
         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Pentest-Report RememBear 08.2017
Cure53, Dr.-Ing. M. Heiderich, Dipl.-Ing. Abraham Aranguren, Dipl.-Ing. Alex Inführ, BSc. 
Christoper Kean, Norman Hippert, Nadim Kobeissi

Index
Introduction
Scope
Identified Vulnerabilities

RMB-01-001 Mac/iOS/Android/Win: Faulty domain detection leaks password (High)
RMB-01-006 Android: Denial of Service issue in Login Model (Low)
RMB-01-007 Mac: RememBear app DoS via URL handler (Medium)
RMB-01-010 Mac/Windows: Denial of Service via RememBear Helper listener (Low)

Miscellaneous Issues
RMB-01-002 Mac: Insecure ATS configuration could lead to leaks/MitM (Info)
RMB-01-003 API: Timing Side-Channel on SRP Authentication (Low)
RMB-01-004 iOS: Copied login passwords are readable by other apps (Low)
RMB-01-005 Mac: RememBear and RememBearHelper are not sandboxed (Info)
RMB-01-008 Windows: Password save dialog uses wrong domain (Low)
RMB-01-009 Windows: DisposableString provides no added Protection (Info)
RMB-01-011 Rust: Passphrase Generation and Validation Recommendations (Info)
RMB-01-012 Public Key Protocol Recommendations for Browser Extensions (Info)
RMB-01-013 Custom TLS Protocol Recommendations (Info)
RMB-01-014 WebExtension: DOM Clobbering can influence Content Script (Info)

Conclusions

Cure53, Berlin · 11/17/17                                                                                                  1/14

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Introduction
This report documents the findings of a penetration test and source code audit against
the RememBear password manager. The project  was carried out  by Cure53 in mid-
August 2017 and yielded a total of fifteen security-relevant results.  

It should be noted that this security assignment had a very wide scope. The project was
granted  a  time  budget  of  twenty-five  days,  which  was  then  split  into  six  separate
modules  described  below  in  the  “Scope”  section.  Besides  auditing  sources  and
performing  a  classic  penetration  test,  the  Cure53  team  engaged  in  a  thorough
cryptographic  review of  the RememBear  software.  The latter  was aimed at  verifying
whether all cryptographic components can be assessed as well-written and working as
intended.

Based on the required expertise and skillsets, six members of the Cure53 team were
involved in the completion of this project. As for the approach, a white-box methodology
was  chosen  and  the  Cure53  testers  received  access  to  all  relevant  source  code
materials as well as binary builds. Additional information and feedback was exchanged
quickly between the testers and the RememBear in-house team to ensure a good test
coverage.  This  was assisted by  having  a  dedicated  Slack  channel,  which  ultimately
helped overcome arising technical issues in a prompt manner. A good communication
setup turned out indispensable, as the initial phase of the project needed to address
broken  builds.  After  this  slightly  bumpy  start,  the  tests  proceeded  smoothly  and
efficiently.

As already indicated,  the Cure53 testers managed to spot  fifteen security risks.  The
issues were further categorized into five vulnerabilities and ten general weaknesses. It is
important to emphasize that not a single finding warranted a “Critical” ranking in terms of
severity  or  impact,  while  only  two problems were deemed to have a “High”  level  of
security implications. The report will now shed light on the detailed aspects of the scope,
particularly in terms of how six sub-modules were developed. It then proceeds to a case-
by-case discussion of each finding, offering technical descriptions and mitigation advice
when  applicable.  The  closing  paragraphs  are  devoted  to  concluding  remarks  and
impressions about the general security of the RememBear product.  

Note: For this public version of the RememBear pentest report, several code snippets,
screenshots and attack examples have been removed, as requested by the TunnelBear
team.

Cure53, Berlin · 11/17/17                                                                                                  2/14

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Scope
• Module 1: OSX Client

◦ Code Audits and Penetration Tests against OSX Mobile App & available Sources.
Relevant code and binaries were made available to Cure53.

• Module 2: iOS App

◦ Code  Audits  and  Penetration  Tests  against  iOS  Client  &  available  Sources.  .
Relevant code and binaries were made available to Cure53.

• Module 4: Android App

◦ Code Audits and Penetration Tests against Android Mobile App & available Sources.
Relevant code and binaries were made available to Cure53

• Module 5: Browser Extension

◦ Code Audits and Penetration Tests against Browser Extension & available Sources.
Both code and binaries were made available to Cure53.

