags. These should be enabled per default and must be added instead
of having distributions apply their compilation option. The alternative approach is
described in DOV-01-002.

• At this point, the investigations switched to the actual source code auditing but
stayed limited to the agreed scope and the protocols that are defined in it (i.e.
POP3/IMAP).

• A top-down approach was first utilized in order to perform the so called tracing of
the flow in terms of user-controlled data. Further, checking if it went through

4 https://en.wikipedia.org/wiki/Reference_counting

Cure53, Berlin · 11/29/16 4/10

https://cure53.de/
https://en.wikipedia.org/wiki/Reference_counting
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

vulnerable sinks was also performed. In this realm, focus was mostly on the
classic memory corruption issues and especially encompassed verifications of
that code parts that are marked as UNSAFE and reassurance that these do not
pose a security threat. Generally integer overflows and bypassing secure API
functions with direct memory access, which seemed like a weak point. However,
no actual security issue was found here.

• The bottom-up method was envisioned and executed next to find suspicious
functions and then trace them back to user-input.

• The overall complexity of the code made auditing increasingly difficult.
Considerable amount of time was spent on trying to understand most of the
implementation. A reasonable ratio between the invested time and understanding
code, as well as allocation to resources to specifically looking for bugs needed to
be found. Thus, a number of tasks revolved around on trying to catch the so
called low-hanging fruits, which ultimately was not worthwhile.

• Given the simplicity of the POP3 protocol, it was found to be secure in terms of
possible memory corruption attacks. In the same vein, there were no logical
issues found.

• Analogical findings address the IMAP, although it boasts a lot more complex
implementation. Sill, being a text-based protocol it had been examined and
determined well-thought in terms of security for Dovecot.

• Security architecture documentation was then reviewed. No obvious problems
were observed.

• Having reached this point, the audit moved to a closer investigation of the source
code with respect to the cryptographic components of the implementation. The
scope was still limited here to the defined aspects.

• Looking at the involved base-libraries ensued, the usually problematic buffers,
arrays and strings were subject to logical abstracting.

• Relatively stringent usage of assertions was verified, thus making the debugging
builds less vulnerable and consequently more verifiable.

• SSL wrapper implementation was partially audited; the tests involved primarily its
relations with the supported libraries.

• Command line tools were analyzed with the purpose of acquiring a better
understanding of the general process management and administrative
instrumentation.

• Source code was checked for integer truncation and signedness issues specific
to 64-bit systems. This item followed the arguments specified in the paper
entitled “Twice the Bits, Twice the Trouble”5. It was found that size_t was used in
all cases relevant to this issue.

• The implementation of the cryptographic library dcrypt was audited, yet found in
good standing, straightforward and solid.

5 https://www.sec.cs.tu-bs.de/pubs/2016-ccs.pdf

Cure53, Berlin · 11/29/16 5/10

https://cure53.de/
https://www.sec.cs.tu-bs.de/pubs/2016-ccs.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Part 2 (Code-Assisted Penetration Testing)

A list of items below seeks to detail some of the noteworthy steps undertaken during the
second part of the test, which encompassed code-assisted penetration testing against
the Dovecot software in scope. Given that the manual source code audit did not yield an
overly large amount of findings, the second approach was chosen as an additional
measurement for maximizing the test coverage. As for specific steps executed to enrich
this phase, these can be found listed and discussed in the following bullet points.

• The manual audit was not particularly fruitful, especially in terms of lacking
extensive coverage. For this reason, a code-assisted method was chosen to
broaden the approach and increase the validity of the assessment’s results.

• As a result, a Dovecot POP3 and IMAP servers were set up and all tests were
based on the running processes.

• Mainly short printf debugging and process inspections were employed as means
to quickly find interesting code parts and user-controlled data.

• Using this method, the login process was covered in detail, including possible
manipulation of the userdb and passdb. The tests have additionally relied on
fuzzing.

• Since no further issues were found, the attack surface was expanded to also
include world-writable unix domain sockets which are used by the plugins to
communicate with the master process. The reasoning behind that was that local
attackers could benefit from exploiting them.

• The code that handles the aforementioned communication over unix domain/IPC
sockets and relevant for the master process was found less abstract and likely
more vulnerable. However, upon further manual auditing and testing, it was
eventually deemed to have the same level of robustness as the main protocols.

• Test harness was built to achieve more control over code execution and possibly
untested exceptional behavior.

