

 WWW.DOYENSEC.COM © DOYENSEC

Security Auditing Report
Gravitational - Teleport Testing 2019

Prepared for: Gravitational, Inc.
Prepared by: Luca Carettoni

http://www.doyensec.com
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Table of Contents

Table of Contents 1
Revision History 2
Contacts 2
Executive Summary 3
Methodology 5
Project Findings 6
Appendix A - Vulnerability Classification 44
Appendix B - Remediation Checklist 45

 of WWW.DOYENSEC.COM1 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Revision History

Contacts

 of WWW.DOYENSEC.COM2 45

Version Date Description Author

1 07/08/2019 First release of the final report Luca Carettoni

2 07/11/2019 Peer Review Lorenzo Stella

3 07/12/2019 Peer Review John Villamil

4 01/10/2020 Retesting Update Lorenzo Stella

Company Name Email

Gravitational, Inc. Russell Jones rjones@gravitational.com

Gravitational, Inc. Sasha Klizhentas sasha@gravitational.com

Gravitational, Inc. Alexey Kontsevoy alexey@gravitational.com

Doyensec, LLC. Luca Carettoni luca@doyensec.com

Doyensec, LLC. John Villamil john@doyensec.com

mailto:rjones@gravitational.com
mailto:sasha@gravitational.com
mailto:alexey@gravitational.com
mailto:luca@doyensec.com
mailto:john@doyensec.com
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Executive Summary

Overview

Gravitational engaged Doyensec to perform a
security assessment of the Teleport platform.
Gravitational Teleport is a cloud-native SSH
gateway for managing access to clusters of Linux
servers via SSH or Kubernetes APIs.

The project commenced on 06/18/2019 and
ended on 07/05/2019 requiring two (2) security
researchers. The project resulted in fourteen (14)
findings of which one (1) was rated as High
severity and three (3) were rated as Medium
severity.

In January 2020, Doyensec performed a retesting
of the Teleport platform and confirmed the
effectiveness of the applied mitigations. All
issues with direct security impact have been
addressed by Gravitational.

This deliverable represents the state of all
discovered vulnerabilities as of 01/10/2020.

The project consisted of a manual web
application security assessment, source code
review and dynamic instrumentation of the
command line tools.

Testing was conducted remotely from Doyensec
EMEA and US offices.

Scope

Through meetings with Gravitational, the scope of
the project was clearly defined:

• Identify misconfigurations and vulnerabilities
in Teleport Community and Enterprise

• Evaluate the overall security posture and best
practices compared to other industry
peers

We list the agreed-upon targets below:

• Teleport Community
• https://github.com/gravitational/teleport

• Teleport Enterprise
• https://github.com/gravitational/teleport.e

• Teleport internal dependencies

Testing took place in a production- l ike
environment using the latest version of the
software at the time of testing. In detail, this
activity was performed on the following releases:

• Teleport v4.0.0
• https://github.com/gravitational/teleport/

releases/tag/v4.0.0
• c7f55ac373099fe301814ffd5523952edca

04723

• Teleport Enterprise
• d8b3d899a75d0969880ae670f5ac84481d

d6fadc

Scoping Restrictions

During the engagement, Doyensec did not
encounter any difficulties with testing the
application. The Gravitational engineering team
was very responsive in debugging any issues to
ensure a smooth assessment.

While testing included the review of the Teleport
internal dependencies, Doyensec did not perform
a complete source code review for all packages.

It is also important to notice that Teleport is a
highly flexible platform in which several
configurations can be customized by the end-
user. For instance, permissions for roles/users are
completely customizable, hence Doyensec
focused on vulnerabilities in the core logic instead
of enumerating potential misconfigurations in
user-defined policies.

 of WWW.DOYENSEC.COM3 45

http://www.doyensec.com
https://github.com/gravitational/teleport
https://github.com/gravitational/teleport.e
https://github.com/gravitational/teleport/releases/tag/v4.0.0
https://github.com/gravitational/teleport/releases/tag/v4.0.0

Gravitational, Inc. - Security Auditing Report

Findings Summary

Doyensec researchers discovered and reported
fourteen (14) vulnerabilities in Teleport. While
several issues are departure from best practices
and low-severity flaws, Doyensec identified one
(1) issue rated as High and three (3) issues rated
as Medium that can be leveraged to compromise
the confidentiality, integrity and availability of the
platform.

It is important to reiterate that this report
represents a snapshot of the security posture of
the product at a point in time.

The findings included multiple vulnerabilities in
both the design and implementation of some
features. Several SSH session recording bypasses
were found abusing both the SSH web and
terminal features. Insecure decompression of
recording events and log files led to arbitrary file
read and write vulnerabilities affecting the
authentication server. An unauthenticated user
creation method was also identified, along with an
account takeover through Github username
change. Doyensec also reported several missing
best practices that would make the platform more
resilient against certain attack scenarios.

Considering the overall complexity of the platform
and the numerous endpoints, the security posture
of the Internet-facing APIs was found to be in line
with industry best practices.

At the design level, Doyensec has found the
system to be well architected with the exclusion
of the following aspects:

• The recording capabilities of the platform can
inherently be bypassed due to the underlying
complexity of the terminal software. Having
said that, Gravitational has implemented
extensive countermeasures in the Teleport
design that does block several techniques

• Granted and implicit trust on data exchanged
between the nodes and the authentication
server. Insufficient mitigations are in place
preventing abuses from compromised or
malicious nodes.

Recommendations

The following recommendations are proposed
based on studying the Teleport security posture
and the vulnerabilities discovered during this
engagement.

Short-term improvements

• Wo r k o n m i t i g a t i n g t h e d i s c ove re d
vulnerabilities. You can use Appendix B -
Remediation Checklist to make sure that you
have covered all areas

Long-term improvements

• Design and implement a certificate revocation
system (e.g. a Certificate Revocation List or
a n O n l i n e C e r t i fi c a t e S t a t u s
Protocol implementation) for certificate
rotation and invalidation

• Design and implement a solution to ensure
integrity of the audit trails. Additionally, this
solution should also ensure that the sender of
the audit events is the actual source of such
events

• Design and implement an attribution system
for actions performed by different users
sharing an SSH session, uniquely identifying
input from any connected tty (See #2701 , 1

#2324) 2

 https://github.com/gravitational/teleport/issues/27011

 https://github.com/gravitational/teleport/issues/23242

 of WWW.DOYENSEC.COM4 45

https://github.com/gravitational/teleport/issues/2701
http://www.doyensec.com
https://github.com/gravitational/teleport/issues/2324

Gravitational, Inc. - Security Auditing Report

Methodology

Overview

Doyensec treats each engagement as a fluid
entity. We use a standard base of tools and
techniques from which we built our own unique
methodology. Our 30 years of information security
experience has taught us that mixing offensive
and defensive philosophies is the key for standing
against threats, thus we recommend a graybox
approach combining dynamic fault injection with
an in-depth study of source code to maximize the
ROI on bug hunting.

During this assessment, we employed standard
testing methodologies (e.g. OWASP Testing guide
recommendations) as well as custom checklists
to ensure full coverage of both code and
vulnerabilities classes.

Setup Phase

Gravitational provided access to the online
testing environment, source code repository and
binaries for all components in scope.

In addition to the testing environment setup by
Gravitational, Doyensec created multiple virtual
machines to test different configurations.

Tooling

When performing assessments, we combine
manual security testing with state-of-the-art tools
in order to improve efficiency and efficacy of our
effort.

During this engagement, we used the following
tools:
• Burp Suite
• SSLScan
• Nmap
• Visual Studio Code
• Evilarc

• Openssl
• Curl, netcat and other Linux utilities
• Gosec
• Protoc
• SQLite client

Web Application and API
Techniques

Web assessments are centered around the data
sent between clients and servers. In this realm,
the principle audit tool is the Burp Suite, however
we also use a large set of custom scripts and
extensions to perform specific audit tasks. We
focus on authorization, authentication, integrity
and trust. We study how data is interpreted,
parsed, stored, and relayed between producers
and consumers.

