Smart Contract Code Review and Security Analysis Report

Customer: SONM
Date: July 13, 18

This document contains confidential information about IT systems and
intellectual properties of the customer, as well as information about potential
vulnerabilities and methods of their exploitation.

This confidential information is for internal use by the customer only and
shall not be disclosed to third parties.

Document:
Name: Smart Contract Code Review and Security
Analysis Report for SONM
Date: 13.07.2018

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Table of contents

[T OTUCTION ..o ctrcercescteete st eee st ss s s bbb bbb 3
SCOPE. . euteurereeressesssessesessesse s e s s eSS R SRR AR AR AR 3
EXECULIVE SUMMEAIY ..ooveeeeieeeeesresssssesssssssssssssssssssessssssssssssssssssssessessssssssssssssssssssesssssssssssssssssssnssssssesssssssssssssnssnssnes 5
SEVETTEY DETINITIONS. ..ceuieereeaeesreesseessesssesssesssesssessse s s bbb bbb 5
AAS-IS OVEIVIBW ..c.orvreeeeeesessessessesse s s essesssssse s ssse s s s 6
AUGIT OVEIVIBW ..cooveeeeeeeessesssesssessse s sssesssesssessse s s bbbt 10
(O] T 1115 0] o OO 12
DT F= U] T 5PN 12
APPENAIX A EVIHEINCES ... ceeeeeeneeseesseessesssesssesssssssesssessssssse s ssssssssssssss s s s s s ssssssssssssssssssssssssssessans 13
Appendix B. AUtOMALEd tOOIS FEPOITS......ovuceereecerrerreesresseseessesseessesssssesssssssssssssssessssssessesssssssssssssssssssssssssanes 17

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Introduction

Hacken OU (Consultant) was contracted by SONM (Customer) to conduct a Smart Contract Code
Review and Security Analysis. This report presents the findings of the security assessment of
Customer’s smart contract and its code review conducted between June 28th, 2018 - July 13th, 2018.

Scope

The scope of the project is SONM smart contracts, which can be found on github by links below:

e Blacklist

https://github.com/sonm-io/core/blob/master/blockchain/source/contracts/Blacklist.sol

e ProfileRegistry

https://github.com/sonm-io/core/blob/master/blockchain/source/contracts/ProfileRegistry.sol

e OracleUSD

https://github.com/sonm-io/core/blob/master/blockchain/source/contracts/OracleUSD.sol

e SNM

https://github.com/sonm-io/core/blob/master/blockchain/source/contracts/SNM.sol

e SimpleGatekeeperWithLimit

https://github.com/sonm-
io/core/blob/master/blockchain/source/contracts/SimpleGatekeeperWithLimit.sol

e SimpleGatekeeperWithLimitLive

https://github.com/sonm-
io/core/blob/master/blockchain/source/contracts/SimpleGatekeeperWithLimitLive.sol

Commit 4ccf67358be704f76be54dd28d85chd4cc801a43

We have scanned this smart contract for commonly known and more specific vulnerabilities. Here
are some of the commonly known vulnerabilities that are considered (the full list includes them but
is not limited to them):

e Reentrancy

e Timestamp Dependence

e Gas Limit and Loops

e DoS with (Unexpected) Throw
e DoS with Block Gas Limit

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Transaction-Ordering Dependence
Byte array vulnerabilities

Style guide violation

Transfer forwards all gas

ERC20 API violation

Malicious libraries

Compiler version not fixed

Unchecked external call - Unchecked math

Unsafe type inference
Implicit visibility level

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Executive Summary

According to the assessment, Customer’s smart contracts are well secured and have only some low
security issues that can’t have significant impact on security.

Our team performed analysis of code functionality, manual audit and automated checks with solc,
Mythril and remix IDE (see Appendix B pic 1-27). All found issues during automated analysis were
manually reviewed and applicable vulnerabilities are presented in Audit Overview section. General
overview is presented in AS-1S section and all found issues can be found in Audit overview section.

We found 2 low-level vulnerabilities, outlined 3 important informational statements and 1 code style

issue.

Graph 1. Vulnerabilities distribution

Code style
violations

Hlow Hinfo Code style violations

Severity Definitions

Risk Level

. Critical vulnerabilities are usually straightforward to exploit and can lead to
Critical
tokens lose etc.
High-level vulnerabilities are difficult to exploit; however, they also have
High significant impact on smart contract execution, e.g. public access to crucial
functions
i Medium-level vulnerabilities are important to fix; however, they can’t lead
Medium
to tokens lose
Low-level vulnerabilities are mostly related to outdated, unused etc.
Low . ,
code snippets, that can’t have significant impact on execution
Lowest / Code Lowest-level vulnerabilities, code style violations and info statements
Style / Info can’t affect smart contract execution and can be ignored.

al. No part of th

document be disclosed in any manner to a third pe

s
IS

vithout the prior written consent of Hacken

AS-IS overview

SNM contract overview

SNM.sol contract describes custom ERC20 token with next parameters:

name — SONM token
symbol — SNM
decimals — 18

SNM contract constructor sets:

totalSupply_to 444 * 1e6 * 1e18
balances[msg.sender] to totalSupply _

Blacklist contract overview

Blacklist contract constructor sets:

owner to a msg.sender

Blacklist.sol has 1 modifier:

OnlyMarket — checks if market is not 0x0; checks if msg.sender is a market or msg.sender is
a master.

