

Customer: ACryptoS

Date: February 18th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the

intellectual property of the Customer as well as information about potential

vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a
decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for ACryptoS

Approved by Andrew Matiukhin | CTO Hacken OU

Type Reward pool

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository https://github.com/acryptos/acryptos-
protocol/blob/main/farms/ACryptoSFarmV2.sol

Commit https://github.com/acryptos/acryptos-
protocol/commit/8d68ce017f5644b6cd4cd0aa1157bfce6da0e0b1

Deployed
contract

Timeline 15 FEB 2021 – 18 FEB 2021

Changelog 18 FEB 2021 – INITIAL AUDIT

Table of contents

Introduction .. 4

Scope ... 4

Executive Summary ... 5

Severity Definitions ... 6

AS-IS overview... 7

Conclusion ... 16

Disclaimers .. 17

Introduction

Hacken OÜ (Consultant) was contracted by ACryptoS (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its code
review conducted between February 15th, 2021 – February 18th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository: https://github.com/acryptos/acryptos-
protocol/blob/main/farms/ACryptoSFarmV2.sol
Commit:8d68ce017f5644b6cd4cd0aa1157bfce6da0e0b1

Files: ACryptoSFarmV2.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart has some issues that should
be fixed.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 2 informational issues during the audit.

Notice: the audit scope contains 1 contract: ACryptoSFarmV2.sol. Resulting
score may not be considered as score for the whole project.

Graph 1. The distribution of vulnerabilities.

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low

Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets that can't have a significant
impact on execution

Informational /
Code Style /
Best Practice

Informational vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

High
0%

Medium
0%

Informational
100%

High Medium Informational

AS-IS overview

ACryptoSFarmV2.sol

Description

ACryptoSFarmV2 is a contract used to introduce a pools management and
reward distribution.

Inheritance

ACryptoSFarmV2 contract is OwnableUpgradeable.

Usages

ACryptoSFarmV2 contract has following usages:

• using SafeMathUpgradeable for uint256;

• using SafeERC20Upgradeable for IERC20Upgradeable;

Structs

ACryptoSFarmV2 contract has following structures:

• UserInfo: struct to store data about user and his rewards.

• PoolInfo: struct to store data about pool and its variables.

• AdditionalReward: struct to store data about additional mint parameters
for special rewards.

Enums

• ACryptoSFarmV2 contract has no custom enums.

Events

ACryptoSFarmV2 contract has following custom events:

• Deposit: emit when new deposit has been done.

• Withdraw: emit when user withdraw his funds.

Modifiers

ACryptoSFarmV2 has following modifiers:

• onlyStrategist – checks whether a message sender is the strategist
address or owner address.

Fields and constants

ACryptoSFarmV2 contract has following fields:

• ERC20Mintable public sushi

• uint256 public sushiPerBlock

• address public strategist

• address public harvestFeeAddress

• uint256 public harvestFee

• uint256 public maxBoost

• uint256 public boostFactor

• address public boostToken

• AdditionalReward[] public additionalRewards

• mapping (address => PoolInfo) public poolInfo

• mapping (address=> mapping (address => UserInfo)) public userInfo

• uint256 public totalAllocPoint

 ACryptoSFarmV2 contract has following constants:

• uint256 public constant REWARD_DENOMINATOR = 10000

Functions

ACryptoSFarmV2 has following functions:

• pendingSushi
Description
View function to see pending SUSHIs on frontend.
Visibility
External view
Input parameters

o address _lpToken,
o address _user

Constraints
None
Events emit
None
Output

o uint256

• setBoostFactor
Description
Set boost factor.

