

Customer: GooseDeFi

Date: February 21st, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for GooseDeFi.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Token, Governance, TimeLock, Defi

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository

Commit

Deployed
contract

Timeline 18 FEB 2021 – 21 FEB 2021

Changelog 21 FEB 2021 – INITIAL AUDIT

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary ... 5

Severity Definitions ... 7

AS-IS overview .. 8

Conclusion .. 24

Disclaimers .. 25

Introduction

Hacken OÜ (Consultant) was contracted by GooseDeFi (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its code

review conducted between February 18th, 2021 – February 21st, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
File:

EggToken.sol 0xF952Fc3ca7325Cc27D15885d37117676d25BfdA6
MasterChef.sol 0xe70E9185F5ea7Ba3C5d63705784D8563017f2E57
Timelock.sol 0x2Ef488DE034567e9B8D312928fD52812A242aB3A

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 2 medium, 1 informational issue during the audit.

Notice: the audit scope is limited and not include all files in the repository.
Though, reviewed contracts are secure, we may not guarantee secureness of
contracts that are not in the scope.

Insecure Poor secured Secured Well-secured

You are

here

Graph 1. The distribution of vulnerabilities after the first review.

Medium
75%

Informational
25%

Medium Informational

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

Timelock.sol

Description

Timelock queues and executes transactions.

Imports

Timelock has following imports:

• SafeMath.sol – from the OpenZeppelin.

Inheritance

Timelock does not inherit anything.

Usages

Timelock contract has following usages:

• SafeMath for uint.

Structs

Timelock contract has no data structures.

Enums

Timelock contract has no enums.

Events

Timelock contract has following events:

• event NewAdmin(address indexed newAdmin);

• event NewPendingAdmin(address indexed newPendingAdmin);

• event NewDelay(uint indexed newDelay);

• event CancelTransaction(bytes32 indexed txHash, address indexed target,
uint value, string signature, bytes data, uint eta);

• event ExecuteTransaction(bytes32 indexed txHash, address indexed
target, uint value, string signature, bytes data, uint eta);

• event QueueTransaction(bytes32 indexed txHash, address indexed
target, uint value, string signature, bytes data, uint eta);

Modifiers
Timelock has no modifiers.

Fields

Timelock contract has following fields and constants:

• uint public constant GRACE_PERIOD = 14 days;

• uint public constant MINIMUM_DELAY = 6 hours;

• uint public constant MAXIMUM_DELAY = 30 days;

• address public admin – an admin address.

• address public pendingAdmin – a pending admin.

• uint public delay – delay between a transaction queueing and execution.

• mapping (bytes32 => bool) public queuedTransactions – queued
transactions.

Functions
Timelock has following public functions:

• constructor
Description
Inits the contract and sets default parameters.
Visibility
public
Input parameters

o address admin_ - admin address.
o uint delay_ - delay between a transaction queuing and execution.

Constraints
o A `delay_` value should be between DELAY and MAXIMUM_DELAY.

Events emit
None
Output

 None

• receive
Description
Allows ETH transfers.

• setDelay
Description
Sets a delay.
Visibility
public

Input parameters
o uint delay_ - delay between a transaction queuing and execution.

Constraints
o A message sender should be the contract itself.
o A `delay_` value should be between DELAY and MAXIMUM_DELAY.

Events emit
Emits the `NewDelay` event.
Output

 None

• acceptAdmin
Description
Accept the admin permissions.
Visibility
public
Input parameters
None
Constraints

o A message sender should be a pending admin.
Events emit
Emits the `NewAdmin` event.
Output

 None

• setPendingAdmin
Description
Accept the admin permissions.
Visibility
public
Input parameters

o address pendingAdmin_ - a pending admin address.
Constraints

o A message sender should be the contract itself.
Events emit
Emits the `NewPendingAdmin` event.
Output

 None

• queueTransaction
Description
Add a new transaction to the queue.
Visibility
public

Input parameters
o address target – a tx target.
o uint value – a tx value.
o string memory signature – a method signature.
o bytes memory data – a tx data.
o uint eta – a minimum delay between a tx queuing and execution.

Constraints
o A message sender should be admin.
o `eta` should be more than current time plus delay value.

Events emit
Emits the `QueueTransaction` event.
Output

 bytes32 – a tx hash.