Blacklist.sol has 6 functions:

Check — checks if person is in a blacklist

Add — adds provided address to a blacklist. Has onlyMarket modifier.

Remove — removes provided address from a blacklist.

AddMaster —adds master. Has onlyOwner modifier.

RemoveMaster — removes master. Has onlyOwner modifier.

SetMarketAddress— sets market address to a specified address. Has onlyOwner modifier.

Market contract overview
Market contract constructor sets:

token to SNM(_token)

bl to Blacklist(_blacklist)

oracle to OracleUSD(_oracle)

pr to ProfileRegistry(_profileRegistry)
benchmarksQuantity to _benchmarksQuantity
netflagsQuantity to _netflagsQuantity

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Market.sol has 37 functions:

e PlaceOrder — creates order on the market.

e CancelOrder — cancels order with ORDER_ACTIVE status.

e QuickBuy — creates an Ask order and calls OpenDeal.

e OpenDeal — opens the deal with a specified dealID.

e CloseDeal — closes the deal with a specified deal ID.

e Bill — makes payments on the transaction..

e CreateChangeRequest — creates a new ChangeRequest, if there is a similar one on the other
hand (Supplier or Customer), the transaction conditions change..

e CancelChangeRequest — changes RequesStatus to a REQUEST_CANCELED or
REQUEST _REJECTED.

e RegisterWorker — registers the transaction author as Worker for the specified master.

ConfirmWorker — confirms registration of the specified worker for the master - the author of

the transaction.

e RemoveWorker — removes the specified worker for the specified master.

e GetOrderInfo — returns information about the order with a specified orderID.

e GetOrderParams — returns orderStatus and deal D about the order with a specified orderID.

e GetDeallnfo — returns information about the deal with a specified dealID.

e GetDealParams — returns parameters for the deal with a specified deal D,

e (GetMaster — returns the specified master Worker. Returns Worker, if the master is not
specified.

e GetChangeRequestinfo — returns information about the change request with a specified
changeRequestID.

o GetDealsAmount — returns deal Amount.

e GetOrdersAmount — returns orderAmount.

e GetChangeRequestsAmount — returns requestsAmount.

e GetBenchmarksQuantity — returns benchmarksQuantity.

o GetNetflagsQuantity — returns netflagsQuantity.

e InternalBill — implements bill logic for specified dealID.

e ReserveNextPeriodFunds — reserves funds for next period for specified dealD.

e RefundRemainingFunds — refunds remaining funds for specified deallD.

e [sSpot — checks if deal duration for specified address is 0.

e CalculatePayment — calculates payment for specified price and period.

e AddToBlacklist —allows consumer to add to a blacklist.

e InternalCloseDeal —allows to close a deal.

e ResizeBenchmarks — resizes benchmark with specified value.

e ResizeNetflags — resizes netflags.

o SetProfileRegistryAddress — sets profile registry address to a specified address. Has
onlyOwner modifier.

e SetBlacklistAddress — sets blacklist address to a specified address. Has onlyOwner modifier.

e SetOracleAddress — sets oracle address to a specific address. Has onlyOwner modifier.

e SetBenchmarksQuantity — sets benchmark quantity. Has onlyOwner modifier.

o SetNetflagsQuantity — sets netflagsQuantity. Has onlyOwner modifier.

o KillMarket — transfers tokens to owner and kills market. Has onlyOwner modifier.

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

ProfileRegistry contract overview

ProfileRegistry contract constructor sets:

e owner to msg.sender
¢ validators[msg.sender] to -1

ProfileRegistry.sol has 1 modifier:

e onlySonm — checks if GetValidatorLevel(msg.sender) is -1.

ProfileRegistry.sol has 11 functions:

e AddValidator — creates validator for specified address. Has onlySonm and whenNotPaused
modifiers.

e RemoveValidator — deletes validator for specified address. Has onlyMarket modifier. Has

onlySonm and whenNotPaused modifiers.

GetValidatorLevel — returns validator level for specified address.

CreateCertificate — creates certificate. Has whenNotPaused modifier.

RemoveCertificate — removes certificate. Has whenNotPaused modifier.

GetCertificate — returns certificate for specified id.

GetAttributeValue — returns certificate attribute value.

GetAttributeCount — returns certificate attribute count.

GetProfileLevel — returns identity level for specified address.

AddSonmValidator — creates Sonm validator for specified address.Has onlyOwner modifier.

RemoveSonmValidator — removes Sonm validator for specified address. Has onlyOwner

modifier.