Visibility
External
Input parameters

o uint256 _boostFactor
Constraints
onlyStrategist
Events emit
None
Output
None

• setMaxBoost
Description
Set max boost factor.
Visibility
External
Input parameters

o uint256 _boostFactor
Constraints

o onlyStrategist
Events emit
None
Output
None

• setHarvestFee
Description
Set harvest fee.
Visibility
External
Input parameters

o uint256 _harvestFee
Constraints

o onlyStrategist
Events emit
None
Output
None

• setHarvestFeeAddress
Description
Set Harvest Fee Address.
Visibility

External
Input parameters

o uint256 _harvestFeeAddress
Constraints
onlyStrategist
Events emit
None
Output
None

• deleteAdditionalRewards
Description
Delete Additional Rewards.
Visibility
External
Input parameters
None
Constraints

o onlyStrategist
Events emit
None
Output
None

• addAdditionalRewards
Description
Add Additional Rewards.
Visibility
External
Input parameters

o address _to,
o uint256 _reward

Constraints
o onlyStrategist

Events emit
None
Output
None

• setStrategist
Description
Set Strategist address.
Visibility

External
Input parameters

o address _strategist
Constraints

o onlyStrategist
Events emit
None
Output
None

• setSushiPerBlock
Description
Set SushiPer Block.
Visibility
External
Input parameters

o uint256 _sushiPerBlock
Constraints

o onlyStrategist
Events emit
None
Output
None

• updatePool
Description
Update reward variables of the given pool
Visibility
public
Input parameters

o address _lpToken
Constraints
None
Events emit
None
Output
None

• calculateWeight
Description
Returns weight of a user.
Visibility
public view

Input parameters
o address _lpToken,
o address _user

Constraints
None
Events emit
None
Output
uint256

• deposit
Description
Deposit LP tokens to MasterChef for SUSHI allocation.
Visibility
public
Input parameters

o address _lpToken,
o uint256 _amount

Constraints
None
Events emit

o Deposit
Output
None

• withdraw
Description
Withdraw LP tokens from MasterChef.
Visibility
public
Input parameters

o address _lpToken
o uint256 _amount

Constraints
o require(user.amount >= _amount, "withdraw: not good");

Events emit
o Withdraw

Output
None

• harvest
Description
Withdraw LP harvest tokens from MasterChef.

Visibility
public
Input parameters

o address _lpToken
Constraints
None
Events emit
None
Output
None

• set
Description
Update the given pool's SUSHI allocation point
Visibility
public
Input parameters

o address _lpToken
o uint256 _allocPoint
o uint256 _withdrawalFee

Constraints
o onlyStrategist modifier

Events emit
None
Output
None

• safeSushiTransfer
Description
Safe sushi transfer function.
Visibility
Internal
Input parameters

o address _to,
o uint256 _amount

Constraints
o onlyStrategist

Events emit
None
Output
None

Audit overview

 Critical

No critical issues were found.

 High

1. The addAdditionalRewards function allows owners to mint any amount
of tokens to any address unlimitedly.

This behavior is described in the security-and-risks page and is not an

issue.

 Medium

1. User weight is a one of the basic parameters to calculate reward. It
depends on total pool size and user funds amount. It is updated only on
withdraw and deposit functions calls. As a result, when pool amount is
small, a user can get a large weight value. And when the pool become
bigger, weight of the user will not be changed. But reward credit value will
be calculated based on this value.

We recommend updating a user weight before calculating a reward sum.

This actually will never happen because the “boost weight” is limited by
the % of the pool. For example, if user has %1 share of acsACS
(boostToken), his maximum boost will be 1.5 * 1% = 1.5% of the pool. So
if the pool is small, say 10 ETH, his maximum boost will be 0.15 ETH.
When the pool becomes big, say 1000 ETH, his maximum boost will be
15 ETH, but only up to 1.5X his stake (amount) in the pool. So, there
should be no way this can be exploited.

 Low

No low severity issues were found.

 Informational/ Code style / Best Practice

1. The code contains a lot of duplicates lines that could be extracted to
separate function. For example:

a. Reward credit calculation

https://docs.acryptos.com/security-and-risks

b. Pool weight update calculation

c. Reward dept calculation

d. Sushi reward value calculation

e. “accSushiPerShare” value calculation

2. Some code-style issues were found by the static code analyzer.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Security engineers found 2 informational issues during the audit.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

