

Customer: Kalmar

Date: April 3rd, 2021

SMART CONTRACT
CODE REVIEW AND
SECURITY ANALYSIS
REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Kalmar.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Sale

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository HTTPS://GITHUB.COM/KALMAR-IO/LEVERAGE-YIELD-CONTRACTS

Commit AD08AEF5A2281639A3226F31D4D8D5AABA73967E

Timeline 23 MAR 2021 – 3 APR 2021

Changelog 3 APR 2021 – INITIAL AUDIT

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary ... 5

Severity Definitions ... 7

AS-IS overview .. 8

Conclusion .. 18

Disclaimers .. 19

Introduction

Hacken OÜ (Consultant) was contracted by Kalmar (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its code
review conducted between March 23rd, 2021 – April 3rd, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/kalmar-io/leverage-yield-contracts

Files:
Bank.sol
BankConfig.sol
ConfigurableInterestBankConfig.sol
Goblin.sol
GoblinConfig.sol
MasterChefGoblin.sol
MasterChefGoblinConfig.sol
MasterChefPoolRewardPairGoblin.sol
SafeToken.sol
SimpleBankConfig.sol
SimplePriceOracle.sol
StrategyAllETHOnly.sol
StrategyAddTwoSidesOptimal.sol
StrategyLiquidate.sol
StrategyWithdrawMinimizeTrading .sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secure.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 2 medium, 2 low and 1 informational issue during the

audit.

Notice: the code is provided without tests and build configs. This complicates

review process.

Insecure Poor secured Secured Well-secured

You are

here

Graph 1. The distribution of vulnerabilities after the first review.

Medium
40%

Low
40%

Informational
20%

Medium Low Informational

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Informational /
Code Style /
Best Practice

Informational vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

Bank.sol

Description

Bank is the ERC-20 token that also acts as coin storage and main gateway to
goblins.

Imports

Bank has following imports:

• import "openzeppelin-solidity-2.3.0/contracts/ownership/Ownable.sol"

• import "openzeppelin-solidity-2.3.0/contracts/token/ERC20/ERC20.sol"

• import "openzeppelin-solidity-2.3.0/contracts/math/SafeMath.sol"

• import "openzeppelin-solidity-2.3.0/contracts/math/Math.sol"

• import "openzeppelin-solidity-
2.3.0/contracts/utils/ReentrancyGuard.sol"

• import "./BankConfig.sol"

• import "./Goblin.sol"

• import "./SafeToken.sol"

Inheritance

Bank is ERC20, ReentrancyGuard, Ownable.

Usages

Bank contract has following usages:

• SafeMath for uint256.

• SafeToken for address.

Structs

Bank contract has following data structures:

• Position

Enums

Bank contract has no custom enums.

Events

Bank contract has following events:

• event AddDebt(uint256 indexed id, uint256 debtShare)

• event RemoveDebt(uint256 indexed id, uint256 debtShare)

• event Work(uint256 indexed id, uint256 loan)

• event Kill(uint256 indexed id, address indexed killer, uint256 prize,
uint256 left)

Modifiers

Bank has following modifiers:

• onlyEOA – require that the caller must be an EOA account to avoid flash
loans.

• Accrue – add more debt to the global debt pool.

Fields

Bank contract has following fields and constants:

• string public name = "Interest Bearing BNB"

• string public symbol = "iBNB"

• uint8 public decimals = 18

• BankConfig public config

• mapping (uint256 => Position) public positions

• uint256 public nextPositionID = 1

• uint256 public glbDebtShare

• uint256 public glbDebtVal

• uint256 public lastAccrueTime

• uint256 public reservePool

Functions

Bank has following public and external functions:

• constructor
Description
Initializes the contract.
Input parameters

o BankConfig _config
Constraints
None
Events emit

None
Output

 None

• pendingInterest, debtShareToVal, debtValToShare, positionInfo,
totalETH
Description
View functions

• deposit
Description
Deposits ETH. Mints tokens instead.
Input parameters
None
Constraints
None
Events emit
None
Output

 None

• withdraw
Description
Withdraws ETH. Burns tokens instead.
Input parameters

o uint256 share
Constraints
None
Events emit
None
Output

 None

• work
Description
Create a new farming position.
Input parameters

o uint256 id
o address goblin
o uint256 loan
o uint256 maxReturn
o bytes calldata data

Constraints
o onlyEOA modifier.

o id should be valid.
o goblin address should be authorized goblin.
o loan should be 0 or debt should be allowed by config.

Events emit
Emits Work event
Output

 None

• kill
Description
Kill a position if requirements are met.
Input parameters

o uint256 id
Constraints

o debtShare should be more than 0.
o Kill factor conditions should be met.

Events emit
Emits Killevent
Output

 None

• updateConfig, withdrawReserve, reduceReserve, recover
Description
Protected owner functions.

ConfigurableInterestBankConfig.sol, MasterChefGoblinConfig.sol,
SimpleBankConfig.sol

Description

ConfigurableInterestBankConfig, MasterChefGoblinConfig and
SimpleBankConfig are contracts for storing parameters. All setter functions are
protected and available only for owner.

MasterChefGoblin.sol, MasterChefPoolRewardPairGoblin.sol

Description

“Goblins” that works with masterchef.