SimpleGatekeeperWithLimit contract overview
SimpleGatekeeperWithLimit contract constructor sets:

e token to StandardToken(_token)
e owner to msg.sender
e freezingTime to _freezingTime

SimpleGatekeeperWithLimit.sol has 3 functions:

e ChangeKeeperLimit — changes keeper's dayLimit for specified address. Has onlyOwner
modifier.

FreezeKeeper — freezes keeper for specified address.

UnfreezeKeeper — unfreezes keeper for specified address. Has onlyOwner modifier.

PayIn — transfers tokens to the current contract.

Payout — transfers tokens to a specified address and registers the payout. Has onlyOwner
modifier.

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

e SetFreezingTime — sets freezing time. Has onlyOwner modifier.

e GetFreezingTime — returns freezing time.

e underLimit — checks if there is enough left - if so, adds provided value to spentToday and
return true. Resets the spend limit if we're on a different day to last time.

e today — returns current block timestamp as seconds since unix epoch divided by 24 hours.

e kill — destroys contract and sends all funds to owner. Has onlyOwner modifier.

SimpleGatekeeperWithLimitLive contract overview
SimpleGatekeeperWithLimitLive contract constructor sets:

e token to SNMMasterchain(_token)
e Oowner to msg.sender
e freezingTime to freezingTime

SimpleGatekeeperWithLimit.sol has 3 functions:

e ChangeKeeperLimit — changes keeper's dayLimit for specified address. Has onlyOwner

modifier.

FreezeKeeper — freezes keeper for specified address.

UnfreezeKeeper — unfreezes keeper for specified address. Has onlyOwner modifier.

PayIn — transfers tokens to the current contract.

Payout — transfers tokens to a specified address and registers the payout. Has onlyOwner

modifier.

SetFreezingTime — sets freezing time. Has onlyOwner modifier.

e GetFreezingTime — returns freezing time.

e underLimit — checks if there is enough left - if so, adds provided value to spentToday and
return true. Resets the spend limit if we're on a different day to last time.

e today — returns current block timestamp as seconds since unix epoch divided by 24 hours.

e kill —destroys contract and sends all funds to owner. Has onlyOwner modifier.

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Audit overview

Critical

No critical severity vulnerabilities were found.
High

No high severity vulnerabilities were found.
Medium

No medium severity vulnerabilities were found.

Low

1. Not using abi.encodePacked in a contracts is bad practice. In current versions of compilers, it
is recommended to use bytes32 txHash = keccak256 (abi.encodePacked (to, txNumber,
_value)); instead of bytes32 txHash = keccak256 (_to, _txNumber, _value); in
SimpleGatekeeperWithLimit.sol (line 81); in SimpleGatekeeperWithLimitLive.sol (line 81)
(see Appendix A pic 1 for evidence).

2. Calling events without emit is obsolete, events are invoked without emit in
SimpleGatekeeperWithLimit.sol (line 119); SNMMasterchain.sol (lines 73, 98, 103, 134) (see
Appendix A pic 2 for evidence).

Lowest / Code style / Info

Code style issues

3. Poor conneinting in Market.sol - Line 196 contains a comment // this line contains err.
Comment should be removed in the final version (see Appendix A pic 3 for evidence).

Informational statements

Informational statements are audit team findings that doesn’t have any security issues. However, they
are presented in report to clarify and outline functionality and business requirements.

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

4. FreezeKeeper function is public in SimpleGatekeeperWithLimit.sol and
SimpleGatekeeperWithLimitLive.sol, i.e. any account with a limit greater than 0 can freeze
any account with a limit greater than 0 (see Appendix A pic 4 for evidence). We were informed
by Customer that this is expected behavior of the contract.

5. Obsolete constructions in SNMMasterchain.sol: (see Appendix A pic 5 for evidence).

e inthe contract old versions of OpenZeppelin contracts are copied: SafeMath.sol, Math.sol,
ERC20Basic, BasicToken, ERC20, StandardToken;

e use function SNMMasterchain instead of constructor ();

e old version of the Solidity compiler (0.4.24 is recommended);

SNMMasterchain.sol contract is already deployed and no changes can be made to it.

6. Unlimited tokens can be mint from the ICO account in SNMMasterchain.sol (see Appendix
A pic 6 for evidence).

SNMMasterchain.sol contract is already deployed and no changes can be made to it.

7. Profiles do not stop working after freezing. The AddSonmValidator, RemoveSonmValidator
functions do not have a modifier whenNotPaused, i.e. they can be run while profile is frozen
(see Appendix A pic 7 for evidence). Customer haven’t defined expected behavior yet, but it
considers current behavior as OK.

8. Bad practice ordering is used in several Customer contracts. Changing parameters after
transferring tokens or ether is a bad practice, which can lead to several vulnerabilities,
including reentrancy. On lines 228, 648, 655, 702 Market.sol; lines 104, 128
SimpleGatekeeperWithLimit.sol; line 96 SimpleGatekeeperWithLimitLive.sol (see Appendix
A pic 8 for evidence). It is recommended not to change parameters after transfers. However,
there is no existing attacks for current code so the issue is considered as informational.

