

Customer: DeXe Network

Date: September 24th, 2020

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the customer or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the customer.

Document

Name Smart Contract Code Review and Security Analysis Report for DeXe
Network

Type Token, token-sale, staking.
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Archive Name dexe-8ca55a54680edb118108384318f1867caf65565b.zip
Checksum c3b6df51f4b88bc7f518c425786a518548d89052153a65310058f7f74057ff18
Timeline 17 SEP 2020 – 20 SEP 2020
Changelog 20 SEP 2020 – Initial Audit

24 SEP 2020 – Secondary review

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 6

AS-IS overview.. 7

Audit overview... 12

Conclusion... 27

Disclaimers.. 28

Introduction

Hacken OÜ (Consultant) was contracted by DeXe Network (Customer)
to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of
Customer`s smart contract and its code review conducted between
September 17, 2020 – September 20, 2020.

Scope

The scope of the project is smart contracts in the repository:
Audit Archive File – dexe-8ca55a54680edb118108384318f1867caf65565b.zip
SHA256 checksum -
c3b6df51f4b88bc7f518c425786a518548d89052153a65310058f7f74057ff18
We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency
Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer’s smart contracts are
following code style guides and best practices. All functions are
covered with tested, and the code works as described in the
whitepaper.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section and all
found issues can be found in the Audit overview section.

Security engineers found 1 medium and 1 low severity issues
during the initial audit. All the issues have been fixed before
secondary audit.

Graph 1. The distribution of vulnerabilities during the initial
audit.

Medium
50%

Low
50%

Medium Low

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets lose or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can’t lead to assets lose or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations
and info statements can’t affect smart contract
execution and can be ignored.

AS-IS overview

PriceFeed.sol

Description

PriceFeed contract serves as a wrapper to receive token prices
from the Uniswap.

Imports

PriceFeed contract has following imports:

• IUniswapV2Pair – from the Uniswap.
• FixedPoint – from the Uniswap
• UniswapV2OracleLibrary – from the Uniswap.
• IPriceFeed – from the project files.

Inheritance

PriceFeed contract implements IPriceFeed.

Structs

PriceFeed contract has no data structures.

Usages

PriceFeed contract uses:

• FixedPoint for *;

Fields

PriceFeed contract has 5 fields and constants:

• address constant USDCAddress =
0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48; - the USDC
contract address from the mainnet.

• IUniswapV2Pair public immutable pair; - the Uniswap pair
address.

• uint public immutable multiplier; - multiplier used to
receive indivisible units as a result.

• uint public priceCumulativeLast; - last price.
• uint32 public blockTimestampLast; - timestamp of a last

update.

Modifiers

PriceFeed contract has no custom modifiers.

Functions

PriceFeed has 4 functions:

• constructor
Description
Initializes contract. Sets a Uniswap pair to provide exchange

rated for.
Visibility
public
Input parameters

o IUniswapV2Pair _pair – uniswap pair.
Constraints

o token0 of the pair should always be USDC.
o The pair should have liquidity on the Unsiwap.

Events emit
None
Output
None

• update
Description
Updates the pair cumulative price and timestamp.
Visibility
public
Input parameters
None
Constraints
None
Events emit
None
Output

o _priceCumulative – cumulative price.
o _blockTimestamp – timestamp.

• consult
Description
Provides exchange rate.
Visibility
external view
Input parameters
None
Constraints
None
Events emit
None
Output

o exchange rate.

• updateAndConsult
Description
Updates the pair cumulative price and provides exchange rate

as a result.
Visibility
external view
Input parameters
None
Constraints
None
Events emit
None
Output

o exchange rate.

Dexe.sol

Description

Dexe is a contract that implements ERC-20 interface and allows to
run token-sale and to provide staking functionality.

Imports

Dexe contract has following imports:

• Ownable – from the OpenZeppelin.
• SafeMath – from the OpenZeppelin.
• ERC20Burnable – from the OpenZeppelin.
• IPriceFeed – from the project files.
• IDexe – from the project files.

Inheritance

Dexe contract implements IDexe and is Ownable and ERC20Burnable.