• cancelTransaction
Description
Cancel a transaction.
Visibility
public
Input parameters

o address target – a tx target.
o uint value – a tx value.
o string memory signature – a method signature.
o bytes memory data – a tx data.
o uint eta – a minimum delay between a tx queuing and execution.

Constraints
o A message sender should be admin.

Events emit
Emits the `CancelTransaction` event.
Output

 None

• executeTransaction
Description
Execute a transaction.
Visibility
public
Input parameters

o address target – a tx target.
o uint value – a tx value.
o string memory signature – a method signature.
o bytes memory data – a tx data.

o uint eta – a minimum delay between a tx queuing and execution.
Constraints

o A message sender should be admin.
o A transaction should be queued.
o Current timestamp should be between `eta` and `eta` +

GRACE_PERIOD.
Events emit
Emits the `ExecuteTransaction` event.
Output

 None

MasterChef.sol

Description

MasterChef is a liquidity pool with rewards in Egg token.

Imports

MasterChef has following imports:

• @openzeppelin/contracts/math/SafeMath.sol

• ./libs/IBEP20.sol

• ./libs/SafeBEP20.sol

• @openzeppelin/contracts/access/Ownable.sol

• ./EggToken.sol

Inheritance

MasterChef is Ownable.

Usages

MasterChef contract has following usages:

• SafeMath for uint256

• SafeBEP20 for IBEP20

Structs

MasterChef contract has following data structures:

• UserInfo

• PoolInfo

Enums

MasterChef contract has no enums.

Events

MasterChef contract has following events:

• Deposit

• Withdraw

• EmergencyWithdraw

Modifiers

MasterChef has no custom modifiers.

Fields

MasterChef contract has following fields and constants:

• EggToken public egg

• address public devaddr

• uint256 public eggPerBlock

• uint256 public constant BONUS_MULTIPLIER = 1

• address public feeAddress

• PoolInfo[] public poolInfo

• mapping (uint256 => mapping (address => UserInfo)) public userInfo

• uint256 public totalAllocPoint = 0

• uint256 public startBlock

Functions
MasterChef has following public functions:

• constructor
Description
Sets initial values of the contract.
Visibility
public
Input parameters

o EggToken _egg,
o address _devaddr
o address _feeAddress
o uint256 _eggPerBlock
o uint256 _startBlock

Constraints
None
Events emit
None
Output
None

• poolLength
Description
Returns a number of pools.
Visibility
external view
Input parameters
None
Constraints
None
Events emit
None
Output

o uint256 – a number of pools.

• changeFactor
Description
Updates the rewardTimeFactor.
Visibility
public
Input parameters
None
Constraints

o onlyOwner modifier.
Events emit
None
Output

 None

• add
Description
Add a new lp to the pool.
Visibility
public
Input parameters

o uint256 _allocPoint
o IERC20 _lpToken

o uint16 _depositFeeBP
o bool _withUpdate

Constraints
o onlyOwner modifier.

Events emit
None
Output

 None

• set
Description
Update the given pool's allocation point
Visibility
public
Input parameters

o uint256 _pid
o uint256 _allocPoint
o bool _withUpdate

Constraints
o onlyOwner modifier.

Events emit
None
Output

 None

• getMultiplier
Description
Return reward multiplier over the given _from to _to block.
Visibility
Public view
Input parameters

o uint256 from
o uint256 to

Constraints
None
Events emit
None
Output

o uint256 – requested multiplier.

• pendingEgg
Description
Returns pending reward tokens of a _user for a _pid reward pool.

Visibility
external view
Input parameters

o uint256 _pid
o address _user

Constraints
None
Events emit
None
Output

o uint256 – available tokens.

• massUpdatePools
Description
Update reward variables for all pools.
Visibility
public
Input parameters
None
Constraints
None
Events emit
None
Output

 None

• updatePool
Description
Update reward variables of the given pool to be up-to-date.
Visibility
public
Input parameters

o uint256 _pid
Constraints
None
Events emit
None
Output

 None

• deposit
Description
Deposit LP tokens.