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Conclusion

During the audit the contract was manually reviewed and analyzed with static analysis tools. As-is
description was described.

Audit team have found some low to lowest security issues during the audit and audit report contains
all necessary information related to them.

Because the vulnerabilities found are low level as maximum, the code is considered secure and no
major fixes are required.

Disclaimers

Disclaimer

The audit does not give any warranties on the security of the code. One audit cannot be considered
enough. We always recommend proceeding to several independent audits and a public bug bounty
program to ensure the security of the smart contracts.

Technical Disclaimer

Smart contract build on the top of Ethereum blockchain means that a lot of features could be covered
by tests, but Turing completeness of Solidity programming language realization leaves some space
for unexpected runtime exceptions.

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Appendix A. Evidences

Pic. 1. abi.encodePacked not used

bytes32 txHash = keccak256(to, _txNumber, wvalue);

Pic. 2. Calling events without emit
Transfer(msg.sender, to, wvalue);

Pic. 3. Poor conneinting in Market.sol
'/ this line contains err.

require(token.transferFrom{msg.sender, this, lockedSum));

Pic. 4. FreezeKeeper function is public
function FreezeKeeper({address _keeper) public {
/ check access of sender
require(keepers[msg.sender].daylimit » @);
'/ check that freezing keeper has limit
require(keepers[_keeper].daylimit > @);
keepers[_keeper].frozen = true;

emit KeeperFreezed(_ keeper);

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Pic. 5. SNMMasterchain obsolete constructions

contract ERC2BBasic {
uint public totalSupply;
function balanceOf({address who) constant returns (uint);
function transfer{address to, uint wvalue);

event Transfer{address indexed from, address indexed to, uint value);

contract BasicToken is ERC28Basic {

using SafteMath for uint;

mapping{address =» uint) balances;

modifier onlyPayloadSize(uint size) {
if(msg.data.length < size + 4) {
throw,;

}

— ¥

function transfer(address _to, uint _wvalue) onlyPayloadSize(2 * 32) {
balances[msg.sender] = balances[msg.sender].sub(_walue);
balances[_to] = balances[_to].add(_wvalue);

Transfer(msg.sender, to, wvalue);

function balanceOf(address _owner) constant returns (uint balance) {

return balances[_owner];

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

contract ERC28 is ERC2@Basic {
function allowance(address owner, address spender) constant returns {uint);
function transferFrom(address from, address to, uint value);
function approve(address spender, uint wvalue);

event Approval({address indexed owner, address indexed spender, uint wvalue);

contract StandardToken is BasicToken, ERC26 {
mapping (address => mapping (address => uint)) allowed,;

function transferFrom(address from, address to, uint wvalue} {
var _allowance = allowed[_from][msg.sender];
balances[_to] = balances[_to].add{ value);
balances[from] = balances[from].sub{ value);
allowed[_from][msg.sender] = _allowance.sub{_value);

Transfer{_ from, to, wvalue);

function approve(address spender, uint value) {
allowed[msg.sender][_spender] = _value;

Approval{msg.sender, spender, value);

function allowance{address owner, address spender) constant returns (uint remaining)

=

return allowed|[owner][_spender];

function SHNMMasterchain{address _ico) {

ico = _ico;

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Pic. 6. Unlimited mint
function mint(address _holder, uint _wvalue) external {
require{msg.sender == ico);
require{_value != @);

require{totalSupply + wvalue <= TOKEN LIMIT);

balances[_holder] += _value;
totalSupply += wvalue;
Transfer(B8xd, _holder, _wvalue);

Pic. 7. No WhenNotPaused modifier for functions
function AddSonmValidator(address validator) onlyOwner public returns (bool) {
validators[_validator] = -1;

return true;

¥

function RemoveSonmValidator({address walidator) onlyOwner public returns (bool) {
require(GetValidatorlevel{_wvalidator) == -1)};
validators[_validator] = @;
return true;

¥

Pic 8. Bad practice transaction ordering
require(token.transfer(msg.sender, orders[orderID].frozenSum));

orders[orderID].orderStatus = OrderStatus.0ORDER_IMACTIVE;

require(token.transfer({deal.masterlD, deal.blockedBalance));
deals[dealID].lastBillTS = block.timestamp;
deals[deallD].totalPayout = deals[dezlID].totalPayout.add{deal.blockedBalance);
deals[dealID].blockedBalance = @;
require(token.transfer(deal.masterlID, paidAmount));
deals[deallD].blockedBalance = deals[deallD].blockedBalance.sub(paidAmount);
deals[deallID].totalPayout = deals[deallD].totalPayout.add(paidAmount};
deals[deallID].1lastBillTS = block.timestamp;

token.transfer(deals[deallD].consumerID, deals[deallD].blockedBalance);
deals[deallD].blockedBalance = @;

require(token.transfer{ to, wvalue));

paid[txHash] = true;