Structs

Dexe contract has 6 structures:

• LockConfig
• Lock
• HolderRound
• UserInfo
• BalanceInfo
• Round

Usages

Dexe contract uses:

• ExtraMath for *;

• SafeMath for *;

Fields

Dexe contract has 28 fields and constants:

• uint private constant DEXE = 10**18; – DEXE token decimals.
• uint private constant USDC = 10**6; - USDC token decimals.
• uint private constant USDT = 10**6; - USDT token decimals.
• uint private constant DISTRIBUTOR_LIMIT = 10**10 * USDC; - a

distributor first round contribution limit.
• uint private constant MONTH = 30 days; - days in a month.
• uint public constant ROUND_SIZE_BASE = 190_476; - sale round

limit in divisible units.
• uint public constant ROUND_SIZE = ROUND_SIZE_BASE * DEXE; -

sale round limit in indivisible units.
• uint public constant FIRST_ROUND_SIZE_BASE = 1_000_000; -

divider for the first round price calculation.
• IERC20 public usdcToken; - usdc token contract.
• IERC20 public usdtToken; - usdt token contract.
• IPriceFeed public usdtPriceFeed; - USDT to USDC price

provider;
• IPriceFeed public dexePriceFeed; - DEXE to USDC price

provider;
• IPriceFeed public ethPriceFeed; - ETH to USDC price provider;
• address payable public treasury; - an address where all

deposits are transferred.
• IPriceFeed public priceFeed; - never used.
• uint public averagePrice; - 2-10 rounds average price.
• uint public override launchedAfter; - stores how many seconds

passed between sale end and product launch.
• mapping(uint => mapping(address => HolderRound)) internal

_holderRounds; - rounds participants storage.
• mapping(address => UserInfo) internal _usersInfo; - stores

user information.
• mapping(address => BalanceInfo) internal _balanceInfo; -

balances information.
• mapping(LockType => LockConfig) public lockConfigs; - lock

configs.

• mapping(LockType => mapping(address => Lock)) public locks;
- map of locks.

• mapping(address => mapping(ForceReleaseType => bool)) public
forceReleased; - released stakes.

• uint constant ROUND_DURATION_SEC = 86400; - token-sale round
duration in seconds.

• uint constant TOTAL_ROUNDS = 22; - total token-sale rounds.
• mapping(uint => Round) public rounds; - round information.

Total contributions and exchange rate (USDC to DEX).
• uint public constant tokensaleStartDate = 1600603200; -

token-sale start day.
• uint public override constant tokensaleEndDate =

tokensaleStartDate + ROUND_DURATION_SEC * TOTAL_ROUNDS; -
token-sale end day.

Events

Dexe contract has 2 events:

• event NoteDeposit(address sender, uint value, bytes data);
• event Note(address sender, bytes data);

Enums

Dexe contract has 3 enums:

• LockType
• ForceReleaseType
• HolderRoundStatus

Modifiers

Dexe contract has 2 custom modifiers:

• noteDeposit()
• note()

Functions

Dexe has 50 functions:

• constructor
Description
Initializes contract. Sets a LockConfig’s and specify the

treasury address.
Visibility
public
Input parameters

o address _distributor – an address where all locked funds
are accrued.

Constraints
None
Events emit
None
Output
None

• setUSDTTokenAddress, setUSDCTokenAddress, setUSDTFeed,
setDEXEFeed, setETHFeed, setTreasury
Description
Setter functions used to set values of the corresponding

fields.
Visibility
external
Input parameters

o address of a corresponding contract.
Constraints

o Can only be called by the owner.
Events emit

o Emits note event.
Output
None

• addToWhitelist
Description
Add an address to the whitelist. Only whitelisted addresses

can participate in the token sale.
Visibility
external
Input parameters

o address _address – whitelisted address.
o uint _limit – max allowed contribution sum.

Constraints
o Can only be called by the owner.

Events emit
o Emits note event.

Output
None

• removeFromWhitelist
Description
Remove an address from the whitelist.
Visibility
external
Input parameters

o address _address – an address that should be removed
from the whitelist.

Constraints
o Can only be called by the owner.

Events emit
o Emits note event.

Output
None

• _updateWhitelist
Description
Add or remove an address to the whitelist.
Visibility
internal
Input parameters

o address _address – an address that should be added to
or removed from the whitelist.

o uint _limit – max allowed contribution sum.
Constraints

o Can only be called by the owner.
Events emit
None
Output
None

• getAllRounds
Description
Get all rounds info.
Visibility
external view
Input parameters
None
Constraints

 None
Events emit
None
Output

o Round[22] memory – all rounds info.
• getFullHolderInfo

Description
Get holder info.
Visibility
external view
Input parameters

o address _holder – a holder address.
Constraints

 None
Events emit
None
Output

o UserInfo memory _info – user info.
o HolderRound[22] memory _rounds – tokensale rounds where

the holder participated at.
o Lock[6] memory _locks – locks info.
o bool _isWhitelisted – whitlist status.
o bool[4] memory _forceReleases – swap releases.
o uint _balance – DEXE balance.