We subvert the client with malicious data through
reflected and DOM based Cross Site Scripting and
by breaking assumptions in trust. We test the
server endpoints for injection style flaws
including, but not limited to, SQL, template, XML,
and command injection flaws. We look at each
request and response pair for potential Cross Site
Request Forgery and race conditions. We study
the application for subtle logic issues, whether
they are authorization bypasses or insecure
object references. Session storage and retrieval is
scrutinized and user separation is thoroughly
tested.

Web security is not limited to popular bug titles.
Doyensec researchers understand the goals and
needs of the application to find ways of breaking
the assumed control flow.

 of WWW.DOYENSEC.COM5 45

https://portswigger.net/burp/
https://github.com/rbsec/sslscan
https://nmap.org/
https://code.visualstudio.com/
https://github.com/ptoomey3/evilarc
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Project Findings

The table below lists the findings with their associated ID and severity. The severity ranking and
vulnerability classes are defined in Appendix A at the end of this document. The vulnerability class
column groups the entry into a common category, while the status column refers to whether the finding
has been fixed at the time of writing.

Findings Recap Table

ID Title Vulnerability Class Severity Status

1 Tsh Logout Does Not Invalidate SSH User
Keys

Authentication and
Session Management

– Missing
Informational Open

2 Password Reset Token Leakage Via Referer Information Exposure Low Closed

3 Password Reset Does Not Expire Current
Sessions

Authentication and
Session Management

– Missing
Informational Open

4 Account Takeover Through Github
Username Change

Authorization –
Incorrect Low Closed

5 Insecure Comparison Of Invite Tokens Cryptography –
Incorrect Low Closed

6 Session Recording Bypasses Insecure Design Medium Significantly
Mitigated

7 Session Recording Bypass via SCP
Command Injection Injection Flaws Medium Closed

8 Users and Roles Enumeration Information Exposure Low Closed

9 Session Events and Chunks Override Authorization –
Missing Medium Closed

10 Session Events and Chunks Insecure
Decompress Injection Flaws High Closed

11 Active SSH Sessions Not Disconnected
After Certificate Revocation Insecure Design Informational Open

12 Missing SID Validation in uploadFile Injection Flaws Low Closed

13 Unauthenticated User Creation
Authentication and

Session Management
– Incorrect

Low Closed

14 Missing Lock and Rate Limiting For
Password Check Endpoint

Authentication and
Session Management

– Incorrect
Informational Closed

 of WWW.DOYENSEC.COM6 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Findings per Severity

The table below provides a summary of the findings per severity.

Findings per Type

The table below provides a summary of the findings per vulnerability class.

 of WWW.DOYENSEC.COM7 45

Critical

High

Medium

Low

Informational 4

6

3

1

0

Authorization - Incorrect

Insecure Design

Cryptography - Incorrect

Authorization - Missing

Injection Flaws

Authentication and Session  
Management – Missing

Information Exposure 2

2

3

1

1

2

3

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

Teleport’s CLI client tsh provides login and logout mechanisms to ensure that the user is correctly
authenticated into the Teleport Auth server. While testing, we discovered that the application flow for the
user logout is not securely implemented.

When a customer uses the logout function available through the command line:

$ tsh logout

The ~/.tsh directory is removed, however all SSH certificates and keys associated with the login are not
revoked, as demonstrated by the following screenshot:

Analyzing the command line tool, we noticed that tsh does not actually perform any network requests and
it simply removes files from the local filesystem.

1. Tsh Logout Does Not Invalidate SSH User Keys
Severity Informational

Vulnerability Class Authentication and Session Management –
Missing

Component tool/tsh/tsh.go #498

Status Open

 of WWW.DOYENSEC.COM8 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

// DeleteKeys removes all session keys from disk.
func (fs *FSLocalKeyStore) DeleteKeys() error {
 dirPath := filepath.Join(fs.KeyDir, sessionKeyDir)

 err := os.RemoveAll(dirPath)
 if err != nil {
 return trace.Wrap(err)
 }

 return nil
}

Consequently an attacker could exfiltrate and re-use keys even after user logout.

At the design level, having short-lived certificates significantly reduces the exposure of this issue.
Invalidating keys and certificates would require a full revocation infrastructure which does introduce
complexity and potentially some drawbacks. For this reason, this finding is marked as “Informational”.

Reproduction Steps

Please follow these steps to reproduce this issue:

1. Login to Teleport using tsh --proxy=doyensec-audit-main.gravitational.co:3080 login
user=lorenzo

2. Backup the $HOME/.tsh directory
3. Test if the session is logged-in (eg. tsh status)
4. Logout to invalidate the session using tsh logout
5. Restore the backed-up $HOME/.tsh directory
6. tsh --proxy=doyensec-audit-main.gravitational.co:3080 —user=lorenzo ssh lorenzo@ubuntu-

vm to a server in order to verify that the keys are still valid

Impact

High. An attacker will be able to use the account previously accessed by the victim until the short-lived
SSH certificate reaches its expiration time (12 hours). In case of user compromise, the Teleport
administrator would be forced to perform a CA certificate rotation with a short grace period instead of
simply invalidating a specific user SSH certificate. As detailed in Finding #11, active SSH sessions are not
disconnected after certificate revocation.

Complexity

The attacker is required to obtain a valid SSH certificate. For this reason, we consider this issue as a
departure from best practices with a minimal security impact.

Remediation

Teleport should proactively help its users to secure their accounts by developing robust login and logout
procedures. We do however understand that implementing a full revocation infrastructure introduces

 of WWW.DOYENSEC.COM9 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

significant complexity. As mentioned, having short-lived certificates significantly reduce the exposure of
this issue hence the residual risk is almost irrelevant.

Resources

• https://www.owasp.org/index.php/Testing_for_logout_functionality_(OTG-SESS-006)
• https://cwe.mitre.org/data/definitions/613.html
• https://gravitational.com/teleport/docs/admin-guide/#certificate-rotation

 of WWW.DOYENSEC.COM10 45

https://www.owasp.org/index.php/Testing_for_logout_functionality_(OTG-SESS-006)
https://cwe.mitre.org/data/definitions/613.html
https://gravitational.com/teleport/docs/admin-guide/#certificate-rotation
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

When a web browser makes a request for a resource, it typically adds an HTTP header, called the Referer
header indicating the URL of the resource from which the request originated. This occurs in numerous
situations, for example when a web page loads an image or script, or when a user clicks on a link or
submits a form. If the resource being requested resides on a different domain, the Referer header is still
generally included in the cross-domain request.

Teleport uses a URL with a secret token to provide invite links to users who want to register an account.
Administrators can generate those links and share them so that the invitees can accept the invite.

For the user registration, Teleport uses resources hosted on the same domain of the proxy (e.g. https://
doyensec-audit-main.gravitational.co:3080), thus limiting the risk of leakage. However during our testing,
we found that support.google.com is contacted if the user clicks on the “Download Google
Authenticator” link. This causes the application to leak the user invite token.

2. Invite Token Leakage Via Referer
Severity Low

Vulnerability Class Information Exposure

Component /web/newuser/:inviteToken

Status Closed

 of WWW.DOYENSEC.COM11 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

In fact, the registration form contains the following code:

<div class="grv-google-auth text-left">
 <div class="grv-icon-google-auth"></div>
 Google Authenticator
 <div>
 <!-- react-text: 25 -->Download<!-- /react-text --><a href="https://support.google.com/accounts/
answer/1066447?hl=en"> Google Authenticator <!-- react-text: 28 -->on your phone to
access your two factor token<!-- /react-text -->
 </div>
</div>

Reproduction Steps

Please follow these steps to reproduce this issue:

1. As administrator, create a user using tctl users add joe joe,root
2. Copy the link with the token for the user registration
3. Click on that link from a new browser window
4. Click on the “Download Google Authenticator” link and verify the leakage via Referer header:

GET /accounts/answer/1066447?hl=en HTTP/1.1
Host: support.google.com
Connection: close
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/74.0.3729.169 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/
*;q=0.8,application/signed-exchange;v=b3
Referer: https://192.168.1.6:3080/web/newuser/6070a3751ea23f887a14c3d9cfd32e02
Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8,it;q=0.7

Impact

Low. The secret token for the user registration is leaked to Google Support. Personnel working for Google
and having access to access logs might be able to takeover Teleport user accounts. Since the token is
invalidated after usage, the overall risk of account takeover is limited.