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party

without the prior written consent of Hacken

Appendix B. Automated tools reports

Plc 1 Solc Blackllst automated report
s = sonm$ solc -o . --bin --abi --overwrite Blacklist.sol

onm$ myth -x Blacklist.sol
The analyﬂls was completed Succeﬂsfully No issues were detected.

max@max-VirtualBox:~, idity, ects/sonm5 I

Pic. 4 Mythril ProfileRegistry automated report
max@max-VirtualBox:~/solidity/projects/sonm$ myth -x ProfileRegistry.sol

The analysis was completed successfully. No issues were detected.

¥

max@max-VirtualBox:~/solidity/projects/sonm$ I

Pic. 5 Solc SNM automated report

sonm$ solc -0 . --bin --abi --overwrite SNM.sol

-VirtualBox:~/
teger Overflow
arning
Contract: Unknown
Function name: increaseApproval(address,uint256)
PC address: 5383
A possible integer overflow exists in the function 'increaseApproval(address,uint256)°
The addition or multiplication may result in a value higher than the maximun representable integer.

ception state ====
e: Informational
Contract: Unknown
Function name: increaseApproval(address,uint256)
PC address: 5396
A reachable exception (opcode oxfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note ho
wever that ‘assert()" should only be used to check invariants. Use 'require()’ for regular input checking.

mS$ solc -o . --bin --abi --overwrite OracleUSD.sol
maxmmax vlrtualBox:~,1011d1tu.prn]ectaﬁsmnm5

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party
without the prior written consent of Hacken

Pic. 8 Mythril OracleUSD automated

max@max-VirtualBox:~/solidity/projects/sonm$ myth -x OracleusD.sol
The analysis was completed successfully. No issues were detected.

max@max-VirtualBox:~/solidity/projects/sonm$ ||

Pic. 9 Solc Market automated report

max@max-VirtualBox:~/solidity/projects/sonm$ solc -o . --bin --abi --overwrite Market.sol
max@max-VirtualBox:~/solidity/projects/sonm$ I

Pic. 10 Mythril Market automated rep

[max@max-VirtualBox: y/projects/sonn$ myth -x Market.sol

==== Exception state
: Informational
¢ Unknown
Function name: _function_8xB3988784
PC address: 699
4 reachable exception (opcode Bxfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note however t
Ld only be used to check invariants. Use ‘require()" for regular input checking.

mapping(uint => Deal) public deals

Exception state ====
[Type: Informational
jcontract: unknown
Function name: GetDealParams{uint256)
PC address: 1376
4 reachable exception (opcode @xfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note however t
hat "assert()" should only be used to check invariants. Use "require()’ for regular input checking.
In file: Market.sol:556
function GetDealParams(uint deallD) wiew public
returns (
uint duration,
vint price,
uint endTime,
DealStatus status,
uint blockedBalance,
uint totalPayout,
uint lasteillTs

return (
deals[dealIp].duration,
deals[dealID].price,
deals[deallD].endTime,
deals[dealID].status,
deals[dealID].blockedBalance,
deals[deallD].totalPayout,
deals[dealID].lastBLl1TS

bH

Pic. 11 Mythril Market automated report

= Integer Overflow =

Type: Warning

Contract: Unknown

Function name: GetDealInfo(uint256)

PC address: 1666

A possible integer overflow exists in the function ‘GetDealInfo(uint256)".

The addition or multiplication may result in a wvalue higher than the maximum representable integer.

function GetDealInfo(uint dealID) view public
returns (
uint64[] benchmarks,
address supplierlD,
address consumerID,
address masterlID,
uint askID,
uint bidID,
uint startTime

return (
deals[deallD].benchmarks,
deals[dealID].supplierlD,
deals[deallD].consumerlD,
deals[dealID].masterID,
deals[deallD].askID,
deals[deallID].bidID,
deals[dealID].startTime

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party
without the prior written consent of Hacken

Pic. 12 Mythril Market automated repor

Exception state
Informational
: Unknown
GetChangeRequestInfo(uint256)
1836
reachable exception (opcode Oxfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note however t
hat “assert()' should only be used to check invariants. Use ‘require()’ for regular input checking

In file: Market.sol:585

function Getch Info(utnt ch estID) view public
returns (
uint dealid
OrderType requestType,
uint price
vint duration,
RequestStatus status

return (
requests[changeRequestID].deallD,
requests[changeRequestID].requestType,
requests[changeRequest1D].price,
requests[changeRequestID].duration,
requests[changeRequestID].status

Pic. 13 Mythril Market automated repor

Exception state
Type: Informational

contract: Unknown

Function name: GetChangeRequestInfo(ulnt256)

PC address: 1868

A reachable exception (opcode 6xfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note however t
hat “assert()" should only be used to check invariants. Use "require()’ for regular input checking.

