

Smart Contract Code Review and Security Analysis Report

Customer: SONM

Date: July 13, 18

This document contains confidential information about IT systems and

intellectual properties of the customer, as well as information about potential

vulnerabilities and methods of their exploitation.

This confidential information is for internal use by the customer only and

shall not be disclosed to third parties.

Document:

Name: Smart Contract Code Review and Security

Analysis Report for SONM

Date: 13.07.2018

Table of contents

Introduction .. 3

Scope.. 3

Executive Summary .. 5

Severity Definitions ... 5

AS-IS overview .. 6

Audit overview .. 10

Conclusion .. 12

Disclaimers ... 12

Appendix A. Evidences ... 13

Appendix B. Automated tools reports ... 17

Introduction

Hacken OÜ (Consultant) was contracted by SONM (Customer) to conduct a Smart Contract Code

Review and Security Analysis. This report presents the findings of the security assessment of

Customer`s smart contract and its code review conducted between June 28th, 2018 - July 13th, 2018.

Scope

The scope of the project is SONM smart contracts, which can be found on github by links below:

• Blacklist

https://github.com/sonm-io/core/blob/master/blockchain/source/contracts/Blacklist.sol

• ProfileRegistry

https://github.com/sonm-io/core/blob/master/blockchain/source/contracts/ProfileRegistry.sol

• OracleUSD

https://github.com/sonm-io/core/blob/master/blockchain/source/contracts/OracleUSD.sol

• SNM

https://github.com/sonm-io/core/blob/master/blockchain/source/contracts/SNM.sol

• SimpleGatekeeperWithLimit

https://github.com/sonm-

io/core/blob/master/blockchain/source/contracts/SimpleGatekeeperWithLimit.sol

• SimpleGatekeeperWithLimitLive

https://github.com/sonm-

io/core/blob/master/blockchain/source/contracts/SimpleGatekeeperWithLimitLive.sol

Commit 4ccf67358be704f76be54dd28d85cbd4cc801a43

We have scanned this smart contract for commonly known and more specific vulnerabilities. Here

are some of the commonly known vulnerabilities that are considered (the full list includes them but

is not limited to them):

• Reentrancy

• Timestamp Dependence

• Gas Limit and Loops

• DoS with (Unexpected) Throw

• DoS with Block Gas Limit

• Transaction-Ordering Dependence

• Byte array vulnerabilities

• Style guide violation

• Transfer forwards all gas

• ERC20 API violation

• Malicious libraries

• Compiler version not fixed

• Unchecked external call - Unchecked math

• Unsafe type inference

• Implicit visibility level

Executive Summary

According to the assessment, Customer`s smart contracts are well secured and have only some low

security issues that can’t have significant impact on security.

Our team performed analysis of code functionality, manual audit and automated checks with solc,

Mythril and remix IDE (see Appendix B pic 1-27). All found issues during automated analysis were

manually reviewed and applicable vulnerabilities are presented in Audit Overview section. General

overview is presented in AS-IS section and all found issues can be found in Audit overview section.

We found 2 low-level vulnerabilities, outlined 3 important informational statements and 1 сode style

issue.

Graph 1. Vulnerabilities distribution

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to

tokens lose etc.

High

High-level vulnerabilities are difficult to exploit; however, they also have

significant impact on smart contract execution, e.g. public access to crucial

functions

Medium
Medium-level vulnerabilities are important to fix; however, they can’t lead

to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated, unused etc.

code snippets, that can’t have significant impact on execution

Lowest / Code

Style / Info

Lowest-level vulnerabilities, code style violations and info statements

can’t affect smart contract execution and can be ignored.

Low
25%

Info
62%

Code style
violations

13%

Low Info Code style violations

AS-IS overview

SNM contract overview

SNM.sol contract describes custom ERC20 token with next parameters:

• name – SONM token

• symbol – SNM

• decimals – 18

SNM contract constructor sets:

• totalSupply_ to 444 * 1e6 * 1e18

• balances[msg.sender] to totalSupply_

Blacklist contract overview

Blacklist contract constructor sets:

• owner to a msg.sender

Blacklist.sol has 1 modifier:

• OnlyMarket – checks if market is not 0x0; checks if msg.sender is a market or msg.sender is

a master.