Remediation

If possible, applications should never transmit any sensitive information within the URL query string. In
addition to being leaked in the Referer header, such information may be logged in various locations and
may be visible on-screen to untrusted parties.

The Referer header should always be removed when passing sensitive tokens as GET parameters using
one of the following techniques : 3

 http://blog.kotowicz.net/2011/10/stripping-referrer-for-fun-and-profit.html3

 of WWW.DOYENSEC.COM12 45

http://blog.kotowicz.net/2011/10/stripping-referrer-for-fun-and-profit.html
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

• Landing page under Teleport proxy domain;
• Originate the navigation from a pseudo-URL document, such as data: or javascript:;
• Using <iframe src=about:blank>;
• Using <meta name="referrer" content="no-referrer" />;
• Setting an appropriate “Referrer-Policy” Header . Please note that this feature has different level of 4

support depending on browsers.

Resources

• https://cwe.mitre.org/data/definitions/598.html

 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy4

 of WWW.DOYENSEC.COM13 45

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://cwe.mitre.org/data/definitions/598.html
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

After a password reset is performed by the user, not all existing sessions are logged out
automatically. Logging in with the new password does not invalidate the older sessions either. If a user
believes her password has been stolen, she'll change her password in the hope that this action will
revoke the attacker's undue access to the account. If sessions are not invalidated, an attacker could carry
on having access to the victim’s account for the maximum duration that the session allows.

While the overall security risk is limited, we believe that invalidating previous sessions could improve the
overall security posture of Teleport.

Since Teleport Enterprise supports multiple authentication connectors such as OIDC, SAML and Github
login, the platform would also need to implement this mechanism for those connectors.

Reproduction Steps

Please follow these steps to reproduce this issue using an account setup with stand-alone Teleport
authentication:

1. Login with the user A with browser #1;
2. From the user settings page (/web/settings/account), change the password;

3. Password Reset Does Not Expire Current Sessions
Severity Informational

Vulnerability Class Authentication and Session Management –
Missing

Component /v1/webapi/users/password

Status Open

 of WWW.DOYENSEC.COM14 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

3. Login with the newly acquired credentials with browser #2 (e.g. incognito window);

4. Observe that it is still possible to execute actions for user A within browser #1

Similar reproduction steps can be followed for the other connectors.

Impact

Due to this insecure design choice, an attacker will have more persistency after a session hijacking
attack. The web application should proactively help its users to secure their accounts after a malicious
takeover.

Complexity

An attacker can leverage this application behavior during a session hijacking attack, since the victim will
not be able to terminate active sessions. Only the administrator can block the compromise by deleting the
user.

Remediation

Invalidate every user session after a successful password change. While this issue can be easily
implemented for standalone authentication accounts, it would also need to be implemented for other
auth connectors.

For the OIDC connector, Auth0 is currently used to implement the authentication flow. Auth0 does support
refresh token revocation through the Management API v2. It would be therefore possible to create a web
hook that can be used by Auth0 to notify the service provider when a password reset occurs, and then

 of WWW.DOYENSEC.COM15 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

invalidate Teleport sessions and Auth0 refresh tokens. Please refer to the Auth0 Community posts for 5

more details.

Similarly, for Github and SAML connectors, it would be necessary to implement a solution alike.

Resources

• https://auth0.com/docs/tokens/refresh-token/current#revoke-a-refresh-token-using-the-
management-api

 https://community.auth0.com/t/how-do-we-invalidate-the-refresh-token-for-a-user-whenever-the-user-5

changes-their-password/6091/2

 of WWW.DOYENSEC.COM16 45

https://community.auth0.com/t/how-do-we-invalidate-the-refresh-token-for-a-user-whenever-the-user-changes-their-password/6091/2
https://community.auth0.com/t/how-do-we-invalidate-the-refresh-token-for-a-user-whenever-the-user-changes-their-password/6091/2
https://community.auth0.com/t/how-do-we-invalidate-the-refresh-token-for-a-user-whenever-the-user-changes-their-password/6091/2
http://www.doyensec.com
https://auth0.com/docs/tokens/refresh-token/current#revoke-a-refresh-token-using-the-management-api
https://auth0.com/docs/tokens/refresh-token/current#revoke-a-refresh-token-using-the-management-api

Gravitational, Inc. - Security Auditing Report

Description

Github allows its users to change username after the registration. This is prompted with several
warnings , but it is still possible for a user to change it for an unlimited amount of time: 6

Since Teleport relies on the Github’s username when the Github authenticator connector is enabled, the
system can be tricked into authorizing the login for a different user.

When a user completes the first login, Teleport creates a new local user having the same username as the
user in Github. This means that when a victim user changes her username, the attacker only needs to
assign the now vacant old username to an account she controls. Consequently, every feature and
property of the victim account (e.g. access to specific nodes) will be accessible to the attacker.

The current implementation of Teleport’s Github connector allows mapping of Teleport <—> Github users
within organization / teams only.

This is defined within the Github connector’s configuration by administrators:

mapping of org/team memberships onto allowed logins and roles

 teams_to_logins:
 - organization: octocats # Github organization name
 team: admins # Github team name within that organization

As a result, the potential abuse is limited since both victim and attacker would need to belong to the same
organization and Github’s team. In large organizations, this issue might still raise potential concerns due
to separation of duties and expected accountability.

4. Account Takeover Through Github Username Change
Severity Low

Vulnerability Class Authorization – Incorrect

Component /v1/webapi/github/callback

Status Closed

 https://help.github.com/articles/what-happens-when-i-change-my-username/6

 of WWW.DOYENSEC.COM17 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Reproduction Steps

Register two accounts on Github called e.g. dd-test1 (victim) and dd-test2 (attacker). After the dd-test1
user changes her username to e.g. dd-test1-original, the attacker may change her dd-test2 username to
dd-test1. By performing the authentication on the Teleport web application again, the attacker will control
the Teleport dd-test1 account.

The githubCallback function in lib/web/apiserver.go is simply using the Github’s username - instead of
using the username-uid mapping:

 // if we created web session, set session cookie and redirect to original url
 if response.Req.CreateWebSession {
 err = csrf.VerifyToken(response.Req.CSRFToken, r)
 if err != nil {
 logger.Warnf("Unable to verify CSRF token: %v.", err)
 return nil, trace.AccessDenied("access denied")
 }
 logger.Infof("Callback is redirecting to web browser.")
 err = SetSession(w, response.Username, response.Session.GetName())

Impact

High. An attacker may gain full control of a victim account on Teleport.

Complexity

High. The victim needs to change her username after login to Teleport at least once, and the attacker has
to claim the old victim’s username to be vulnerable. Additionally, the current implementation forces both
users to be part of the same organization and team.

Remediation

Move away from username-based authentication, and instead generate an internal Teleport user guid to
be used to identify accounts. Note that GitHub makes available through its API the internal user id (via
GET /user).