In file: Market.sol:585

function GetChang tinfo(uint c tID) view public
returns (
utnt dealip,
OrderType requestType,
uint price,
uvint duration,
RequestStatus status

return (
requests[changeRequestID].deallD,
requests[changeRequestID]. requestType,
requests(changeRequestID].price,
requests[changeRequestID].duration,
requests[changeRequest1D].status

Message call to external contract
Type: Warning
contract: Unknown
Function name: SetOracleAddress(address)
PC address: 4693
This contract executes a message call to an address provided as a function argument. Generally, it is not recommended to call user-supplied addresses using Solidity's call() construct. Note that attackers might
leverage reentrancy attacks to exploit race conditions or manipulate this contract's state

In file: Market.sol:767

oracleusn(_neworacle).getCurrentPrice()

Pic. 14 Mythril Market automated repor

State change after external call
Type: Warning
Contract: Unknown
Function name: SetOracleAddress(address)
PC address: 4826
The contract account state is changed after an external call. Consider that the called contract could re-enter the function before this state change takes place. This can lead to business logic vulnerabilities.

In file: Market.sol:768

oracle = Oracleusb(_neworacle)

= Exception state =
Type: Informational

[Contract: Unknown

Function name: GetOrderParams(uint256)

PC address: 5944

A reachable exception (opcode 0xfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note however t
hat “assert()’ should only be used to check invariants. Use require()’ for regular input checking.

In file: Market.sol:527

lorder memory order = ordersforderIn]

Integer Overflow
Warning

contract: Unknown

Function name: GetOrderParams(uint256)

PC address: 6242

A possible integer overflow exists in the function ‘GetOrderParams(ulnt256

The addition or multiplication may result in a value higher than the maximum representable intege

In file: Market.sol:527

order memory order = orders[orderID,

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party
without the prior written consent of Hacken

Pic. 15 Mythril Market automated report

teger Overflow

y arning

contract: unknown

Function name: GetOrderParams(uint256)

PC address: 6244

s possible integer owerflow exists in the function "GetOrderParams(uint256)

IThe addition or multiplication may result in a value higher than the maximum representable integer.
In file: Market.sol:527

lorder memory order = orders[orderIn]

Exception state ====
nformational
jcontract: Unknown
Function name: GetOrderParams(ulnt256)
PC address: 6351
|4 reachable exception (opcode 6xfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note however t
hat “assert()" should only be used to check invariants. Use ‘require(})’ for regular input checking.
In file: Market.sol:527

lorder memory order = orders[orderID]

ame: CreateChangeRequest(uint256,uint256,ulnt256)
7652

i reachable _exception (opcode @xfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note however t
should only be used to check invariants. Use ‘require()’ for regular input checking.
In file: market.sol:3ss

deals[dealIn].status == DealStatus.STATUS_ACCEPTED

Integer Overflow
Type: Warning
Contract: Unknown
Function name: GetDealInfo(uint256)
PC address: 10788
A possible integer overflow exists in the function “GetDealInfo(uint256)"
The addition or multiplication may result in a value higher than the maximum representable integer.

In file: Market.sol:544

return (

deals[deallD].benchmarks,
deals[dealID].supplierlD,
deals[deallID].consumerlD,
deals[deallD].masterID,
deals[deallD].askID,
deals[dealID].bidID,
deals[dealID].startTime

== Integer Overflow ====
Type: Warning
Contract: Unknown
Function name: GetDealInfo(uint256)
PC address: 18790
A possible integer overflow exists in the function “GetDealInfo(uint256)"
The addition or multiplication may result in a value higher than the maximum representable integer.

In file: Market.sol:544

return (

deals[deallD].benchmarks,
deals[dealID].supplierlD,
deals[deallID].consumerlD,
deals[deallD].masterID,
deals[deallD].askID,
deals[dealID].bidID,
deals[dealID].startTime

max@max-VirtualBox:~/solidity/projects/sonm$ I

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party
without the prior written consent of Hacken

Pic. 17 Solc SimpleGatekeeperWithLimit automated report

max@max-VirtualBox:~/solidity/projects/sonm$ solc -0 . --bin --abi --overwrite SimpleGatekeeperWithLimit.sol

[SimpleGatekeeperWithLimit.sol:89:26: Warning: This function only accepts a single "bytes" argument. Please use "abi.encodePacked(...)" or a similar function to encode the data.
bytes32 txHash = keccak256(_to, _txNumber, _value);

simpleGatekeeperWithLimit.sol:11 warning: Invoking events without "emit” prefix is deprecated.

CommissionChanged(commission);

sure that the called contract is trusted and

tder that the called contract could re-enter the ate change takes place. This can lead to bust vulnerabiliti

sure that the called c and dot

Integer Overflo
: Warning
contract: Unknown
Function name: Payin(ulnt256)
PC ad 2126
A possible integer overflow exists in the function 'Payin(uint256)°.
The addition or multiplication may result in a value higher than the maximum representable integer.