• A decision was made to focus on certificate-based authentication.
• In subsequent steps, a certificate authority infrastructure was created as a basis

for further investigation of the SSL/TLS authentication implementation.
• Permuted client-side certificates trying to force unexpected behavior were used.

Nevertheless, no irregular patterns were observed.
• Client-side implementations like s_client and claws-mail were instrumented to

demonstrate how authenticating via certificates occurs. This served as a basis for
more detailed investigations which nonetheless yielded no irregularities.

• Authentication via external services (MySQL/LDAP) was checked with primary
focus placed on memory corruptions. Once again no bugs were found in this
realm as well.

Cure53, Berlin · 11/29/16 6/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Identified Weaknesses
The following sections list both weaknesses and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each weakness is additionally
given a unique identifier (e.g. DOV-01-001) for the purpose of facilitating any future
follow-up correspondence.

DOV-01-001 Format String Protection can be bypassed (Low)

Dovecot always tries to follow the principle of multiple layers of security. It does not
simply rely on input validation to make sure that vulnerabilities do not arise easily but
rather attempts to eradicate certain bug classes at the very core of some API functions.
One of these mechanisms is the detection of possible format string exploits that abuse
the “%n” format parameter in hopes of arbitrarily writing to memory. The function that is
used internally to detect such cases is depicted in the following excerpt.

File:
/dovecot-2.2.26.0/src/lib/printf-format-fix.c

Affected Code:
static const char *
printf_format_fix_noalloc(const char *format, unsigned int *len_r)
{

const char *p;
const char *ret = format;

for (p = format; *p != '\0';) {
if (*p++ == '%') {

switch (*p) {
case 'n':

i_panic("%%n modifier used");
case 'm':

if (ret != format)
i_panic("%%m used twice");

A problem with this approach has been discovered. In essence, while the function in
question can successfully detect the usage of “%n”, it is easily bypassable. This can be
done by simply using “%1$n” or “%hn” as format parameter, because the check only
verifies whether the "n" character directly follows the "%" character. As a result, both
values have the same meaning: writing the number of bytes that were printed to the first
specified pointer. Glibc, however, is also able to detect the misuse of direct parameter
access when FORTIFY_SOURCE is employed and tends to bail out accordingly. At the

Cure53, Berlin · 11/29/16 7/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

end, because this protection has also been bypassed in the past6, it is recommended to
implement some additional hardening to printf_format_fix_noalloc and detect the usage
of “%...n” rather than “%n” only.

DOV-01-002 Default Makefile fails to add Hardening Flags (Low)

Using tools like checksec7 or PEDA's8 built-in functionality to check for basic hardening
support reveals that the default compiler options omit PIE9, full RELRO10 and stack
canaries when building Dovecot from a source:

dovecot-2.2.26.0$ gdb src/master/.libs/dovecot
Reading symbols from src/master/.libs/dovecot...done.
(gdb) checksec
CANARY : disabled
FORTIFY : disabled
NX : ENABLED
PIE : disabled
RELRO : disabled

On the one hand, PIE renders the exploitation of memory corruption vulnerabilities a lot
more difficult. This can be attributed to the fact that additional information leaks are
required to conduct a successful attack. RELRO, on the other hand, masks different
binary sections, like the GOT, as read-only. Therefore, it kills a handful of techniques that
come in handy when attackers are able to arbitrarily overwrite memory. The tests
showed that enabling these features had almost no impact, neither on the performance,
nor on the general functionality of Dovecot. This is why it is recommended to add the
necessary compiler flags to the generated Makefile:

dovecot-2.2.26.0$ make CFLAGS='-Wl,-z,relro,-z,now -pie -fPIE -fstack-protector-
all -D_FORTIFY_SOURCE=2 -O1'
[...]
dovecot-2.2.26.0$ gdb src/master/.libs/dovecot
Reading symbols from src/master/.libs/dovecot...(no debugging symbols
found)...done.
(gdb) checksec
CANARY : ENABLED
FORTIFY : ENABLED
NX : ENABLED
PIE : ENABLED
RELRO : FULL

6 http://phrack.org/issues/67/9.html
7 http://www.trapkit.de/tools/checksec.html
8 https://github.com/longld/peda
9 https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html
10http://tk-blog.blogspot.de/2009/02/relro-not-so-well-known-memory.html