Resources

• https://developer.github.com/v3/users/
• https://gravitational.com/teleport/docs/kubernetes_ssh/#github-auth
• https://gravitational.com/teleport/docs/admin-guide/#github-oauth-20
• https://gravitational.com/teleport/docs/admin-guide/#github-oauth-20-connector

 of WWW.DOYENSEC.COM18 45

http://www.doyensec.com
https://developer.github.com/v3/users/
https://gravitational.com/teleport/docs/kubernetes_ssh/#github-auth
https://gravitational.com/teleport/docs/admin-guide/#github-oauth-20
https://gravitational.com/teleport/docs/admin-guide/#github-oauth-20-connector

Gravitational, Inc. - Security Auditing Report

Description

To receive a host certificate upon joining a cluster, a new Teleport host must present an "invite token". An
invite token also defines which role a new host can assume within a cluster: auth, proxy or node. There are
two categories of invitation tokens: static tokens without expiration, which are user-defined in the auth
server's config file and dynamic tokens, short-lived tokens that can be used multiple times until their time
to live (TTL) expire.

While reviewing the source code of the application, Doyensec discovered that the functions
ValidateToken and DeleteToken, respectively used to determine whether a provisioning token value is
valid and to delete tokens, are performing an insecure comparison. When an insecure comparison or byte-
by-byte comparison fails, it returns as soon as it encounters two bytes that do not match. Timing oracle
leaks information to an attacker, enabling byte-by-byte brute forcing of the data.

Various pieces of research , concluded that measuring nanosecond long timing differences over the 7 8

Internet in timing attack scenarios such as the one described above is nowadays feasible.

Reproduction Steps

The following two functions execute an insecure token comparison in /lib/auth/auth.go

func (s *AuthServer) DeleteToken(token string) (err error) {
 tkns, err := s.GetStaticTokens()
 if err != nil {
 return trace.Wrap(err)
 }

 // is this a static token?
 for _, st := range tkns.GetStaticTokens() {
 if st.GetName() == token {

[..]

func (s *AuthServer) ValidateToken(token string) (roles teleport.Roles, e error) {

5. Insecure Comparison Of Invite Tokens
Severity Low

Vulnerability Class Cryptography - Incorrect

Component /lib/auth/auth.go:1002 and 1145

Status Closed

 https://codahale.com/a-lesson-in-timing-attacks/7

 https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-8

wp.pdf

 of WWW.DOYENSEC.COM19 45

https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Morgan-Web-Timing-Attacks-Made-Practical-wp.pdf
https://codahale.com/a-lesson-in-timing-attacks/
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

 tkns, err := s.GetCache().GetStaticTokens()
 if err != nil {
 return nil, trace.Wrap(err)
 }

 // First check if the token is a static token. If it is, return right away.
 // Static tokens have no expiration.
 for _, st := range tkns.GetStaticTokens() {
 if st.GetName() == token {

Impact

High. Cryptographically insecure string comparisons are oracles for attackers. This issue opens a vector
to brute force the provisioning token value. Depending on the token strength and on the available roles
associated to the token, a new malicious host may assume auth, proxy or node roles in the victim cluster.

Complexity

High. This attack is very noisy and requires a lot of requests and responses to measure both latency and
response time.

Remediation

Perform a constant time comparison on the strings during invite tokens validation.

A built-in way of doing constant time string comparison in Go is by using the ConstantTimeCompare 9

function of the crypto/subtle package. ConstantTimeCompare returns 1 if the two equal length slices, 10

x and y, have equal contents. The time taken is a function of the length of the slices and is independent of
the contents. Note that it is also important to use subtle.ConstantTimeEq to compare the lengths of the
slices due to the caveat that subtle.ConstantTimeCompare needs "two equal length slices”.

for _, st := range tkns.GetStaticTokens() {
 if subtle.ConstantTimeCompare(st.GetName(), token) {
 return st.GetRoles(), nil
 }
}

You may need to convert the token strings to a byte slice in order to use ConstantTimeCompare.

 http://golang.org/pkg/crypto/subtle/#ConstantTimeCompare9

 http://golang.org/pkg/crypto/subtle/10

 of WWW.DOYENSEC.COM20 45

http://golang.org/pkg/crypto/subtle/
http://golang.org/pkg/crypto/subtle/#ConstantTimeCompare
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

One of Teleport’s features is the ability to record all of the SSH sessions, storing them and making them
available for playback in order to have further forensics capabilities into previous SSH sessions.
To do this, Teleport records the entire stream of bytes going to/from standard input and standard output
of an SSH session. The recorded sessions are then stored as raw bytes in the sessions directory
under log. Each session consists of two files, both are named after the session ID:

• .bytes file represents the raw session bytes and is used to replay sessions via tsh play or the Web
UI

• .events file contains the copies of the event log entries that are related to the session

An attacker may manipulate the standard input and output using several techniques leveraging bash built-
ins, hiding the execution of commands or manipulating their output in the log files.

Reproduction Steps

1. “stty -echo” Bypass

The stty utility is normally used to print or change terminal characteristics. An attacker may abuse the
stty -echo shell command to stop echoing the inputted characters and evade the recording. The
command is usually used in scripts when the input of a secret is required but it cannot be shown. Since
Teleport only records the standard input, in this way it is possible to completely circumvent the SSH
session audit mechanism. By way of example, in the following session log a user seems to execute some
inconspicuous commands:

6. Session Recording Bypasses
Severity Medium

Vulnerability Class Insecure Design

Component SSH Session Recording

Status Significantly Mitigated by the new “Enhanced
Session Recording” feature

 of WWW.DOYENSEC.COM21 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

When instead she just obfuscated the real commands behind a simulated input:

$ stty -echo
$ echo "ls" && ls && touch /tmp/owned
$ echo "logout" && logout

The raw log capture will also not report anything in particular either:

2. “read” Bypass

By default, the read program reads a line from stdin and assigns the read words to variables. It also
features a -s option not to echo input coming from terminal. An attacker may run:

read -s COMMAND && eval $COMMAND && unset COMMAND

to execute a bash command and keep it off-the-record.

3. ANSI escape invisible sequences Bypass

ANSI escape sequences are a standard for in-band signaling to control the cursor location, color, and
other options. Specifically, there is a sequence to make text invisible: \x1B[8m and \x1B[0m.

$ echo -e "\x1B[8m"
hidden commands
$ echo -e “\x1B[0m"

Note that both the input and output of the “hidden” commands will be not displayed, but they will be
stored.

 of WWW.DOYENSEC.COM22 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

4. Other Available Bypasses

a) Several distributions feature a popular disk encryption utility called cryptsetup , located at /lib/11

cryptsetup. In the same folder, a binary providing a read-like function is available (namely
askpass). By launching command=$(/lib/cryptsetup/askpass “”) every input character will be
replaced by an asterisk.

b) An attacker may still load a file containing a command string via SCP and use the shell meta-
character left angle-bracket ‘<’ to replace the standard input with the uploaded file content.

c) An attacker may set the tty rows and cols to 1 (e.g. by using stty rows 1 cols 1) and paste the
malicious command. Only the last letter of the command will be shown. Note that the inputted
command will not be shown in full, but it will be recorded in the raw log.

Impact

Since a complete and robust SSH session recording is a requirement for many compliance standards and
an important measure to provide accountability in case of e.g. an insider threat with login capabilities.

Complexity

Low. An attacker would only need to have access to the cluster and use built-in shell commands.

Remediation

Force verbosity over shell commands and apply the following mitigations:

1. Every keystroke sent by the client to the destination host should be recorded.
2. Force the displaying of invisible ANSI Escape sequences.
3. Disable access to the serial driver (stty) or force the default terminal I/O characteristics for the

session (e.g. set a minimum for the cols and rows size). Eventually log every attempt of changing
them.

 https://linux.die.net/man/8/cryptsetup11

 of WWW.DOYENSEC.COM23 45

https://linux.die.net/man/8/cryptsetup
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Resources

• https://gravitational.com/teleport/docs/admin-guide/#recorded-sessions
• https://github.com/gravitational/teleport/issues/1510

 of WWW.DOYENSEC.COM24 45

http://www.doyensec.com
https://gravitational.com/teleport/docs/admin-guide/#recorded-sessions
https://github.com/gravitational/teleport/issues/1510

Gravitational, Inc. - Security Auditing Report

Description

Command injection (also known as shell injection) is a web application vulnerability that allows an
attacker to execute arbitrary operating system commands on the server that is running an application,
and typically fully compromise the application and all its data. In this instance the command injection is a
blind vulnerability, meaning that the application does not return the output from the command within its
HTTP response. Blind vulnerabilities can still be exploited, but different techniques are required.