In file: SimpleGatekeeperWithLimit.sol:79

transactionAmount + 1

= State change after external call
Type:

Function name: Payin(utnt256)
PC address 31
The contract account state is changed after an external call. Consider that the called contract could re-enter the function before this state change takes place. This can lead to business logic vulnerabilities.

In file: SimpleGatekeeperWithLinit.sol:79

transactionAmount = transactionAmount + 1

-=== State change after external call
Type: Warning
unknown
: Payln(uint256)
60
account state is changed after an external call. Consider that the called contract could re-enter the function before this state change takes place. This can lead to business logic vulnerabilities.

simpleGat erWithLinit.sol:80

sionBalance = commissionBalance.add(conmission)

his document is proprietary and confidential. No part of this
ocument may be disclosed in any manner to a third party
without the prior written consent of Hacken

Pic. 20 Myhtril SimpleGatekeeperWithLimit automated report

Message call to external contract
Informational

In file: SimpleGatekeeperWithLimit.sol:153

token.balanceof(address(this))

Multiple calls
Information

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As external calls can fail accidentally or deliberately.
Consecutive calls:
Call at address: 2897

In file: SimpleGatekeeperWithLimit.sol:153

token.balanceof(address(this))

Message call to external contract
Informational
Function name: kill()
PC address: 2897
This contract executes a message call to to another contract. Make sure that the called contract is trusted and does not execute user-supplied code.

In file: SimpleGatekeeperWithLimit.sol:153

token.transfer(owner, token.balanceof(address(this)))

Message call to external contract =
Informational
: Unknown
: Payout(address,ulnt2s6,ulnt256)
59

This contract executes a message call to to another contract. Make sure that the called contract is trusted and does not execute user-supplied code
token.transfer(_to, _value)

==== State change after external call ==
Type: Warning

contract: Unknown

Function name: Payout(address,uint256,uint256)

PC address: 4188

The contract account state is changed after an external call. Consider that the called contract could re-enter the function before this state change takes place. This can lead to business logic vulnerabilities

In file: SimpleGatekeeperWithLinit.sol:184

pald[txHash].pald = true

==== Integer Overflow ====
[Type: wWarning
[Contract: Unknown
: Payin(uint256)
964

o possible integer overflow exists in the function "Payin(uint256)°
The addition or multiplication may result in a value higher than the maximum representable integer

: safemath.sol:as

Exception state =
Informational
: Unknown
Function name: Payin(uint256)
PC address: 591
A reachable exception (opcode Oxfe) has been detected. This can be caused by type errors, division by zero, out-of-bounds array access, or assert violations. This is acceptable in most situations. Note however t
hat “assert()’ should only be used to check invariants. Use ‘require()" for regular input checking

In file: SafeMath.sol:49

assert(c >= a)

max@max-virtualBox:

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party
without the prior written consent of Hacken

Pic. 23 Solc SimpleGatekeeperWithLimitLive automated report

[max@max-VirtualBox:~/solidity/projects/sonm$ solc -o . --bin --abi --overwrite SimpleGatekeeperhithLimitLive.sol
[sNMMasterchain.sol:46:7: Warning: "throw” is deprecated in favour of "revert()", "require()" and "assert()".
throw;

sNMMasterchain.sol:65:8: Warning: "throw” is deprecated in favour of "revert()", "require()" and "assert()".
throw;

[SNMMasterchain.sol:94:5: Warning: Use of the "var” keyword is deprecated.
var _allowance = allowed[_from][msg.sender];

[SNMMasterchain.sol:122:3: Warning: Defining censtructors as functions with the same name as the contract is deprecated. Use "constructor(...) { ... }" instead.
function SNMMasterchain(address _ico) {
A (Relevant source part starts here and spans across multiple lines).
SNMMasterchain.sol:44:3: Warning: This declaration shadows a builtin symbol.
function assert(bool assertion) internal {
A (Relevant source part starts here and spans across multiple lines).
[SNMMasterchain.sol:73:5: Warning: Invoking events without "emit" prefix is deprecated.
ue);

: Invoking events without "emit" prefix is deprecated.

)" or a similar function to encode the data.

[SNMMasterchain.sol:53:3: Warning: No v ility specified. Defaulting to "public”.
function balanceOf(address who) constant returns (uint);
[SNMMasterchain.sol Warning: No vis ity specified. Defaulting to "public”.
function transfer(address to, uint value);
[SNMMasterchain.sol Warning: No visibility specified. Defaulting to "public”.
function transfer(address _to, uint _value) onlyPayloadsize(2 * 32) {
A (Relevant source part starts here and spans across multiple lines).
[SNMMasterchain.sol:76:3: Warning: No visibility specified. Defaulting to "public”.
function balance0f(address _owner) constant returns (uint balance) {
A (Relevant source part starts here and spans across multiple lines).
[SNMMasterchain.sol:83:3: Warning: No visibility specified. Defaulting to "public”.
function allowance(address owner, address spender) constant returns (uint);
[SNMMasterchain.sol Warning: No visibility specified. Defaulting to "public”.
function transferFrom(address from, address to, uint value)