Blacklist.sol has 6 functions:

• Check – checks if person is in a blacklist

• Add – adds provided address to a blacklist. Has onlyMarket modifier.

• Remove – removes provided address from a blacklist.

• AddMaster – adds master. Has onlyOwner modifier.

• RemoveMaster – removes master. Has onlyOwner modifier.

• SetMarketAddress– sets market address to a specified address. Has onlyOwner modifier.

Market contract overview
Market contract constructor sets:

• token to SNM(_token)

• bl to Blacklist(_blacklist)

• oracle to OracleUSD(_oracle)

• pr to ProfileRegistry(_profileRegistry)

• benchmarksQuantity to _benchmarksQuantity

• netflagsQuantity to _netflagsQuantity

Market.sol has 37 functions:

• PlaceOrder – creates order on the market.

• CancelOrder – cancels order with ORDER_ACTIVE status.

• QuickBuy – creates an Ask order and calls OpenDeal.

• OpenDeal – opens the deal with a specified dealID.

• CloseDeal – closes the deal with a specified dealID.

• Bill – makes payments on the transaction..

• CreateChangeRequest – creates a new ChangeRequest, if there is a similar one on the other

hand (Supplier or Customer), the transaction conditions change..

• CancelChangeRequest – changes RequesStatus to a REQUEST_CANCELED or

REQUEST_REJECTED.

• RegisterWorker – registers the transaction author as Worker for the specified master.

• ConfirmWorker – confirms registration of the specified worker for the master - the author of

the transaction.

• RemoveWorker – removes the specified worker for the specified master.

• GetOrderInfo – returns information about the order with a specified orderID.

• GetOrderParams – returns orderStatus and dealID about the order with a specified orderID.

• GetDealInfo – returns information about the deal with a specified dealID.

• GetDealParams – returns parameters for the deal with a specified dealID.

• GetMaster – returns the specified master Worker. Returns Worker, if the master is not

specified.

• GetChangeRequestInfo – returns information about the change request with a specified

changeRequestID.

• GetDealsAmount – returns dealAmount.

• GetOrdersAmount – returns orderAmount.

• GetChangeRequestsAmount – returns requestsAmount.

• GetBenchmarksQuantity – returns benchmarksQuantity.

• GetNetflagsQuantity – returns netflagsQuantity.

• InternalBill – implements bill logic for specified dealID.

• ReserveNextPeriodFunds – reserves funds for next period for specified dealID.

• RefundRemainingFunds – refunds remaining funds for specified dealID.

• IsSpot – checks if deal duration for specified address is 0.

• CalculatePayment – calculates payment for specified price and period.

• AddToBlacklist – allows consumer to add to a blacklist.

• InternalCloseDeal – allows to close a deal.

• ResizeBenchmarks – resizes benchmark with specified value.

• ResizeNetflags – resizes netflags.

• SetProfileRegistryAddress – sets profile registry address to a specified address. Has

onlyOwner modifier.

• SetBlacklistAddress – sets blacklist address to a specified address. Has onlyOwner modifier.

• SetOracleAddress – sets oracle address to a specific address. Has onlyOwner modifier.

• SetBenchmarksQuantity – sets benchmark quantity. Has onlyOwner modifier.

• SetNetflagsQuantity – sets netflagsQuantity. Has onlyOwner modifier.

• KillMarket – transfers tokens to owner and kills market. Has onlyOwner modifier.

ProfileRegistry contract overview

ProfileRegistry contract constructor sets:

• owner to msg.sender

• validators[msg.sender] to -1

ProfileRegistry.sol has 1 modifier:

• onlySonm – checks if GetValidatorLevel(msg.sender) is -1.

ProfileRegistry.sol has 11 functions:

• AddValidator – creates validator for specified address. Has onlySonm and whenNotPaused

modifiers.

• RemoveValidator – deletes validator for specified address. Has onlyMarket modifier. Has

onlySonm and whenNotPaused modifiers.

• GetValidatorLevel – returns validator level for specified address.

• CreateCertificate – creates certificate. Has whenNotPaused modifier.