In the Teleport web interface, the SCP utility is used to provide file upload and download capabilities to its
users, interfacing with the original scp binary installed on the remote server. While reviewing its
implementation, Doyensec found that the user-provided file path variable was not sanitized in the
construction of the final scp shell command (@/lib/sshutils/scp/scp.go:220):

func (cmd *command) GetRemoteShellCmd() (string, error) {
 if cmd.RemoteLocation == "" {
 return "", trace.BadParameter("missing remote file location")
 }

 // "impersonate" scp to a server
 shellCmd := "/usr/bin/scp -t"
 if cmd.Flags.Source == true {
 shellCmd = "/usr/bin/scp -t"
 } else {
 shellCmd = "/usr/bin/scp -f"
 }

 if cmd.Flags.Recursive {
 shellCmd += " -r"
 }
 if cmd.Flags.DirectoryMode {
 shellCmd += " -d"
 }
 shellCmd += (" " + cmd.RemoteLocation)

 return shellCmd, nil
}

A user with access to the SCP web utility can already rely on SSH for getting into a server as well, but by
leveraging this vulnerability it is possible to completely evade the recording of the command or tamper

7. Session Recording Bypass via SCP Command Injection
Severity Medium

Vulnerability Class Injection Flaws

Component /lib/sshutils/scp/scp.go

Status Closed

 of WWW.DOYENSEC.COM25 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

the paths of SCP events stored in the log file - as demonstrated below. The following log entry in /var/
lib/teleport/log/events/log/events.log shows that a user downloaded the /tmp/test file, while she
was actually served the /etc/teleport.yaml file because of the command injection:

{“action":"download","addr.local":"192.168.1.4:3022","addr.remote":"127.0.0.1:51668","code":"T3004I","event":"s
cp","login":"root","namespace":"default","path":"/tmp/
test","time":"2019-06-25T08:51:21Z","uid":"570013c6-15da-49e6-82ff-4c83562841ec","user":"lorenzo"}

While investigating this finding, we realized that the Teleport developers are aware of this potential abuse
as discussed on this Github issue . 12

Reproduction Steps

You can use both the upload and the download functions to trigger the vulnerability. A number of shell
meta-characters can be used to perform the attack if used as command separators, allowing commands
to be chained together:

• Single Ampersand (&)
• AND logical operator (&&)
• Pipe (|)
• OR logical operator (||)
• Semicolon (;)
• Newline (0x0a or \n)

A simple payload for tests can be defined as “/etc/teleport.yaml && touch /tmp/test”. If the
exploitation is successful, you should find an empty test file in the server’s /tmp directory.

 https://github.com/gravitational/teleport.e/issues/8512

 of WWW.DOYENSEC.COM26 45

http://www.doyensec.com
https://github.com/gravitational/teleport.e/issues/85

Gravitational, Inc. - Security Auditing Report

Impact

Medium. An attacker may run arbitrary commands evading the session recording or tampering upload
and download paths showed in the events log file. This will undermine the integrity and reliability of the
recording.

Complexity

High. Basic understanding of bash is required to exploit this vulnerability. The attacker should
nonetheless have access to a valid account and be able to start new SSH sessions.

Remediation

If it is considered unavoidable to call out the scp binary with user-supplied input, then strong input
validation must be performed on user-supplied parameters used by the SCP web utility. Alternatively, it
is possible to use https://golang.org/pkg/os/exec/. Unlike the system library call from C and other
languages, the os/exec package intentionally does not invoke the system shell.

Some examples of effective validation include:
• Validating against a whitelist of legal characters values
• Validating path existence after sanitization

Never attempt to sanitize input by escaping shell meta-characters. This is often error-prone and easy to
bypass.

Resources

• G. Miller, “Creating a Safe Filename Sanitization Function”
http://gavinmiller.io/2016/creating-a-secure-sanitization-function/

• “Zaru, Filename sanitization for Ruby”
https://github.com/madrobby/zaru

• R. Miller, “Paths aren't strings”
https://robm.me.uk/ruby/2014/01/18/pathname.html#inquiry

 of WWW.DOYENSEC.COM27 45

http://www.doyensec.com
https://golang.org/pkg/os/exec/
http://gavinmiller.io/2016/creating-a-secure-sanitization-function/
https://github.com/madrobby/zaru
https://robm.me.uk/ruby/2014/01/18/pathname.html#inquiry

Gravitational, Inc. - Security Auditing Report

Description

During code review, we noticed that multiple codepaths leak information around roles and users
registered in the system.

Error messages such as the following can be leveraged in order to brute-force valid roles from an
unauthenticated endpoint exposed by the Teleport proxy:

{"message":"role Missing is not registered”}

We also identified an internal endpoint (hence reachable from nodes only) that can be used to leak
existing usernames by attempting a delete on a role:

{"message":"role admin is used by user lorenzo”}

While this is clearly a minor departure from best practices, it can facilitate attacks where the malicious
actor requires a valid role and / or username.

Reproduction Steps

Reproduction steps are rather different for each vulnerable codebase:

• lib/auth/auth.go #1287
• lib/auth/auth.go #1300
• lib/services/local/access.go #112
• teleport/roles.go #165

For external endpoints, the issue can be reproduced with a simple HTTP request:

POST /v1/tokens/register HTTP/1.1
Host: auth-server:3025
Content-Type: application/x-www-form-urlencoded
Content-Length: 76

{"token":"aa","ttl":1110, "HostID": "a", "Role":"Missing"}

8. Users and Roles Enumeration
Severity Low

Vulnerability Class Information Exposure

Component

lib/auth/auth.go #1287
lib/auth/auth.go #1300

lib/services/local/access.go #112
teleport/roles.go #165

Status Closed

 of WWW.DOYENSEC.COM28 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

HTTP/1.1 400 Bad Request
Content-Type: application/json

{"message":"role Missing is not registered”}

An attacker can infer existing roles by sending multiple requests using a wordlist.

Similarly, an attacker with access to a node can send requests to the Teleport auth service and attempt a
role deletion to trigger the disclosure of all registered users associated with that role.

DELETE /v1/roles/admin HTTP/1.1
Host: auth-server:3025
Content-Type: application/x-www-form-urlencoded
Content-Length: 0

HTTP/1.1 400 Bad Request
Content-Type: application/json

{"message":"role admin is used by user lorenzo”}

This issue can be traced back to the following code:

/lib/auth/auth.go - 1287

 for _, u := range users {
 for _, r := range u.GetRoles() {
 if r == name {
 return trace.BadParameter("role %v is used by user %v", name, u.GetName())

Impact

Low. An unauthenticated user can identify valid roles via brute-forcing. Additionally, an attacker with
access to a node (or having obtained a valid node certificate and being positioned within the cluster) can
disclose all registered users.

Complexity

Triggering the information disclosure on external endpoints is easy and does not require authentication.
The attack illustrated against the internal Teleport auth endpoint requires full access to a node.

Remediation

Teleport should avoid disclosing detailed information in error messages that can facilitate further
attacks. As a remediation for this particular issue, we would simply suggest to modify the affected
exceptions to include generic messages only. External endpoints should ideally use HTTP return codes
only, so that the attacker will not be able to infer the specific reason behind a request failure.

 of WWW.DOYENSEC.COM29 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

In a Teleport cluster, there are three types of services: node, proxy and auth.