• prepareDistributionPrecise
Description
Prepares distributions with lower and upper price limits.
Visibility
external
Input parameters

o uint _round – token-sale round.
o uint _botPriceLimit – lower price limit.
o uint _topPriceLimit – upper price limit.

Constraints
o Can only be called by the owner.

Events emit
o Emits note event.

Output
None

• prepareDistribution
Description
Prepares distributions.
Visibility
external
Input parameters

o uint _round – token-sale round.
Constraints

o Can only be called by the owner.
Events emit

o Emits note event.
Output
None

• _prepareDistribution
Description
Prepares distributions.
Visibility
private
Input parameters

o uint _round – token-sale round.
Constraints

o The round should be finished
Events emit

 None

Output
None

• receiveAll
Description
Receive tokens/rewards for all processed rounds.
Visibility
public
Input parameters
None
Constraints
None
Events emit

 None
Output
None

• _receiveAll
Description
Receive tokens/rewards for all processed rounds.
Visibility
private
Input parameters

o address _holder – a holder address whose reward will be
processed.

Constraints
o Unprocessed rewards should exist.
o The holder should participate in the first round of the

token-sale.
o Token-sale should be active.

Events emit
 None

Output
None

• _receiveDistribution
Description
Receive tokens based on the deposit.
Visibility
private
Input parameters

o uint _round – round to be processed.
o address _holder – an address to be processed for.
o Round memory _localRound – round info.

Constraints
None
Events emit

 None
Output

None
• _receiveRewards

Description
Receive rewards based on the last round balance.
Visibility
private
Input parameters

o uint _round – round to be processed.
o address _holder – an address to be processed for.
o Round memory _localRound – round info.

Constraints
o Round should be less than or equal to 21.

Events emit
 None

Output
None

• depositUSDT, depositUSDC
Description
Deposit in USDT or USDC tokens.
Visibility
external
Input parameters

o uint _amount – deposit sum.
Constraints

 None
Events emit

o Emits note event.
Output
None

• depositETH, receive()
Description
Deposit in ETH. All ETH that are send to the contract will

be assumed as deposit.
Visibility
External
Input parameters

 None
Constraints

 None
Events emit

o Emits noteDeposit event.
Output
None

• _depositETH
Description

Transfer incoming ETH to the treasury and process deposit
Visibility
Private
Input parameters

 None
Constraints

 None
Events emit
None
Output
None

• _deposit
Description
Process deposit
Visibility
Private
Input parameters

o uint _amount – amount to process.
Constraints

o if a deposit is the first round, a caller should be
allowed to participate.

o if a deposit is the first round, the amount should not
exceed a limit.

o amount should be equal or more than 1 USDC.
Events emit
None
Output
None

• currentRound
Description
Get current token-sale round.
Visibility
public view
Input parameters

 None
Constraints

o token-sale should be active.
Events emit
None
Output

o uint – current round.

• depositRound
Description
Get current deposit token-sale round. Deposit rounds ends 1

hour before the end of each round.
Visibility
public view
Input parameters

 None
Constraints

o token-sale should be active.
Events emit
None
Output
None

• isRoundDepositsEnded
Description
Check if a provided deposit round ended.
Visibility
public view
Input parameters

 None
Constraints
None
Events emit
None
Output

o bool – true if the deposit round ended.
• isRoundPrepared

Description
Check if a provided round prepared
Visibility
public view
Input parameters

 None
Constraints
None
Events emit
None
Output

o bool – true if the round prepared.
• currentPrice

Description
Get current DEXE price in USDC.
Visibility
public view
Input parameters

 None
Constraints
None
Events emit
None
Output

o uint – current DEXE price in USDC.
• updateAndGetCurrentPrice

Description
Update and get current DEXE price in USDC.
Visibility
public view
Input parameters

 None
Constraints
None
Events emit
None
Output

o uint – current DEXE price in USDC.
• _passed

Description
Check if a provided time passed.
Visibility
private view
Input parameters

 None
Constraints
None
Events emit
None
Output

o bool – true if passed.
• _notPassed

Description
Check if a provided time not passed.
Visibility
private view
Input parameters

 None
Constraints
None
Events emit
None
Output

o bool – true if not passed.

• _not
Description
Revert a provided condition.
Visibility
private view
Input parameters

o bool _condition – a condition to be reverted.
Constraints
None
Events emit
None
Output

o bool – true if _condition is false and vice versa.
• releaseLock

Description
Release locked tokens.
Visibility
external
Input parameters

o LockType _lock – lock type to be released.
Constraints

o Lock type should be allowed to be released.
Events emit

o Emits note event.
Output
None

• _release
Description
Release locked tokens.
Visibility
private
Input parameters

o LockType _lock – lock type to be released.
o address _holder – holder address.