Cure53, Berlin · 11/29/16 8/10

https://cure53.de/
http://tk-blog.blogspot.de/2009/02/relro-not-so-well-known-memory.html
https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html
https://github.com/longld/peda
http://www.trapkit.de/tools/checksec.html
http://phrack.org/issues/67/9.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

DOV-01-003 Memorypool Allocator fails to check for Integer Overflows (Low)

Another addition to the “defense in-depth” philosophy already embraced by the Dovecot
suite concerns the wrapper functions inside the memory pool allocator. The idea to wrap
all standard memory allocation functions that are offered by Glibc into wrappers, which
then extend the functionality and security, should be seen as quite positive and
plausible. For example, Dovecot implements additional checks for malloc or calloc in
pool_system_malloc by explicitly disallowing zero-sized or overly large allocations.
Additionally, it always defaults to calloc, making sure that memory is always zero-
initialized, unless Boehm GC is used.

The slight issue is that this type of wrapping quite often leads to the shape of code for
which the programmers must check for integer overflows. This holds especially when
s/he is trying to allocate memory for an array of items characterized by each component
having the same size. Instead of being required to write code like malloc(size *
num_elements), it makes more sense to have a wrapper function that allows to write
size_malloc(size, num_elements). The former code structure is prone to an overflow,
which can happen before pool_system_malloc is entered and may result in allocations
that are too small. In this case, the multiplication of size and num_elements should be
checked internally, thus making sure that an overflow of the type described above can in
fact never happen.

GCC provides a good list of built-ins for safe arithmetics around integrer. These include
__builtin_mul_overflow_p or __builtin_add_overflow11. Another strategy would be to
implement something similar to PHP’s safe_emalloc12 where the arguments are verified
with architecture-dependent code in zend_safe_address13.

It is recommended to implement and make use of the specified alternative wrapper
function since doing so would slightly increase the general security of Dovecot.

11 https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
12 http://php.net/manual/de/internals2.memory.management.php
13 https://github.com/php/php-src/blob/master/Zend/zend_multiply.h

Cure53, Berlin · 11/29/16 9/10

https://cure53.de/
https://github.com/php/php-src/blob/master/Zend/zend_multiply.h
http://php.net/manual/de/internals2.memory.management.php
https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Conclusion
The overall very much positive outcome of this security assignment performed by four
testers from the Cure53 team can be inferred from the minimal number of discoveries in
the context of the application’s high-complexity, as well as a very extensive and in-depth
coverage. As for the latter, a considerable length of twenty days of testing over the two
months of October and November of 2016 attest to a near-impenetrable security
disposition of the Dovecot suite.

Quite clearly, this is a refreshingly pleasant result, which should by no means be taken-
for-granted, or perceived as the “usual standard” in the mature and complex software
environments of similar kind. At the same time, it has to be noted though that the general
Dovecot code base is massive, so the scope was limited to the most commonly used
and deployed components. In addition, the complexity in certain parts of the code base
initially made it very hard to uncover and understand the logic of all entanglements. The
level of complexity was not even across the code base, but rather affected the API are
most profusely. Conversely, other parts posed no such difficulty to the auditors. Besides
these minor struggles at the early stage, the audit managed to achieve proper coverage
of the given scope.

Finally, as with all software, excellent results do not mean that there is nothing left to do.
In fact, it is a clear and vocal recommendation of the Cure53 testers’ part to engage in
security testing against the components of Dovecot that were not in the primary scope of
this test. This strategy of incorporating more areas through expansion could help ensure
that the positive impression translates into other areas and persists, even when one
imagines the possible effects of the less common usage scenarios.

In sum, there is no doubt that the Dovecot email server software holds strong and
robust, even when faced with a very stern and in-depth look into its codebase.

Cure53 would like to thank Gervase Markham and Chris Riley of Mozilla for their
excellent project coordination, support and assistance, both before and during this
assignment. Cure53 would further like to extend gratitude to Neil Cook & Timo Sirainen,
two maintainers of the Dovecot project, for their help during the scoping phase of this
assessment.

Cure53, Berlin · 11/29/16 10/10

https://cure53.de/
mailto:mario@cure53.de

	Cure53 would like to thank Gervase Markham and Chris Riley of Mozilla for their excellent project coordination, support and assistance, both before and during this assignment. Cure53 would further like to extend gratitude to Neil Cook & Timo Sirainen, two maintainers of the Dovecot project, for their help during the scoping phase of this assessment.