When a teleport binary is executed as “node”, the software provides the SSH access to a node. Typically
every machine in a cluster runs this role. Instead, Teleport “auth” provides authentication and
authorization service to proxies and nodes. It is the certificate authority (CA) of a cluster and the storage
for audit logs and session recording, unless differently configured.

In particular, session recording is a unique feature of Teleport which allows complete session logging 13

and recording, including metadata and user identities, across entire clusters.

In order to collect session details (namely events and chunks), nodes are transmitting events and
recorded stdin/stdout to the auth component of a cluster. During testing, we discovered that the Teleport
auth component does neither verify the integrity of such recording nor it validates the sender.

Any node with a valid TLS certificate within the cluster can upload arbitrary sessions, which leads to two
potential risks:

• A node can submit forged sessions for other nodes
• A node can overwrite previously uploaded sessions

Both attacks affect the integrity of the recording and completely subvert the separation between the
privileged session and its recording.

Reproduction Steps

This issue can be reproduced with an HTTP request from an arbitrary node of the cluster:

1. From the node’s sqlite.db, extract the tls_cert (node-x509.pem) and key (node)
2. Generate a PKCS#12 archive .pfx with the following command:
openssl pkcs12 -inkey node -in node-x509.pem -export -out node.pfx
3. Use the previously generated .pfx file to issue authenticated requests to the auth service (3025/tcp).

This can be done with any user-agent supporting client-side certificates. In our testing, Burp Proxy
and curl were used.

9. Session Events and Chunks Override
Severity Medium

Vulnerability Class Authorization – Missing

Component lib/auth/apiserver.go: 1924

Status Closed

 https://gravitational.com/teleport/features/record-ssh-sessions/13

 of WWW.DOYENSEC.COM30 45

http://www.doyensec.com
https://gravitational.com/teleport/features/record-ssh-sessions/

Gravitational, Inc. - Security Auditing Report

4. Issue the following HTTP request:

POST /v1/namespaces/default/sessions/ea925e96-9cce-11e9-8332-acde48001121/recording HTTP/1.1
Host: lorenzo-box:3025
Content-Type: multipart/form-data; boundary=--------633691722
Content-Length: 10548

----------633691722
Content-Disposition: form-data; filename="recording"; name="recording";

tar file pasted from file
----------633691722
Content-Disposition: form-data; name="namespace"

default
----------633691722
Content-Disposition: form-data; name="sid"

ea925e96-9cce-11e9-8332-acde48001121
—————633691722--

Where:

• namespace is the cluster’s namespace

• sid is the specific sessionid. This value can be retrieved by an attacker:
• the /:version/namespaces/:namespace/sessions endpoint can be leveraged to return a list

of active sessions.
• Session ids are generated using UUIDv1 hence they’re timestamp-based (plus machine mac

address and a random 4 bytes clock). Both timestamp and mac address of the client can be
derived by an attacker sniffing the encrypted network traffic, hence brute-forcing is practically
feasible

• For overriding previously uploaded sessions, the attacker can simply observe the sid from the
recording phase on the node

• recording is a tar file containing the content of the session chunks

By replaying a session on the auth server, it is possible to verify the successful upload and override.
Alternatively, it is possible to observe the uploaded files within /var/lib/teleport/log/.

Impact

Medium. An attacker with access to a node (or having obtained a valid node certificate and being
positioned within the cluster) can override previously recorded sessions or forge arbitrary sessions.

Complexity

High. The attacker requires full access to a node as root in order to obtain certificate and other files.

 of WWW.DOYENSEC.COM31 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Remediation

The Teleport auth should prevent the attacks illustrated in this finding by:

• Disabling sessions override. If a session with a specific sid has been recorded and stored, it should
not be possible to override those files

• Introduce recording integrity checks and potentially authentication via crypto primitives
• Comparing a node attribute within the submitted recording/events with the sender of those events.

Since mutual TLS is enforced, the software can ensure that a node is submitting events for itself.

 of WWW.DOYENSEC.COM32 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

As illustrated in Finding #9, Teleport session recording is designed so that nodes are submitting session
records to the audit server for storage and reply. Uploaded sessions are processed by the following code:

func (l *AuditLog) UploadSessionRecording(r SessionRecording) error {
 if err := r.CheckAndSetDefaults(); err != nil {
 return trace.Wrap(err)
 }
 if l.UploadHandler == nil {
 // unpack the tarball locally to sessions directory
 err := utils.Extract(r.Recording, filepath.Join(l.DataDir, l.ServerID, SessionLogsDir, r.Namespace))
 return trace.Wrap(err)
 }

Doyensec discovered that the tar extract function is vulnerable to standard path traversal and symlink
attacks within .tar archives. These vulnerabilities can be leveraged by an attacker to obtain:

(A) Arbitrary File Read as “root”
(B) Arbitrary File Write as “root”

During the engagement, we have verified that both path traversal and symlink attacks work against the
platform.

Reproduction Steps

In order to reproduce the (A) Arbitrary File Read vulnerability present in Teleport follow these steps:

1. On a cluster node, go to /var/lib/teleport/log/upload/sessions/default

2. Execute the following bash code:
 $ while(true); do rm *.completed; done

3. From Teleport web interface, start a new session. All steps executed so far are simply used to
generate valid session files (events, chunks, index) and blocking the automatic upload

/var/lib/teleport/log/upload/sessions/default

├── c5d9a5eb-9f5e-11e9-8fe0-000c29492140-0.chunks.gz

10. Session Events and Chunks Insecure Decompress
Severity High

Vulnerability Class Injection Flaws

Component lib/events/auditlog.go: 336

Status Closed

 of WWW.DOYENSEC.COM33 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

├── c5d9a5eb-9f5e-11e9-8fe0-000c29492140-0.events.gz

└── c5d9a5eb-9f5e-11e9-8fe0-000c29492140.index

4. Create a symlink to /etc/passwd
$ ln -s /etc/passwd c5d9a5eb-9f5e-11e9-8fe0-000c29492140-0.chunks

5. Compress and override c5d9a5eb-9f5e-11e9-8fe0-000c29492140-0.chunks.gz. Please note the -f flag
to preserve symlinks.

$ gzip -f c5d9a5eb-9f5e-11e9-8fe0-000c29492140-0.chunks

6. Trigger the upload creating a “.completed” file
$ touch c5d9a5eb-9f5e-11e9-8fe0-000c29492140.completed

7. After a few seconds, the session recording with the modified chunks will be uploaded from the node
to the auth server. From Teleport web interface, replay the tampered session.

8. Verify the successful arbitrary file read as shown below

In order to reproduce the (B) Arbitrary File Write vulnerability present in Teleport follow these steps:

1. Generate a tar containing a path traversal file name (eg. ../../../../../../../../evil.txt).
In order to craft it quickly, it is possible to use off-the-shelf tools such as evilarc . Execute the 14

following command to append a file to the aforementioned tar:
$ python evilarc.py -f evil.tar -o unix evil.txt

2. Upload the tar file using the request to POST /v1/namespaces/:namespace/sessions/:session/
recording illustrated in Finding #9

3. Verify the presence of the evil.txt file within the root of the filesystem

A similar attack can be mounted using symlinks. Instead of inserting a path traversal resource within the
tar, it is possible to use the following steps to upload arbitrary symlinks within a valid session upload:

1. On the attacker’s box, ln -s / root to create a symlink to root
2. On the attacker’s box, touch /evil.txt
3. On the attacker’s box, tar cvf poc_step1.tar ./5fdda5a3-9d97-11e9-b9f5-000c29492140* root to

create a valid tar archive containing events/chunks/index and the malicious symlink
4. Upload the first poc_step1.tar file. The server will decompress the symlink to root within the upload

directory

 https://github.com/ptoomey3/evilarc14

 of WWW.DOYENSEC.COM34 45

http://www.doyensec.com
https://github.com/ptoomey3/evilarc

Gravitational, Inc. - Security Auditing Report

5. On the attacker’s box, tar cvf poc_step2.tar ./5fdda5a3-9d97-11e9-b9f5-000c29492140* root/
evil.txt to create a valid tar archive containing events/chunks/index and another malicious symlink

6. Upload the second poc_step2.tar file. The server will decompress the file which leverages the
previously saved symlink to root, hence the file will be written in /

7. Verify the presence of the evil.txt file within the root of the filesystem

Impact

High. An attacker with access to a node (e.g. after having compromised a web application hosted on a
Teleport-powered node) can takeover the entire Teleport cluster. As mentioned, the decompress operation
is performed as root on the Teleport auth server.