• Module 3: Windows Client

◦ Code Audits and Penetration Tests against Windows Client & available sources.

• Module 6: Backend, API & Crypto

◦ Code  Audits  of  the  available  Scala  Backend  Code  &  Rust  Sources,  API  Tests.
Relevant code and binaries were made available to Cure53.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets  following  the  title  heading  for  each  vulnerability.  Each  vulnerability  is
additionally given a unique identifier (e.g. RMB-01-001) for the purpose of facilitating any
future follow-up correspondence.

RMB-01-001 Mac/iOS/Android/Win: Faulty domain detection leaks passes (High)
As any password manager, RememBear is evaluates each loaded URL and matches it
against stored vault items. If a user has saved a username and password combination
for  the  URL,  the  application  offers  a  possibility  to  automatically  fill  and  submit  the
credentials. However, it was discovered that the currently deployed algorithm for URL
parsing is  faulty. Specifically,  the  algorithm attempts to  detect  and remove top level
domains to extract the host part. This is because the current design treats subdomains
in the same way as the main domain.

It can be observed that since the algorithm is removing up to two top level domains, it
actually treats  victim.co.uk,  victim.com,  victim.de and even test.victim.co.at as if they
were identical. By this logic, it proposes to autofill the same user-credentials for all these

Cure53, Berlin · 11/17/17                                                                                                  3/14

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

domains as if they were equivalent. This behavior could trick a user into revealing their
credentials, as they may end up submitting them to an attacker-controlled website.

The described behavior can be found on the Windows and Mac platforms in the Chrome
extension, as well as in the vault software. Moreover, it is also present in both the mobile
RememBear browser application and in the native browser. 
In  order  to  solve  this  problem,  the  entire  hostname should  ideally  be  used  for  the
process  of  credential  storage  matching.  This  is  the  simplest  solution  and  would
completely eliminate attacks against the core logic employed in the hostname matching
algorithm at present. If this approach is not feasible, it is recommended to review the
domain  validation  process and ensure  that  the last  two or  three components  of  the
hostname are used, making the process dependent on the received value.

To clarify, some examples on handling the matter are specified next.

• If a domain like victim.co.uk or www.victim.co.uk is received, the entire three last
sections of the hostname should be used, i.e. victim.co.uk.

• If  a  domain  like  victim.com or  www.victim.com is  received,  then the last  two
sections should be sufficient, i.e. victim.com.

Finally, if neither of these approaches can be implemented, another option would be to
review the domain validation process and ensure that ccSLDs are detected properly.
Although there is no complete list of ccSLDs available, a good starting point can be the
public  suffix  list  maintained by Mozilla1.  As this  list  is  mostly  maintained for  browser
purposes -  like  cookies  -  it  requires  some manual  work  when one seeks to extract
ccSLDs, which are conversely important in a specific context of a password manager
rather than generally for browsers.

RMB-01-006 Android: Denial of Service issue in Login Model (Low)
The Android RememBear app is exporting three activities which can be invoked by any
other application. The LoginActivity activity accepts a parceled class via the send intent,
and it retrieves Master Password stored in this class. This data is then used as a default
value in the GUI. Serialization/parceling can be abused to cause a crash in the receiving
app, with the process happening upon sending an unavailable or a malformed class.
Additionally it must be noted that the RememBear app is supporting Android versions
4.3.1 or newer. A vulnerability in the parcel/serialization code on Android was discovered
to affect all versions up to 5.1.12. Consequently, this can be abused to cause RCE inside
the application and threatens the overall security of the RememBear app.

1 https://publicsuffix.org/list/public_suffix_list.dat
2 https://www.usenix.org/system/files/conference/woot15/woot15-paper-peles.pdf

Cure53, Berlin · 11/17/17                                                                                                  4/14

https://cure53.de/
https://www.usenix.org/system/files/conference/woot15/woot15-paper-peles.pdf
https://publicsuffix.org/list/public_suffix_list.dat
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

It is recommended to modify the LoginActivity class and remove the code responsible for
unparceling. Given the implemented functionality of the existing activity, it is possible to
obtain the necessary data by solely relying on simple strings sent via an intent. This
ensures that older Android versions cannot be attacked via the previously mentioned
parceling/serialization  vulnerability.   Furthermore,  it  would  actually  be  possible  to
completely remove the activity in question,  or at least  stop exporting it  to third-party
applications,  especially  since it  does not  appear  to be implementing important  user-
features. Consideration should also be given to removing the BROWSABLE category of
the intent-filter, so that the activity is not reachable for websites.