SNMMasterchain.sol:85:3: Warning: Mo wvisibility specified. Defaulting to "public".
function approve(address spender, uint value);

SNMMasterchain.sol:93:3: Warning: Mo visibility specified. Defaulting to "public".

function transferFrom(address _from, address _to, uint _value) {

A (Relevant source part starts here and spans across multiple lines).
SNMMasterchain.sol:101:3: Warning: Mo visibility specified. Defaulting to "public".

function approve(address _spender, uint _wvalue) {

A (Relevant source part starts here and spans across multiple lines).
SNMMasterchain.sol:106:3: Warning: Mo visibility specified. Defaulting to "public".

function allowance(address _owner, address _spender) constant returns (uint remaining) {

~ (Relevant source part starts here and spans across multiple 1lines).
SNMMasterchain.sol:122:3: Warning: Mo visibility specified. Defaulting to "public".

function SNMMasterchain(address _ico) {

A (Relevant source part starts here and spans across multiple 1lines).
SNMMasterchain.sol:28:3: Warning: Function state mutability can be restricted pure

function max64(uint64 a, uint64 b) internal constant returns (uint64) {

~ (Relevant source part starts here and spans across multiple lines).
SNMMasterchain.sol:32:3: Warning: Function state mutability can be restricted pure

function min64(uint64 a, uint64 b) internal constant returns (uint64) {

A (Relevant source part starts here and spans across multiple lines).
SNMMasterchain.sol:36:3: Warning: Function state mutability can be restricted pure

function max256(uint256 a, uint256 b) internal constant returns (uint256) {

A (Relevant source part starts here and spans across multiple lines).
SNMMasterchain.sol:40:3: Warning: Function state mutability can be restricted pure

function min256(uint256 a, uint256 b) internal constant returns (uint256) {

~ (Relevant source part starts here and spans across multiple 1lines).
SNMMasterchain.sol:44:3: Warning: Function state mutability can be restricted pure

function assert(bool assertion) internal {

A (Relevant source part starts here and spans across multiple 1lines).
max@max-VirtualBox:~/solidity/projects/sonm$ I

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party
without the prior written consent of Hacken

Pic. 25 Myhtril SimpleGatekeeperWithLimitLive automated repor

[naxgnax-virtualso: Lidity/ ect
Message call to external contract
Informational
: Unknown
Function name: Payln{uint2s6)
PC address: 1382
This contract executes a message call to to another contract. Make sure that the called contract is trusted and does not execute user-supplied code

S myth -x SimpleGatekeeperWithLimitLive.sol

In file: SimpleGatekeeperWithLimitLive.sol:71

token. transferFrom(msg.sender, this, _value)

Integer Overflow
IType: Warnting
contract: Unknown
L Payin{uint256)
: 1409
2 possible integer overflow exists in the function ‘Payin(uint2se)
[The addition or multiplication may result in a value higher than the maximum representable integer.

In file: SimpleGatekeeperWithLimitLive.sol:72

transactionAmount + 1

state change after external call
Type: Warning
contract: Unknown
Functlon name: Payln{uint256)
PC address: 1414

The contract account state is changed after an external call. Consider that the called contract could re-enter the function before this state change takes place. This can lead to business logic vulnerabilities.
In file: stmpleGatekeeperwithLinttLive.sol:72

transactionAmount = transactionAmount + 1

Pic. 26 Myhtril SimpleGatekeeperWithLimitLive automated report

Message call to external contract
Informational

This contract executes a message call to to another contract. Make sure that the called contract is trusted and does not execute user-supplied code.

SimpleGatekeeperWithLimitLive.sol:131

token.balanceof(address(this))

Multiple Calls
Information

Multiple sends exist in one transaction, try to isolate each external call into its own transaction. As external calls can fail accidentally or deliberately.
Consecutive calls:
Call at address: 2131

Message call to external contract
Informational

Make sure that the called contract is trusted and does not execute user-supplied code.

Message call to external contract
[Type: Informational
jcantract: unknown
Function name: Payout(address,uint256,uint256)
PC address: 3237
This contract executes a message call to to another contract. Make sure that the called contract is trusted and does not execute user-supplied code

In file: SimpleGatekeeperWithLinitlive.sol:95

token. transfer(_to, _value)

State change after external call
: Warning
: Unknown
Function name: Payout(address,uint256,uint256)
PC address: 3312
[The contract account state s changed after an external call. Consider that the called contract could re-enter the function before this state change takes place. This can lead to business loglc vulnerabilities

In file: SimpleGatekeeperWithLinitLive.sol:96

pald[txHash].pald = true

This document is proprietary and confidential. No part of this
document may be disclosed in any manner to a third party
without the prior written consent of Hacken