Complexity

All attacks illustrated in this finding against the internal Teleport auth endpoint require full access to a
node. From the technical standpoint, these vulnerabilities are relatively easy to discover but exploitation
does require a good understanding of the overall Teleport infrastructure design.

Remediation

Teleport must protect decompress operations against both path traversal and symlink attacks.

Path traversal can be mitigated by ensuring that the output path of the iterator pointer is included within
the decompress destination path:

E.g.
 func sanitizeExtractPath(filePath string, destination string) error {
 destpath := filepath.Join(destination, filePath)
 if !strings.HasPrefix(destpath, filepath.Clean(destination) + string(os.PathSeparator)) {
 return fmt.Errorf("%s: illegal file path", filePath)
 }
 return nil
 }

As demonstrated, these kind of vulnerabilities can be further exploited through tar symlinks too. It is
extremely important to either sanitize or disable symlinks too.

Resources

• https://cwe.mitre.org/data/definitions/22.html
• https://labs.neohapsis.com/2009/04/21/directory-traversal-in-archives/
• https://blog.doyensec.com/2019/04/24/rubyzip-bug.html

 of WWW.DOYENSEC.COM35 45

https://cwe.mitre.org/data/definitions/22.html
https://labs.neohapsis.com/2009/04/21/directory-traversal-in-archives/
https://blog.doyensec.com/2019/04/24/rubyzip-bug.html
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

Teleport supports certificate rotation to invalidate all previously issued certificates regardless of their
TTL. Certificate rotation is triggered by the tctl auth rotate command. When this command is invoked by
a Teleport administrator on one of cluster's auth servers, the following happens:

1. A new certificate authority (CA) key is generated
2. The old CA will be considered valid alongside the new CA for some period of time. This period of time

is called a grace period
3. During the grace period, all previously issued certificates will be considered valid assuming they have

not expired
4. After the grace period is over, the certificates issued by the old CA are no longer accepted

This process is repeated twice, for both the host CA and the user CA.

During our design and implementation review, we noticed that active SSH sessions are not disconnected
after the completion of the certificate revocation. While this is a minor departure from best practices,
Doyensec would recommend to terminate all SSH connections (either established via tsh or web
terminal) since certification rotation is generally considered as a safety mechanism in case of
compromise.

Interestingly, Teleport does seem to include specific configuration for this functionality. However, the
setting below is never used:

// DisconnectExpiredCert provides disconnect expired certificate setting -
 // if true, connections with expired client certificates will get disconnected
 DisconnectExpiredCert services.Bool `yaml:"disconnect_expired_cert"`

Reproduction Steps

This issue can be easily reproduced by login into the Teleport proxy web console and initiate a terminal
session. For instance, it’s possible to use the following code to prevent inactivity timeouts:

while(true); do id; sleep 10; done

Then, on a cluster's auth server trigger a rotation process for both hosts and users with a grace period of 1
second. This can be done with the command: tctl auth rotate --grace-period=1s

11. Active SSH Sessions Not Disconnected After Certificate Revocation
Severity Informational

Vulnerability Class Insecure Design

Component Certificate Revocation Mechanism

Status Open

 of WWW.DOYENSEC.COM36 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

After the grace period (1 second) expires, the system will complete the certificate rotation process:

./tctl status
Cluster ikki-virtual-machine
User CA rotated Jul 6 18:18:03 UTC
Host CA rotated Jul 6 18:18:03 UTC
CA pin sha256:1d05b14d472d17ba4ca34b74138e1db235be76f924f310a1247af80d4e5efb33

At this stage, users won’t be able to login or initiate new sessions:

However, it is possible to verify that the previously initiate session is still active and can still be used.

Impact

Low. An attacker with a foothold on the cluster may be able to continue a session despite the
administrators triggering a certificate revocation. Please note that by default, all user certificates have an
expiration date, also known as time to live (TTL).

Complexity

n/a

Remediation

While this is a departure from best practices with minimal impact to the overall Teleport security posture,
Doyensec would recommend Gravitational to implement termination of SSH sessions after certificate
revocation.

 of WWW.DOYENSEC.COM37 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

In a previous iteration of the security assessment, Cure53 discovered an issue (TLP-01-006) that made 15

it possible to create arbitrary files on the Teleport’s auth component from an authenticated user in the
proxy’s web interface. The root cause of this issue was linked to the fact that the sid parameter was not
validated. As a result of that, Teleport maintainers implemented strict validation for session identifiers
(sid) to ensure that user-supplied variables are in fact UUIDv1 identifiers . 16

During our testing, we reviewed previously issued patches for security vulnerabilities and started
investigating codepaths that accept user-supplied session identifiers. In the process, we discovered that
the function uploadFile(lockFilePath string, sessionID session.ID) does not validate the session.ID
argument. This value is later on used to generate a filename during the upload of a session recording
(see writeSessionArchive()).

In practice, this issue cannot be exploited since the value of the session identifier is taken from user-
supplied files that are actually hosted within the node from which the user is recording the session. As a
result, path traversal and other standard techniques cannot be leveraged in this context. Nevertheless,
this issue can be abused by an attacker with access to a node in order to create arbitrary files within the
Teleport auth server log directory (/var/lib/teleport/log/<host id>/).

Reproduction Steps

This issue can be easily reproduced with a single command:

1. On a Teleport cluster node, login as root and navigate to /var/lib/teleport/log/upload/sessions/
default

2. Execute the following command:

touch doyensec.completed && touch doyensec.gz && touch doyensec.events.gz && touch
doyensec.index

3. Step 2 triggers a session upload. After a few seconds, verify that the file doyensec.index was created
within the Teleport auth server log directory. The resulting filename is expected to be a UUID, but this
example demonstrates that it is actually possible to use an arbitrary filename.

12. Missing SID Validation in uploadFile
Severity Low

Vulnerability Class Injection Flaws

Component lib/events/uploader.go: 221

Status Closed

 https://cure53.de/pentest-report_teleport.pdf15

 https://github.com/gravitational/teleport/commit/568e9f9139ea26a4afde3cdcf70fdde56d375c1716

 of WWW.DOYENSEC.COM38 45

https://github.com/gravitational/teleport/commit/568e9f9139ea26a4afde3cdcf70fdde56d375c17
http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Impact

Low. An attacker with access to a node can force the upload of an arbitrary file to the auth server. Since
the destination on the remote location cannot be changed and no critical files exist within the directory,
this issue can be leveraged to override logs and session recordings only.

Complexity

High. The attacker requires full access to a node as root in order to trigger the bug.

Remediation

As in other places of the codebase, the ParseID() function should be used to validate the sid in
uploadFile().

func ParseID(id string) (*ID, error) {
 val := uuid.Parse(id)
 if val == nil {
 return nil, trace.BadParameter("'%v' is not a valid Time UUID v1", id)
 }
 if ver, ok := val.Version(); !ok || ver != 1 {
 return nil, trace.BadParameter("'%v' is not a be a valid Time UUID v1", id)
 }
 uid := ID(id)
 return &uid, nil
}

 of WWW.DOYENSEC.COM39 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

In Teleport, a user identity exists in the scope of a cluster and is usually created by the Teleport
administrator through the tctl command line utility. While testing the ACL rules of the internal API
available on the authentication server (tcp/3025), used by tsh clients to communicate with the teleport
binary, the Doyensec team came across several endpoints using the currentUserAction helper:

func (a *AuthWithRoles) currentUserAction(username string) error {
 if username == a.user.GetName() {
 return nil
 }
 return a.checker.CheckAccessToRule(&services.Context{User: a.user},
 defaults.Namespace, services.KindUser, services.VerbCreate, false)
}

This special checker allows certain actions on the currently logged in user, which would otherwise require
admin privileges. It essentially compares the client-provided username string with the value returned by
the GetName function, which is designed to return the name of the logged-in user.

