

Customer: OneInchExchange
Date: November 4th, 2020

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for 1inch

Approved by Andrew Matiukhin | CTO Hacken OU

Type DEX aggregator
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/CryptoManiacsZone/1inch-contract/
Commit aa1d1c54546f38b912a24722134ab0c2ae94860d
Deployed
contract

https://etherscan.io/address/0x111111125434b319222cdbf8c261674adb
56f3ae

Timeline 01 NOV 2020 – 04 NOV 2020
Changelog 04 NOV 2020 – INITIAL AUDIT

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 6

AS-IS overview.. 7

Conclusion... 14

Disclaimers.. 15

Introduction

Hacken OÜ (Consultant) was contracted by One Inch Exchange
(Customer) to conduct a Smart Contract Code Review and Security
Analysis. This report presents the findings of the security
assessment of Customer's smart contract and its code review
conducted between November 01st, 2020 – November 04th, 2020.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
https://etherscan.io/address/0x111111125434b319222cdbf8c261674adb56f3ae
Repository https://github.com/CryptoManiacsZone/1inch-contract/
Commit aa1d1c54546f38b912a24722134ab0c2ae94860d
Files:

OneInchExchange.sol
OneInchFlags.sol
helpers/RevertReasonParser.sol
helpers/UniERC20.sol
OneInchCaller.sol
GasDiscountCalculator.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
secure and can be used in production.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 2 low severity issues during the audit.

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

OneInchFlags.sol

Description

OneInchFlags is a library contract used to decode flags used
during an exchange process.

GasDiscountCalculator.sol

Description

GasDiscountCalculator is a contract used for calculation of a CHI
discount.

RevertReasonParser.sol

Description

RevertReasonParser is a library used to parse error reasons.

UniERC20.sol

Description

UniERC20 is a library used as a wrapper to get balance of a token
or ETH.

OneInchCaller.sol

Description

OneInchCaller is a contract used to perform calls to exchanges.

Imports

OneInchCaller contract has following imports:

• IOneInchCaller
• RevertReasonParser
• DodoExtension
• GasDiscountExtension
• PatcherExtension
• SafeERC20Extension
• UniswapV2Extension

Inheritance

OneInchCaller contract is IOneInchCaller, DodoExtension,
GasDiscountExtension, PatcherExtension, SafeERC20Extension,
UniswapV2Extension.

Usages

OneInchCaller contract has no custom usages.

Structs

OneInchCaller contract has no custom data structures.

Enums

OneInchCaller contract has no custom enums.

Events

OneInchCaller contract has following events:

• event Error(reason);

Modifiers

OneInchCaller has no custom modifiers.

Fields

OneInchCaller contract has no custom fields and constants.

Functions

OneInchCaller has following public functions:

• receive
Description
Allows to receive ETH only from contracts.

• makeCalls
Description
Make multiple calls.
Visibility
external
Input parameters

o CallDescription[] calldata calls – a list of calls.
Constraints
None
Events emit
None
Output

 None
• makeCall

Description
Perform an external call.
Visibility
public
Input parameters

o CallDescription calldata desc – a call description
None
Events emit
None
Output

 None

OneInchExchange.sol

Description

OneInchExchange is the exchange contract.

Imports

OneInchExchange contract has following imports:

• Ownable – from the OpenZeppelin.
• SafeERC20 – from the OpenZeppelin.
• Pausable – from the OpenZeppelin.
• IChi
• IERC20Permit
• IOneInchCaller
• RevertReasonParser
• UniERC20

Inheritance

OneInchExchange contract is Ownable and Pausable.

Usages

OneInchExchange contract has following usages:

• using SafeMath for uint256;
• using SafeERC20 for IERC20;
• using UniERC20 for IERC20;

Structs

OneInchExchange contract has following data structures:

• SwapDescription – contains main swap information.

Enums

OneInchExchange contract has no custom enums.

Events

OneInchExchange contract has following events:

• event Error(reason);
• event Swapped(address indexed sender, IERC20 indexed

srcToken, IERC20 indexed dstToken, address dstReceiver,
uint256 amount, uint256 spentAmount, uint256 returnAmount,
uint256 minReturnAmount, uint256 guaranteedAmount, address
referrer);

Modifiers

OneInchExchange has no custom modifiers.

Fields

OneInchExchange contract has following constants:

• uint256 private constant _PARTIAL_FILL = 0x01;
• uint256 private constant _REQUIRES_EXTRA_ETH = 0x02;
• uint256 private constant _SHOULD_CLAIM = 0x04;
• uint256 private constant _BURN_FROM_MSG_SENDER = 0x08;
• uint256 private constant _BURN_FROM_TX_ORIGIN = 0x10;

Functions

OneInchExchange has following public functions:

• discountedSwap
Description
Performs swap and compensate some gas by burning CHI token.
Visibility
external
Input parameters

o IOneInchCaller caller – OneInchCaller address.
o SwapDescription calldata desc - swap description.
o IOneInchCaller.CallDescription[] calldata calls – a

list of calls.
Constraints
None
Events emit
Emits Swapped or Error events.
Output

o uint256 returnAmount

• swap
Description
Performs swap.
Visibility
external
Input parameters

o IOneInchCaller caller – OneInchCaller address.
o SwapDescription calldata desc - swap description.
o IOneInchCaller.CallDescription[] calldata calls – a

list of calls.
Constraints

o The contract should not be paused.
o Calldata should exist.
o minReturnAmount should be set.

Events emit
Emits Swapped event.
Output

o uint256 returnAmount
• rescueFunds

Description
Send accidentally locked tokens or ETH to a message sender.

The function is safe because OneInchExchange is not supposed to
store any funds for exchange process.

Visibility
external
Input parameters

o IERC20 token – token address to withdraw.
o uint256 amount – amount to transfer.

Constraints
o Can only be called by the contract owner.

Events emit
None
Output

 None
• pause

Description
Pauses the contract
Visibility
external
Input parameters
None
Constraints

o Can only be called by the contract owner.
Events emit
None
Output

 None

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

No medium severity issues were found.

 Low

1. OneInchFlags contract is never used.

2. GasDiscountCalculator contract is never used.

 Lowest / Code style / Best Practice

No lowest severity issues were found.

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 2 low severity issues during the audit.

Violations in the following categories were found and addressed
to Customer:

Category Check Item Comments

Code review ▪ Unused code ▪ Unused code can be found
in the repository.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