RMB-01-007 Mac: RememBear app DoS via URL handler (Medium)
It was found that the RememBear Mac application exposes a URL handler to third-party
apps. When the URL handler is invoked incorrectly, this will consistently crash the Mac
OS X app. A malicious app could leverage this weakness to repeatedly and constantly
crash the RememBear app while running in the background. Malicious websites can also
accomplish this but the impact would be more limited due to the user being prompted
first.

It is recommended to review the business need of exposing this URL handler. If possible
exporting  it  to  third-party  apps  should  be  ceased.  Another  possibility  would  be  to
implement adequate exception-handling.  If  the URL handler  must remain exposed to
third-party apps, additional mitigation measures should be considered to prevent user-
disruption via arbitrary URL handler invocations.

RMB-01-010 Mac/Windows: DoS via RememBear Helper listener (Low)
It  was  found  that  the  RememBear  Helper service  of  the  Mac  and  Windows  apps
currently listens to on all network interfaces. A malicious attacker on the local network
could leverage this weakness to send malformed traffic to this interface in order to make
the entire Mac OS X machine perform very poorly with up to 100% CPU spikes. On
Windows the DoS potential does not appear to be as great, as only about 10% CPU is
used. However, in both cases an attacker on the local network can attempt to connect
and interact with the RememBear Helper service. In this realm, it can be imagined that
an attacker gets paired up with the vault if the user miss-clicks on the “Yes” button of the
pairing process. An attacker on the local network could also try to initiate the pairing
process repeatedly until the user accepts additional chances of accessing the password
vault.

The main reason behind this issue is tied to the way in which the RememBear Helper is
listening. More specifically, because the service is listening on all network interfaces, an
attacker in the local network can establish connections to the service.

Cure53, Berlin · 11/17/17                                                                                                  5/14

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

It  is  recommended to alter  the RememBear listeners so that  they only listen on the
localhost interface.  An  abuse  mechanism  should  ideally  be  implemented  so  that
malformed  requests  are  banned  with  as  little  performance  impact  as  possible.  For
example, a malicious IP or origin (if a similar attack is attempted from a website) could
be banned before any processing takes place.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

RMB-01-002 Mac: Insecure ATS configuration could lead to leaks/MitM (Info)
It  was found that the Mac app currently deploys an insecure ATS configuration. This
issue is merely “Informational” as far as risks are concerned because the RememBear
app implements Pinning. As a result, MitM attacks against HTTPS connections would
not be possible. However, if Pinning protections were to be removed in the future, this
configuration  would  allow  the  app  to  establish  clear-text  HTTP  connections  to  the
backend  server.  Furthermore,  it  would  signify  accepting  invalid  TLS  certificates  for
HTTPS  connections.  A  malicious  attacker  with  the  ability  to  MitM  network
communications could leverage this weakness to observe and modify clear-text HTTP
and HTTPS traffic.

The  official  Apple  documentation  has  the  following  to  say  about
NSExceptionAllowsInsecureHTTPLoads3:

“With this key’s value set to YES, your app can make secure connections to a 
secure server but can also connect insecurely to a server with no certificate,
or a self-signed, expired, or host-name-mismatched certificate.”

It is recommended to remove all ATS exceptions and use TLS during development. This
would  remove  the  need  of  having  exceptions  during  development,  which  would
henceforth  mean  that  having  a  process  to  remove  the  insecure  settings  before
production deployment would no longer be necessary. If this approach is not viable, it is
important to introduce a process that ensures that these insecure settings cannot be
applied to the production version as a result of human error. Ideally, this should be done
in an automated fashion to reduce the likelihood of a developer  forgetting to disable
insecure settings by mistake.

3 https://developer.apple.com/library/content/documentation/Ge...eference/Articles/CocoaKeys.html

Cure53, Berlin · 11/17/17                                                                                                  6/14

https://cure53.de/
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

RMB-01-003 API: Timing Side-Channel on SRP Authentication (Low)
During the code audit it was discovered that the SRP m1 comparison is not safe against
timing attacks4. This could lead to advanced brute-force techniques, notably reliant on
timing differences5 to guess the necessary value.  However, due to more information
needed  to  even  arrive  at  this  early  stage,  the  attack  scenario  is  perceived  as  not
realistically exploitable.