Imports

Contracts has following imports:

• import "openzeppelin-solidity-2.3.0/contracts/ownership/Ownable.sol"

• import "openzeppelin-solidity-2.3.0/contracts/math/SafeMath.sol"

• import "openzeppelin-solidity-
2.3.0/contracts/utils/ReentrancyGuard.sol"

• import "openzeppelin-solidity-2.3.0/contracts/token/ERC20/IERC20.sol"

• import "@uniswap/v2-
core/contracts/interfaces/IUniswapV2Factory.sol"

• import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol"

• import "@uniswap/v2-core/contracts/libraries/Math.sol"

• import "./uniswap/IUniswapV2Router02.sol"

• import "./Strategy.sol"

• import "./SafeToken.sol"

• import "./Goblin.sol"

• import "./interfaces/IMasterChef.sol"

Inheritance

Contracts are Ownable, ReentrancyGuard, Goblin.

Usages

Contracts has following usages:

• SafeMath for uint256.

• SafeToken for address.

Structs

Contracts has following data structures:

• Position

Enums

Contracts has no custom enums.

Events

Contracts has following events:

• event Reinvest(address indexed caller, uint256 reward, uint256 bounty)

• event AddShare(uint256 indexed id, uint256 share)

• event RemoveShare(uint256 indexed id, uint256 share)

• event Liquidate(uint256 indexed id, uint256 wad)

Modifiers

Contracts has following modifiers:

• onlyEOA

• onlyOperator

Fields

MasterChefGoblin contract has following fields and constants:

• IMasterChef public masterChef

• IUniswapV2Factory public factory

• IUniswapV2Router02 public router

• IUniswapV2Pair public lpToken

• address public weth

• address public fToken

• address public rewardToken

• address public operator

• uint256 public pid

• mapping(uint256 => uint256) public shares

• mapping(address => bool) public okStrats

• uint256 public totalShare

• Strategy public addStra

• Strategy public liqStrat

• uint256 public reinvestBountyBps

MasterChefPoolRewardPairGoblin contract has following fields and constants:

• IMasterChef public masterChef

• IUniswapV2Factory public factory

• IUniswapV2Router02 public router

• IUniswapV2Pair public lpToken

• address public weth

• address public rewardToken

• address public operator

• uint256 public constant pid = 12

• mapping(uint256 => uint256) public shares

• mapping(address => bool) public okStrats

• uint256 public totalShare

• Strategy public addStrat

• Strategy public liqStrat

• uint256 public reinvestBountyBps

Functions

MasterChefGoblin has following public and external functions:

• constructor
Description
Initializes the contract.
Input parameters

o address _operator
o IMasterChef _masterChef
o IUniswapV2Router02 _router
o uint256 _pid
o Strategy _addStrat
o Strategy _liqStrat
o uint256 _reinvestBountyBps

Constraints
None
Events emit
None
Output

 None

• shareToBalance, balanceToShare, getMktSellAmount, health
Description
View and pure functions.

• reinvest
Description
Re-invest whatever this worker has earned back to staked LP tokens.
Input parameters
None
Constraints
None
Events emit
Emits Reinvest event.
Output

 None

• work
Description
Work on the given position
Input parameters

o uint256 id
o address user
o uint256 debt
o bytes calldata data

Constraints
o onlyOperator modifier.
o Strategy should be approved.

Events emit
None
Output

 None

• liquidate
Description
Liquidate the given position by converting it to ETH and return back to

caller.
Input parameters

o uint256 id
Constraints

o onlyOperator modifier.
Events emit
Emits Liquidate event.
Output

 None

• recover, setReinvestBountyBps, setStrategyOk, setCriticalStrategies
Description
Protected owner functions.

SimplePriceOracle.sol

Description

SimplePriceOracle is contract for storing token prices. Setter is protected for
owner only.

StrategyAllETHOnly.sol, StrategyAllETHOnly.sol,
StrategyLiquidate.sol, StrategyWithdrawMinimizeTrading.sol

Description

Strategy contracts that are used by golblins.

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. The code is not tested.

Contract: All

Recommendation: implement unit test for all contracts.

2. Build tools and configs are not provided. Contracts may not be compiled
in a current state.

Contract: All

Recommendation: configure build tools.

 Low

1. safeApprove(address, uint256(-1)) function may fail for some specific
implementation of underlying token. For example, COMP token volatiles

the ERC-20 standard and reverts in if max uint256 is passed.

Contracts: StrategyWithdrawMinimizeTrading.sol, StrategyLiquidate.sol,
StrategyAllETHOnly.sol,

Functions: execute

Recommendation: ensure that lp pairs with such tokens are not added to
the system.

2. Custom uniswap routers should not be used.

Contracts: UniswapV2Router02.sol

Recommendation: ensure that the UniswapV2Router02 version that is in
the repository is used only for testing purposes.

https://github.com/compound-finance/compound-protocol/blob/ca6bc76ffdc0fc4f52a2ff617200d1a16f65692a/contracts/Governance/Comp.sol

 Informational / Code style / Best Practice

1. Some code style issues were found by static code analyzers.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was

presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security engineers found 2 medium, 2 low and 1 informational issue during the
audit.

Notice: the code is provided without tests and build configs. This complicates
review process.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