For testing purposes, the function always returns the string “Nop” if a user is not logged in. This design
can therefore be leveraged to abuse every endpoint using the currentUserAction helper, passing “Nop” as
the target user.

In order to register the Nop user, an attacker may use the UpsertPassword endpoint. This endpoint sets a
new password hash for the currently logged in user using the UpsertPasswordHash function, which also
creates the user if it does not exists:

func (s *IdentityService) UpsertPasswordHash(username string, hash []byte) error {
 userPrototype, err := services.NewUser(username)
 if err != nil {
 return trace.Wrap(err)
 }
…

The Nop user now has valid credentials and will also be listed on the admin console:

13. Unauthenticated User Creation
Severity Low

Vulnerability Class Authentication and Session Management –
Incorrect

Component /lib/auth/auth_with_roles.go

Status Closed

 of WWW.DOYENSEC.COM40 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Reproduction Steps

While unauthenticated, perform the following request against Teleport auth server:

POST /v1/users/Nop/web/password HTTP/1.1
Host: authentication-server:3025

{“password":"testtest"}

The server will respond with a 200 OK status code, reporting the success of the request:

{“message":"password for for user \"Nop\" upserted"}

Impact

Low. Since the Nop user is not associated with any role and cannot obtain a valid TLS, SSH, or Web
session due to an if statement in the CheckLoginDuration function located at /lib/services/role.go: 17

if len(logins) == 0 {
 return nil, trace.AccessDenied("this user cannot create SSH sessions, has no allowed logins")
}

This check is currently the only mitigation against the exploitation of this issue, which would be otherwise
an authorization bypass issue. Nevertheless, it is possible that a customer may want to assign a default
role to every newly created user. Since Teleport comes with a very permissive Apache 2.0 license to
facilitate adoption and use, minor modifications to the code may finalize this vulnerability.

Complexity

Low. An attacker would only need to issue an unauthenticated request to the authentication server.
Network access to the cluster is required since the vulnerable endpoint is not exposed by the Teleport
proxy.

Remediation

The currentUserAction function should not accept “Nop” as a valid user. Ideally, unauthenticated
sessions should return a non string value.

 On lines 1518-152017

 of WWW.DOYENSEC.COM41 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Description

Multiple studies , have shown the significant increase of success rate during password-guessing when 18 19

auxiliary information on the targeted accounts, such as users’ personal information and previously used
passwords are leveraged during the brute-force attempt. Authentication rate-limiting mechanisms, such
as account lockout and login throttling, are common methods to defeat online password cracking
attempts.

Teleport already implements a rate limiting strategy for failed login attempts, but it does not enforce
limits on the critical checkPassword endpoint when a user already has a valid session:

func (s *APIServer) checkPassword(auth ClientI, w http.ResponseWriter, r *http.Request, p
httprouter.Params, version string) (interface{}, error) {
 var req checkPasswordReq
 if err := httplib.ReadJSON(r, &req); err != nil {
 return nil, trace.Wrap(err)
 }
 user := p.ByName("user")
 if err := auth.CheckPassword(user, []byte(req.Password), req.OTPToken); err != nil {
 return nil, trace.Wrap(err)
 }
 return message(fmt.Sprintf("%q user password matches", user)), nil
}

An attacker with access to a stolen valid session can increase its persistency by brute forcing or guessing
the user password without limits or locking risks.

Reproduction Steps

While authenticated, perform the following request:

POST /v1/users/lorenzo/web/password/check HTTP/1.1
Host: authentication-server:3025

14. Missing Lock and Rate Limiting For Password Check Endpoint
Severity Informational

Vulnerability Class Authentication and Session Management –
Incorrect

Component /lib/auth/passwords.go:88

Status Closed

 Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. 2016. Targeted Online Password 18

Guessing: An Underestimated Threat. In ACM SIGSAC Conference on Computer and Communications
Security. ACM

 Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng Wang. 2014. The Tangled 19

Web of Password Reuse. In The Network and Distributed System Security Symposium. Internet Society

 of WWW.DOYENSEC.COM42 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Content-Length: 46

{"password":"testtest"}

The server will respond with a 400 Bad Request status code if the password is incorrect, while it will
respond with a 200 OK if the provided password is correct.

Impact

Low, since an attacker would need a valid session in order to perform the attack.

Complexity

High. An attacker would need a valid user session (e.g. obtained after a successful session hijacking
attack) to issue a batch of requests and brute force the current user password. The attacker would also
need access to the victim’s current OTP token or the server should not enforce second factor
authentication (2FA) for the local connector.

Remediation

Teleport should implement different rate limiting strategies for different scenarios, setting a limit for
requests performed to the password check endpoint too.

 of WWW.DOYENSEC.COM43 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Appendix A - Vulnerability Classification

Vulnerability Severity

Critical

High

Medium

Low

Informational

Vulnerability Type

Authentication and Session Management – Incorrect

Authentication and Session Management – Missing

Authorization – Incorrect

Authorization – Missing

Components with known vulnerabilities

Covert Channel (Timing Attacks, etc.)

Cross Site Request Forgery (CSRF)

Cross Site Scripting (XSS)

Server-Side Request Forgery (SSRF)

Unrestricted File Uploads

Unvalidated Redirects and Forwards

Cryptography – Incorrect

Cryptography – Missing

Denial of Service (DoS)

Information Exposure

Injection Flaws (SQL, XML, Command, Path, etc)

Insecure Design

Insecure Direct Object References

Memory Corruption (Buffer and Integer Overflows, Format String, etc)

Race Conditions

Security Misconfiguration

User Privacy

 of WWW.DOYENSEC.COM44 45

http://www.doyensec.com

Gravitational, Inc. - Security Auditing Report

Appendix B - Remediation Checklist

The table below can be used to keep track of your remediation efforts inside this report. Mark the boxes
when a fix has been implemented for the vulnerability.

☑ The Referer header should always be removed when passing sensitive tokens as GET parameters

☐ Invalidate every user session after a successful password change

☑ For the Github Auth connector, move away from username-based authentication, and instead
generate an internal Teleport user guid to be used to identify accounts

☑ Perform a constant time comparison on the strings during invite tokens validation

☑
Force verbosity over shell commands and apply the following mitigations:
• Every keystroke sent by the client to the destination host should be recorded
• Force the displaying of invisible ANSI Escape sequences
• Disable access to the serial driver (stty) or force the default terminal I/O characteristics for

the session (e.g. set a minimum for the cols and rows size)

☑ If it is considered unavoidable to call out the scp binary with user-supplied input, then strong
input validation must be performed on user-supplied parameters used by the SCP web utility

☑ Use generic error messages when role/user exceptions occur

☑ Disable sessions override, introduce recording integrity checks and potentially authentication via
crypto primitives. Compare the session recording sender with the source of the recording events

☑ Validate tar archives to protect decompress operations against both path traversal and symlink
attacks

☐ Implement termination of SSH sessions after certificate revocation

☑ ParseID() function should be used to validate the sid in all requests

☑ The currentUserAction function should not accept “Nop” as a valid user

☑ Implement different rate limiting strategies for different scenarios, setting a limit for requests
performed to the password check endpoint too

 of WWW.DOYENSEC.COM45 45

http://www.doyensec.com

	Table of Contents
	Revision History
	Contacts
	Executive Summary
	Methodology
	Project Findings
	Appendix A - Vulnerability Classification
	Appendix B - Remediation Checklist