Consideration should be given to using a constant time comparison function for handling
the comparison of the SRP m1 value.

RMB-01-004 iOS: Copied login passwords are readable by other apps (Low)
It was discovered that the text fields of the Master Password and the Password fields in
the  Login Item creation menu disallow copying sensitive data. However, the  password
field of existing login items enables copying passwords to the general pasteboard, from
where they are readable to other applications: Before iOS 9, applications running in the
background  could  monitor  UIPasteboard.general.string,  as  this  system’s  pasteboard
contents were only accessible to apps in the foreground6.

Fig.: Password field employs the copy operation on the general pasteboard

4 https://codahale.com/a-lesson-in-timing-attacks/
5 https://events.ccc.de/congress/2011/Fahrplan/events/4640.en.html
6 https://github.com/OWASP/owasp-mstg/blob/master/Docu...#testing-for-sensitive-data-in-the-clipboard

Cure53, Berlin · 11/17/17                                                                                                  7/14

https://cure53.de/
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-Data-Storage.md#testing-for-sensitive-data-in-the-clipboard
https://events.ccc.de/congress/2011/Fahrplan/events/4640.en.html
https://codahale.com/a-lesson-in-timing-attacks/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

For  this  reason,  the  general  pasteboard  should  ideally  never  be  used  for  copy/cut-
operations performed on sensitive data. It is recommended to use an application-specific
custom pasteboard to transfer credentials to the BearOwser app internally. With regard
to the usage of RememBear in Safari, disabling the copy function in the extension could
be considered.  Instead,  relying on the existing “Open & Fill”  functionality  to pass on
credentials seems like a more security-conscious option. For more information, please
review the UIPasteboard article provided by Apple7.

RMB-01-005 Mac: RememBear and RememBearHelper are not sandboxed (Info)
It was found that the Mac app fails to leverage the Mac OS X App Sandbox at present.
This means that vulnerabilities in the RememBear app and the RememBearHelper can
provide access to the full  permissions of the user in the file-system, memory, etc. In
essence,  this  makes the RememBear  Mac app a more attractive target  for  privilege
escalation.

Please note that the Apple documentation contains some high level comments on this
behavior8:

“Apps distributed through the Mac App Store must adopt App Sandbox. Apps
signed and distributed outside of the Mac App Store with Developer ID can (and
in most cases should) use App Sandbox as well.”

It is recommended to use the Mac OS X Sandbox and this can easily be accomplished
with Xcode. A careful review of the Apple App Sandbox Checklist9 will ensure a smooth
transition within this process.

RMB-01-008 Windows: Password save dialog uses wrong domain (Low)
The  Windows  implementation  differs  from  the  mobile  applications  regarding  the
detection of framed and known vault items. When a website frames another web page
with  a  stored  login  resource,  it  offers  the  user  a  possibility  to  autofill  the  stored
credentials. It was discovered that when a user employs the autofill feature in a framed
web page, the Windows application shows a “Do you want to remember this login?”
dialog. However, it does so in the context of the top level domain. In case a user opts for
clicking on “Remember”, the credentials of the framed page get stored for the top level
domain, too. Interestingly the Mac extension is not affected by this issue as it opens a
new window when the form is submitted. This results in the Extension not showing the
save password dialog.

7 https://developer.apple.com/documentation/uikit/uipasteboard
8 https://developer.apple.com/library/content/documentatio.../AboutAppSandbox/AboutAppSandbox.html
9 https://developer.apple.com/library/content/documentation/Security/...8-SW1

Cure53, Berlin · 11/17/17                                                                                                  8/14

https://cure53.de/
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AppSandboxImplementationChecklist/AppSandboxImplementationChecklist.html#//apple_ref/doc/uid/TP40011183-CH8-SW1
https://developer.apple.com/library/content/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
https://developer.apple.com/documentation/uikit/uipasteboard
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

It is recommended to implement a dedicated check in the Windows application and this
way detect  the submission of  the stored credentials  inside an Iframe.  This  will  help
prevent the creation of the “Store password” dialog for the wrong domains.