Visibility
public
Input parameters

o uint256 _pid
o uint256 _amount

Constraints
None
Events emit
Emits the Deposit event.
Output

 None

• withdraw
Description
Withdraw LP tokens.
Visibility
public
Input parameters

o uint256 _pid
o uint256 _amount

Constraints
o An _amount should not exceed a user balance of a _pid pool

Events emit
Emits the Withdraw event.
Output

 None

• emergencyWithdraw
Description
Withdraw LP tokens without a reward.
Visibility
public
Input parameters

o uint256 _pid
Constraints
None
Events emit
Emits the EmergencyWithdraw event.
Output

 None

• dev
Description

Allows dev address to set another dev address.

• setFeeAddress
Description
Allows fee address to set another fee address.

• updateEmissionRate
Description
Mass update pool and sets new eggPerBlock value.
Visibility
public
Input parameters

o uint256 _eggPerBlock
Constraints

o onlyOwner modifier.
Events emit
None
Output

 None

EggToken.sol

Description

EggToken is a token with following parameters:

• Name: Goose Golden Egg

• Symbol: EGG

• Decimals: 18
The EggToken has voting functionality.

Imports

EggToken contract has following imports:

• ./libs/BEP20.sol

Inheritance

EggToken contract is BEP20.

Usages

EggToken contract has no custom usages.

Structs

EggToken contract has following data structures:

• struct Checkpoint – stores votes checkpoints.

Enums

EggToken contract has no custom enums.

Events

EggToken contract has following custom evets:

• event DelegateChanged(address indexed delegator, address indexed
fromDelegate, address indexed toDelegate)

• event DelegateVotesChanged(address indexed delegate, uint256
previousBalance, uint256 newBalance)

Modifiers

EggToken has no custom modifiers.

Fields

EggToken contract has following fields and constants:

• mapping (address => mapping (uint32 => Checkpoint)) public
checkpoints

• mapping (address => uint32) public numCheckpoints

• bytes32 public constant DOMAIN_TYPEHASH =
keccak256("EIP712Domain(string name,uint256 chainId,address
verifyingContract)")

• bytes32 public constant DELEGATION_TYPEHASH =
keccak256("Delegation(address delegatee,uint256 nonce,uint256
expiry)")

• mapping (address => uint) public nonces

Functions

EggToken has following public functions:

• delegates
Description
Returns an address to whom delegator delegates his votes.
Visibility
external view

Input parameters
o address delegator

Constraints
None
Events emit
None
Output

o address

• delegate
Description
Delegate votes from msg.sender to delegate.
Visibility
external
Input parameters

o address delegatee
Constraints
None
Events emit
Emits DelegateChanged event.
Output

 None

• delegateBySig
Description
Delegates votes from signatory to delegatee.
Visibility
public
Input parameters

o address delegate
o uint256 nonce
o uint256 expiry
o uint8 v
o bytes32 r
o bytes32 s

Constraints
None
Events emit
Emits DelegateChanged event.
Output

 None

• getCurrentVotes
Description
Get current votes balance for account.

Visibility
external view
Input parameters

o address account
Constraints
None
Events emit
None
Output

o uint256 — number of current votes for account.

• getPriorVotes
Description

Determine the prior number of votes for an account as of a

blockNumber.

Visibility
public view
Input parameters

o address account
o uint256 blockNumber

Constraints
None
Events emit
None
Output

o uint256 — number of votes the account had as of the given block.

• mint
Description
Mints an _amount to _to address.

Visibility
public
Input parameters

o address _to
o uint256 _amount

Constraints
o onlyOwner modifier.

Events emit

None
Output

 None

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. The add function of the MasterChef contract is lack of validations for the
_lpToken existence.

2. The updateEmissionRate function of the MasterChef can fail due to block
gas limit if the pool size is big enough.

 Low

No low severity issues were found.

 Lowest / Code style / Best Practice

1. Some code style issues were found by the static code analyzers.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Security engineers found 2 medium, 1 informational issue during the audit.

Notice: the audit scope is limited and not include all files in the repository.
Though, reviewed contracts are secure, we may not guarantee secureness of

contracts that are not in the scope.

Violations in the following categories were found and addressed to Customer:

Category Check Item Comments

Code review ▪ Costly loops ▪ Execution of the
updateEmissionRate
function of the MasterChef
may fail due to block gas
limit

 ▪ Data consistency ▪ The add function of the
MasterChef is lack of
_lpToken validation.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