• RemoveCertificate – removes certificate. Has whenNotPaused modifier.

• GetCertificate – returns certificate for specified id.

• GetAttributeValue – returns certificate attribute value.

• GetAttributeCount – returns certificate attribute count.

• GetProfileLevel – returns identity level for specified address.

• AddSonmValidator – creates Sonm validator for specified address.Has onlyOwner modifier.

• RemoveSonmValidator – removes Sonm validator for specified address. Has onlyOwner

modifier.

SimpleGatekeeperWithLimit contract overview
SimpleGatekeeperWithLimit contract constructor sets:

• token to StandardToken(_token)

• owner to msg.sender

• freezingTime to _freezingTime

SimpleGatekeeperWithLimit.sol has 3 functions:

• ChangeKeeperLimit – changes keeper`s dayLimit for specified address. Has onlyOwner

modifier.

• FreezeKeeper – freezes keeper for specified address.

• UnfreezeKeeper – unfreezes keeper for specified address. Has onlyOwner modifier.

• PayIn – transfers tokens to the current contract.

• Payout – transfers tokens to a specified address and registers the payout. Has onlyOwner

modifier.

• SetFreezingTime – sets freezing time. Has onlyOwner modifier.

• GetFreezingTime – returns freezing time.

• underLimit – checks if there is enough left - if so, adds provided value to spentToday and

return true. Resets the spend limit if we're on a different day to last time.

• today – returns current block timestamp as seconds since unix epoch divided by 24 hours.

• kill – destroys contract and sends all funds to owner. Has onlyOwner modifier.

SimpleGatekeeperWithLimitLive contract overview
SimpleGatekeeperWithLimitLive contract constructor sets:

• token to SNMMasterchain(_token)

• owner to msg.sender

• freezingTime to _freezingTime

SimpleGatekeeperWithLimit.sol has 3 functions:

• ChangeKeeperLimit – changes keeper`s dayLimit for specified address. Has onlyOwner

modifier.

• FreezeKeeper – freezes keeper for specified address.

• UnfreezeKeeper – unfreezes keeper for specified address. Has onlyOwner modifier.

• PayIn – transfers tokens to the current contract.

• Payout – transfers tokens to a specified address and registers the payout. Has onlyOwner

modifier.

• SetFreezingTime – sets freezing time. Has onlyOwner modifier.

• GetFreezingTime – returns freezing time.

• underLimit – checks if there is enough left - if so, adds provided value to spentToday and

return true. Resets the spend limit if we're on a different day to last time.

• today – returns current block timestamp as seconds since unix epoch divided by 24 hours.

• kill – destroys contract and sends all funds to owner. Has onlyOwner modifier.

Audit overview

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

1. Not using abi.encodePacked in a contracts is bad practice. In current versions of compilers, it

is recommended to use bytes32 txHash = keccak256 (abi.encodePacked (_to, _txNumber,

_value)); instead of bytes32 txHash = keccak256 (_to, _txNumber, _value); in

SimpleGatekeeperWithLimit.sol (line 81); in SimpleGatekeeperWithLimitLive.sol (line 81)

(see Appendix A pic 1 for evidence).

2. Calling events without emit is obsolete, events are invoked without emit in

SimpleGatekeeperWithLimit.sol (line 119); SNMMasterchain.sol (lines 73, 98, 103, 134) (see

Appendix A pic 2 for evidence).

Lowest / Code style / Info

Code style issues
3. Poor conneinting in Market.sol - Line 196 contains a comment // this line contains err.

Comment should be removed in the final version (see Appendix A pic 3 for evidence).

Informational statements

Informational statements are audit team findings that doesn’t have any security issues. However, they

are presented in report to clarify and outline functionality and business requirements.

4. FreezeKeeper function is public in SimpleGatekeeperWithLimit.sol and

SimpleGatekeeperWithLimitLive.sol, i.e. any account with a limit greater than 0 can freeze

any account with a limit greater than 0 (see Appendix A pic 4 for evidence). We were informed

by Customer that this is expected behavior of the contract.