RMB-01-009 Windows: DisposableString provides no added Protection (Info)
During the code review it was discovered that the Windows application heavily uses the
DisposableString  class,  which  is  derived  from  the  SecureString10 implementation  in
Mono. As this method rarely employs the necessary  Marshall.AllocHGlobal  to protect
data against ending up in the “garbage collector”,  the benefit  of this class is minute.
However, an attacker with access to the server can still monitor the system’s memory
and might extract passwords. A better implementation can be found in the  .NET Core
Library11 and should be used instead,  as it  guarantees both keeping the data in  the
unmanaged memory, and zeroing it out properly.

As  this  application  runs  on  Windows,  it  should  be  considered  to  use  the  proper
SecureString class12 which  provides  appropriate  protection  and  adequate  memory
encryption.  Modifying critical  security classes should  be done with as much care as
possible, with an ideal solution being to avoid it altogether.

RMB-01-011 Rust: Passphrase Generation and Validation Recommendations (Info)
The Rust cryptography core in RememBear uses a complex set of functions in order to
calculate and validate users’ passwords and passphrases. The actual contents of this
implementation are not ideal because they fail to present added security benefit despite
heightened complexity.

It  is  recommended  to  simplify  the  generation  procedure.  Specifically,  it  should  be
considered to simply create an alphanumeric, all-case character-set  c which totals 62
characters.  Measuring  entropy  out  of  this  character  set  is  much  simpler  and  more
reliable than the current implementation.  In order to determine how many characters
need to be sampled, for example for a password with 80 bits of entropy, simply calculate
log(280) / log(62) =~ 14. For 128 bits of entropy: log(2128) / log(62) =~ 22.

A validation procedure then becomes unnecessary.

RMB-01-012 Public Key Protocol Recommendations for Browser Extensions (Info)

The  RememBear  protocol  overview  document  (in  Version  3)  illustrates  a  public-
key/authenticated  key  establishment  protocol  that  operates  between  three  principal
agents:  the RememBear  browser  extension,  a background application,  and the Rust

10 https://github.com/mono/mono/blob/master/mcs/class/corlib/System.Security/SecureString.cs
11 https://github.com/dotnet/coreclr/blob/master/src/mscorlib/shared/System/Security/SecureString.cs
12 https://msdn.microsoft.com/en-us/library/system.security.securestring(v=vs.110).aspx

Cure53, Berlin · 11/17/17                                                                                                  9/14

https://cure53.de/
https://msdn.microsoft.com/en-us/library/system.security.securestring(v=vs.110).aspx
https://github.com/dotnet/coreclr/blob/master/src/mscorlib/shared/System/Security/SecureString.cs
https://github.com/mono/mono/blob/master/mcs/class/corlib/System.Security/SecureString.cs
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

cryptography core. All three principals are located locally on the user's computer.

The goal of this protocol is to encrypt and authenticate all communications between the
three principals so that hijacking of the WebSockets’ layer exposed by the background
application cannot reveal any data being communicated to the browser extension.

The protocol is only adequate if no third-parties can passively monitor the WebSocket
connection between the browser extension and the background process. In the case of
passive  monitoring  being  attainable,  an  attacker  can  successfully  compromise  the
channel. This is because the authentication string used as part of the protocol has only
32 bits of entropy. Here is how a potential attack could work:

• Evil  browser  extension  `E`  listens  on  the  WebSocket  `W`,  waiting  for  a
connection by using `onBeforeRequest`.

• Benign browser extension `B` wants to connect to background process `P` using
`W`.

• `E` detects that `B` tried to use `W`. It ends that connection and instead starts its
own link with `P` over `W`. This forces `P` to generate `pk2` and communicate it
to `E`.

• `B` tries to reconnect to `W`. Since `pk2` is static, it receives the same `pk2`.

• If `E` can monitor what `B` is sending over `W` at this stage, it will know `pk1`.

• `E`  trivially  obtains  a  colliding  auth string  for  `pk1|pk2`  using  a  `pk1'`  that  it
controls.

• `E` again intercepts the connection immediately after `B` shows the auth string
for confirmation to the user.

• At the end,`B` was tricked into making the user confirm the  auth string for  a
malicious key. The channel is compromised.

The attack enumerated above is not currently believed viable, hence the classification of
this issue stands at "Info". It is nevertheless recommended to increase the complexity of
the authentication string and have it  use twelve rather than just  six  characters as a
precaution.

RMB-01-013 Custom TLS Protocol Recommendations (Info)
The RememBear protocol overview document (in Version 3) illustrates a transport layer
encryption protocol that essentially amounts to "TLS over TLS". The point of this protocol
is to "reduce the impact of Cloudbleed-like incidents".