Constraints
o Lock type should be allowed to be released.

Events emit
None
Output
None

• transferLock
Description
Transfer locked tokens.
Visibility
external
Input parameters

o LockType _lock – lock type to be released.
o address _to – recipient address.
o uint _amount – amount to transfer.

Constraints
o The sender should have corresponding amount of locked

tokens.
Events emit

o Emits note event.
Output
None

• forceReleaseStaking
Description
Release staking.
Visibility
external
Input parameters

o ForceReleaseType _forceReleaseType – release type.
Constraints

o Round of the token-sale should exceed 10.
o The sender should have locked staking balance.
o Staking should not be released yet.

Events emit
o Emits note event.

Output
None

• launchProduct
Description
Mark product as launched.
Visibility
external
Input parameters

o ForceReleaseType _forceReleaseType – release type.
Constraints

o Can only be called by the owner.
o Token-sale should be passed and processed.
o The product should not be launched yet.

Events emit
o Emits note event.

Output
None

• isTokensaleProcessed
Description
Check if the token-sale is processed
Visibility
private view
Input parameters

 None
Constraints
None
Events emit
None
Output

o bool – true if processed.
• _isHolder

Description
Check if a provided address is holder.
Visibility
private view
Input parameters

o address _addr – address to check.
Constraints
None
Events emit
None
Output

o bool – true if holder.
• _beforeTokenTransfer

Description
Recalculates average balance. Called before every token

transfer.
Visibility
internal
Input parameters

o address _from – sender address.
o address _to – recipient address.
o uint _amount – sent amount.

Constraints
None
Events emit
None
Output

 None

• _since
Description
Calculate how much time passed since provided time.
Visibility
private view
Input parameters

o uint _timestamp – timestamp to calculate from.
Constraints
None
Events emit

None
Output

o uint – passed time.
• launchDate

Description
Get product launch date.
Visibility
public view
Input parameters
None
Constraints
None
Events emit
None
Output

o uint – product launch timestamp.
• _calculateBalanceAverage

Description
Calculates average balance of a holder.
Visibility
private view
Input parameters

o address _holder – the holder address.
Constraints
None
Events emit
None
Output

o BalanceInfo memory – balance info of the holder.
• _updateBalanceAverage

Description
Updates average balance of a holder.
Visibility
private
Input parameters

o address _holder – the holder address.
Constraints
None
Events emit
None
Output

 None

• getAverageBalance
Description
Get average balance of a holder.
Visibility
private view.
Input parameters

o address _holder – the holder address.
Constraints
None
Events emit
None
Output

o uint – holders average balance.
• firstBalanceChange

Description
Get first balance change time.
Visibility
external view
Input parameters

o address _holder – the holder address.
Constraints
None
Events emit
None
Output

o uint – holders first balance change time.
• holderRounds

Description
Get a holder token-sale round info.
Visibility
external view
Input parameters

o uint _round – round to get.
o address _holder – the holder address.

Constraints
None
Events emit
None
Output

o HolderRound memory – holders’ round info

• eusersInfo
Description
Get a holder info.
Visibility
external view
Input parameters

o address _holder – the holder address.
Constraints
None
Events emit
None
Output

o UserInfo memory – holders’ info
• withdrawLocked

Description
Withdraw token in a case when they’ve been sent to the

contract by mistake.
Visibility
external
Input parameters

o IERC20 _token – token to withdraw.
o address _receiver – receiver address.
o uint _amount – amount to withdraw.

Constraints
o Can only be called by the owner.

Events emit
Emits note event.
Output

 None

Audit overview
 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. DISTRIBUTOR_LIMIT field is set to 10 billion tokens. That is
more than a total supply.

Fixed before the secondary audit.

 Low

1. priceFeed field of the Dexe contract is never used. It’s
recommended to remove unused fields and variables.

Fixed before the secondary audit.

 Lowest / Code style / Best Practice

No lowest severity issues were found.

Conclusion

Smart contracts within the scope was manually reviewed and
analyzed with static analysis tools. For the contract high level
description of functionality was presented in As-is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 1 medium and 1 low severity issue during
the initial audit. All the issues have been fixed before the
secondary audit.

The code is well-tested and works as described in the whitepaper.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report, (Source Code); the Source Code compilation,
deployment and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have own vulnerabilities that can lead
to hacks. Thus, the audit can’t guarantee explicit security of
the audited smart contracts.