5. Obsolete constructions in SNMMasterchain.sol: (see Appendix A pic 5 for evidence).

• in the contract old versions of OpenZeppelin contracts are copied: SafeMath.sol, Math.sol,

ERC20Basic, BasicToken, ERC20, StandardToken;

• use function SNMMasterchain instead of constructor ();

• old version of the Solidity compiler (0.4.24 is recommended);

SNMMasterchain.sol contract is already deployed and no changes can be made to it.

6. Unlimited tokens can be mint from the ICO account in SNMMasterchain.sol (see Appendix

A pic 6 for evidence).

SNMMasterchain.sol contract is already deployed and no changes can be made to it.

7. Profiles do not stop working after freezing. The AddSonmValidator, RemoveSonmValidator

functions do not have a modifier whenNotPaused, i.e. they can be run while profile is frozen

(see Appendix A pic 7 for evidence). Customer haven’t defined expected behavior yet, but it

considers current behavior as OK.

8. Bad practice ordering is used in several Customer contracts. Changing parameters after

transferring tokens or ether is a bad practice, which can lead to several vulnerabilities,

including reentrancy. On lines 228, 648, 655, 702 Market.sol; lines 104, 128

SimpleGatekeeperWithLimit.sol; line 96 SimpleGatekeeperWithLimitLive.sol (see Appendix

A pic 8 for evidence). It is recommended not to change parameters after transfers. However,

there is no existing attacks for current code so the issue is considered as informational.

Conclusion

During the audit the contract was manually reviewed and analyzed with static analysis tools. As-is

description was described.

Audit team have found some low to lowest security issues during the audit and audit report contains

all necessary information related to them.

Because the vulnerabilities found are low level as maximum, the code is considered secure and no

major fixes are required.

Disclaimers

Disclaimer

The audit does not give any warranties on the security of the code. One audit cannot be considered

enough. We always recommend proceeding to several independent audits and a public bug bounty

program to ensure the security of the smart contracts.

Technical Disclaimer

Smart contract build on the top of Ethereum blockchain means that a lot of features could be covered

by tests, but Turing completeness of Solidity programming language realization leaves some space

for unexpected runtime exceptions.

Appendix A. Evidences

Pic. 1. abi.encodePacked not used

Pic. 2. Calling events without emit

Pic. 3. Poor conneinting in Market.sol

Pic. 4. FreezeKeeper function is public

Pic. 5. SNMMasterchain obsolete constructions

Pic. 6. Unlimited mint

Pic. 7. No WhenNotPaused modifier for functions

Pic 8. Bad practice transaction ordering

Appendix B. Automated tools reports

Pic. 1 Solc Blacklist automated report

Pic. 2 Mythril Blacklist automated report

Pic. 3 Solc ProfileRegistry automated report

Pic. 4 Mythril ProfileRegistry automated report

Pic. 5 Solc SNM automated report

Pic. 6 Mythril SNM automated report

Pic. 7 Solc OracleUSD automated report

Pic. 8 Mythril OracleUSD automated report

Pic. 9 Solc Market automated report

Pic. 10 Mythril Market automated report

Pic. 11 Mythril Market automated report

Pic. 12 Mythril Market automated report

Pic. 13 Mythril Market automated report

Pic. 14 Mythril Market automated report

Pic. 15 Mythril Market automated report

Pic. 16 Mythril Market automated report

Pic. 17 Solc SimpleGatekeeperWithLimit automated report

Pic. 18 Myhtril SimpleGatekeeperWithLimit automated report

Pic. 19 Myhtril SimpleGatekeeperWithLimit automated report

Pic. 20 Myhtril SimpleGatekeeperWithLimit automated report

Pic. 21 Myhtril SimpleGatekeeperWithLimit automated report

Pic. 22 Myhtril SimpleGatekeeperWithLimit automated report

Pic. 23 Solc SimpleGatekeeperWithLimitLive automated report

Pic. 24 Solc SimpleGatekeeperWithLimitLive automated report

Pic. 25 Myhtril SimpleGatekeeperWithLimitLive automated report

Pic. 26 Myhtril SimpleGatekeeperWithLimitLive automated report

Pic. 27 Myhtril SimpleGatekeeperWithLimitLive automated report