While the implementation does not appear to be defective, it is questionable whether the
serious engineering overhead is warranted. "Cloudbleed-like incidents" could be more
easily avoided by investing in a more trustworthy low-level TLS stack, and, especially,

Cure53, Berlin · 11/17/17                                                                                                  10/14

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

avoiding the use of CDNs for security-sensitive connections. A recommended OpenSSL
stack  is  BoringSSL13,  the  security-focused  OpenSSL alternative  developed  by  Adam
Langley.

RMB-01-014 WebExtension: DOM Clobbering can influence Content Script (Info)
The assessment revealed that the WebExtension, especially the content script, does not
always consider DOM Clobbering14 upon interacting with attacker-controlled HTML code.
DOM Clobbering allows to overwrite certain functions of HTML elements, especially form
elements,  by specifying  the desired function’s  name in the  name attribute of  a child
element. Although it was not possible to cause a vulnerability in the WebExtension with
this approach during testing, it is important to keep this threat in mind while developing
the extension further.

It  is  recommended  to  properly  check  the  type  of  each  attribute  or  function  before
interacting with attacker-controlled HTML elements inside the content scripts. Although
this behavior did not yield any vulnerabilities in this test instance, it increases the risk of
being vulnerable in the future. What is more, it must be noted that a similar behavior is
possible for global and undefined variables inside the content script. In case the script
determines certain  code paths by evaluating  whether  a global  variable  is  defined or
undefined, a malicious website can specify these variables via HTML element IDs. This
is  because  the  latter  are  stored  in  the  global  window  object  of  the  content  script,
therefore having the power over influencing the code path of the content script.15

It is recommended to properly initialize all of the global variables used inside the content
script.

13 https://boringssl.googlesource.com/boringssl/
14 http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
15 https://bugs.chromium.org/p/project-zero/issues/detail?id=1225 

Cure53, Berlin · 11/17/17                                                                                                  11/14

https://cure53.de/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1225
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
https://boringssl.googlesource.com/boringssl/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Conclusions
The overall outcome of this Cure53 summer 2017 security assessment point to a notable
security dedication at the RememBear project. The tests, which were completed by six
members  of  the  Cure53  team  over  the  course  of  twenty-five  days,  yielded  fifteen
security-relevant discoveries.

Before moving on to the technical aspects of the results, it should be noted that some
minor  test  limitations  were  present  for  this  assignment.  First  of  all,  the  project  was
granted a relatively limited time budget. This is particularly vital given the large codebase
and extensive functionality. Notably, iOS, Android, Windows and Mac clients, browser
extension, source code analysis, as well as crypto and design review were all included
as test components in the scope. Secondly, it has been noticeable that the development
process of the RememBear suite was affected by tight deadlines. Evidencing this was
the fact that builds were generally provided only one or two days before actual testing
started, leaving little room for in-depth reconnaissance. Thirdly, there were certain subtle
functional bugs. Although these were minor, they managed to impact and disrupt testing
on a few occasions.  This  applies,  in  particular, to the Android,  iOS and Mac clients,
which turned out to require long hours of debugging and finding workarounds before
being  test-ready.  Additional  troubleshooting  activities  were  also  warranted  around
installing the Windows client.

Having discussed the setup limitations, it should be nevertheless emphasized that the
core aspect - that is security of the RememBear products - was found to be at the rather
high  level.  All  tested  clients  provided  robust  impressions  and  no  major  flaws  were
identified. Importantly, backend network communications were generally protected with
Pinning in an appropriate manner, with the sole exception of risks found on the Amazon
S3 traffic. More specifically, the lack of Pinning on Amazon S3 opens doors to ZIP bomb
and  file  overwrite  attacks  against  all  clients.  While  succeeding  with  this  approach
requires  high-profile  and  powerful  attackers  with  the  capacity  to  intercept  network
communications  with  a  valid  CA  certificate  trusted  by  the  operating  system,  it
nevertheless calls for urgent attention. Further note that the configuration of the Amazon
AWS production configuration was not in scope for this test.

On a general level,  it  should be underlined that the WebExtension is built  well,  with
neither  unnecessarily  exported extension resources,  nor  major  vulnerability  detected.
Conversely, the broken domain detection is a design problem on all  components.  In
essence, the backend utilized modern technologies and frameworks, thus providing a
good baseline security. Let us know shed light on three aspects of key vulnerabilities,
minor weaknesses, and cryptographic issues.

Cure53, Berlin · 11/17/17                                                                                                  12/14

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

As far as the actual five security vulnerabilities discovered during testing are concerned,
one important point to make is that not a single problem was deemed to be of a “Critical”
severity or security implications. For the two issues ranked as “High”, the first problem
had to do with a design flaw around the autofill functionality and incorrect handling of top
level domains (see RMB-01-001). All remaining flaws revolved around different Denial of
Service attacks, ranging from  possible RCE against the Android app via deserialization
of user-input (RMB-01-006), to DoS against the Mac app via URL handler  (RMB-01-
007), to increased resource consumption and possible vault interaction on two clients
(RMB-01-010).

When looking at miscellaneous issues, one should note the prevalence of flaws marked
with “Low” or  even “Informational”  severity  rank.  In the more important  first  class of
issues, the observed slight shortcomings were tied to timing side-channel weaknesses
on the SRP authentication of the API (RMB-01-003), possible password leakage via the
iOS clipboard (RMB-01-004), as well as  save password  dialog weaknesses (RMB-01-
008). Findings documented as “Info” for the sake of completeness provide advice on,
among others,  improving  ATS configuration  and  sandboxing  on  Mac,  considerations
around  the  DisposableString  on  Windows,  and  avoiding  DOM  Clobbering  on  web
extension.  The  Cure53  team  furnishes  additional  note  on  fine-graining  passphrase
generations, deployment of public keys and TLS, all viewed as defense in-depth rather
than  indispensable  mechanisms.

To finalize with some general remarks on the examined cryptographic implementations,
the  symmetric  primitives  in  the  Rust  core  and  the  clients  were  sound  and  well-
implemented. They are grounded in the deployment of libsodium, which is a state-of-the-
art cryptographic library. While various notes and suggestions were collected during the
cryptographic analysis,  no severe  implementation-related vulnerability was spotted. In
other words, it is believed that a real-world attacker would remain powerless in face of
the  employed  defense  mechanisms.  The  PKI  design  for  securing  communications
between the browser extension and the local backend could be modernized by relying
on the Curve25519 key generation and authentication on both sides. This accomplishes
the matching and ambitious security goals while it eradicates the added complexity of
RSA and X.509 certificate parsing. The protocol design documents need to be expanded
with stronger detail and formalism. In some instances, the lack of rigor in specification
leads to strong openings for  attacks.  Finally, while  the SRP protocol  implementation
guarantees some resistance against offline attacks, additional research could determine
whether these properties could also be acquired through a simpler protocol.

All in all, the RememBear is a robust and promising project. Though some minor security
issues shall still  be resolved to benefit  the already strong design, the Cure53 testing
team faced a well-hardened entity, clearly developed from a security-conscious stance.  

Cure53, Berlin · 11/17/17                                                                                                  13/14

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Cure53 would like to thank Thomas Cordua-von Specht, Dane Carr, Rodrigue Hajjar and
the TunnelBear / RememBear team for their excellent project coordination, support and
assistance, both before and during this assignment.

Cure53, Berlin · 11/17/17                                                                                                  14/14

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report RememBear 08.2017
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	RMB-01-001 Mac/iOS/Android/Win: Faulty domain detection leaks passes (High)
	RMB-01-006 Android: Denial of Service issue in Login Model (Low)
	RMB-01-007 Mac: RememBear app DoS via URL handler (Medium)
	RMB-01-010 Mac/Windows: DoS via RememBear Helper listener (Low)

	Miscellaneous Issues
	RMB-01-002 Mac: Insecure ATS configuration could lead to leaks/MitM (Info)
	RMB-01-003 API: Timing Side-Channel on SRP Authentication (Low)
	RMB-01-004 iOS: Copied login passwords are readable by other apps (Low)
	RMB-01-005 Mac: RememBear and RememBearHelper are not sandboxed (Info)
	RMB-01-008 Windows: Password save dialog uses wrong domain (Low)
	RMB-01-009 Windows: DisposableString provides no added Protection (Info)
	RMB-01-011 Rust: Passphrase Generation and Validation Recommendations (Info)
	RMB-01-012 Public Key Protocol Recommendations for Browser Extensions (Info)
	RMB-01-013 Custom TLS Protocol Recommendations (Info)
	RMB-01-014 WebExtension: DOM Clobbering can influence Content Script (Info)

	Conclusions


