
Bulletproofs Security Audit Monero

Monero Bulletproofs Security Audit

Final Report, ����-��-��

FOR PUBLIC RELEASE

Sponsored by

FOR PUBLIC RELEASE Page � of ��

Bulletproofs Security Audit Monero

FOR PUBLIC RELEASE Page � of ��

Contents

� Summary �

� Findings �

�.� BP-F-���: Unsafe use of environment variables �

�.� BP-F-���: Lack of input validation in prover �

�.� BP-F-���: Integer over�ow in bulletproof L size computation �

� Observations �

�.� BP-O-���: Possible DoS in the Java version �

�.� BP-O-���: Unit tests have no test vectors �

�.� BP-O-���: Functions and variables naming improvements �

�.� BP-O-���: Conversion functions leak amount range ��

�.� BP-O-���: Statistical bias in randomness used for testing ��

�.� BP-O-���: Condition based on modulo � ��

�.� BP-O-���: Unde�ned behavior shifting signed value ��

� About ��

�

� Summary

Monero is a decentralized, open-source cryptocurrency that provides strong privacy
protections thanks to state-of-the-art cryptographic components.

Monero is deploying a new version of its protocol, using the “bulletproofs“ NIZK proofs
by Bünz et al.�.

The Monero community hired Kudelski Security to perform a security assessment of
the new protocol’s implementation, based on the C++ implementation at
https://github.com/moneromooo-monero/bitmonero/ in the branch
“bp-multi-aggregation-pippenger”, under src/ringct. This implementation is
expected to match the Java prototype at
https://github.com/b-g-goodell/research-lab/blob/master/source-code/Stri
ngCT-java/src/how/monero/hodl/bulletproof/MultiBulletproof.java.

This document reports the security issues identi�ed and our mitigation
recommendations, as well as our general assessment of the bulletproofs
implementation. A “status” section reports the feedback from Monero developers,
and includes a reference to the patches related to the issues reported. One issue
present in the initial report was removed from the �nal report, after developers
noticed that we had misunderstood the expected functionality.

We report:

• � potential security issues of allegedly low severity

• � observations related to general code safety, which we noticed in bulletproofs
�https://eprint.iacr.org/2017/1066.pdf

�

https://github.com/moneromooo-monero/bitmonero/
https://github.com/b-g-goodell/research-lab/blob/master/source-code/StringCT-java/src/how/monero/hodl/bulletproof/MultiBulletproof.java
https://github.com/b-g-goodell/research-lab/blob/master/source-code/StringCT-java/src/how/monero/hodl/bulletproof/MultiBulletproof.java
https://eprint.iacr.org/2017/1066.pdf

Bulletproofs Security Audit Monero

implementations or in other component of the Monero code base.

We did not identify substantial discrepancies between the Java version and C version
of the integration of bulletproofs in RingCT. As suggested in this report, it would be
safer to unit test lower-level mathematical operations, both in terms of correctness
and matching with established test values.

Having spent approximately �� hours on the project, we would like to stress that
further analysis could well uncover dangerous code execution paths which we were
unable to follow due to limited time. The faults which we observed indicate that
further QA should be spent on the implementation. For example, the code base
would likely bene�t from additional fuzz testing.

The audit was lead by Dr. Jean-Philippe Aumasson, VP Technology, jointly with Yolan
Romailler, Cryptography Engineer.

This audit was organized with the support of the OSTIF, thanks to their primary
sponsor, Private Internet Access, and the fundraising done by the Monero
Community.

FOR PUBLIC RELEASE Page � of ��

https://ostif.org/
https://www.privateinternetaccess.com

� Findings

This section reports security issues found during the audit.

The “status” section includes feedback from the developers received after delivering
our draft report.

�.� BP-F-���: Unsafe use of environment variables

Severity: Low

Description

The relevant code is in bulletproofs.cc:

1 static inline rct::key multiexp(const std::vector<MultiexpData> &data, bool HiGi)
2 {
3 static const size_t STEP = getenv("STRAUS_STEP") ? atoi(getenv("STRAUS_STEP")) : 0;
4 if (HiGi || data.size() < 1000)
5 return straus(data, HiGi ? HiGi_cache: NULL, STEP);
6 else
7 return

Here getenv() gets the value of an environment variables, which is more likely to be
an attack vector than a con�g �le (with appropriate permissions). Furthermore, an
invalid value for STRAUS_STEP will not be detected:

�

Bulletproofs Security Audit Monero

• If a string that is not a number is given, then atoi() will just return � (and ��� will
be used as a STEP value in straus())

• If a negative value is given, then it will be cast to an unsigned size_t, potentially
changing a low-absolute-value negative number to a large integer.

This potentially allows an attacker to in�uence the e�ciency of the implementation of
Straus’ exponentiation algorithm.

Recommendation

Use a con�guration �le (with proper permissions) rather than environment variables.
Check that the value of STRAUS_STEP is a positive integer.

Status

This function no longer uses environment variables to set this value, as patched in
commit 68f7606.

�.� BP-F-���: Lack of input validation in prover

Severity:

Low

Description

bulletproof_PROVE() takes two arguments v and g (using the paper’s notation) that
are Zp where p = 2252 + 27742317777372353535851937790883648493.

However that function will not check that its arguments are less than p, and will
return a success error code upon invalid input. Also, degenerate values � and � are
also accepted as values for v and g. These values are not disallowed from the

FOR PUBLIC RELEASE Page � of ��

Bulletproofs Security Audit Monero

mathematical speci�cation of the function, but due to their speci�c behavior they
may lead to insecure operations.

Likewise, the elements of a proof in bulletproof_VERIFY() aren’t explicitly checked.
Only the representation of V happens to be checked within ge_frombytes_vartime().

Recommendation

Check that the arguments belong to Zp (or to their respective domain).

Status

Input scalars are now checked to ensure they are within the proper range in the prove
and verify routines, as patched in 68f7606. However, it should be noted that in the
prove routine, an attacker can always supply invalid scalars regardless of code checks.

�.� BP-F-���: Integer over�ow in bulletproof L size computation

Severity:

Low

Description

size_t n_bulletproof_amounts() will over�ow if proof.L.size() is larger than ��:

1 size_t n_bulletproof_amounts(const Bulletproof &proof)
2 {
3 CHECK_AND_ASSERT_MES(proof.L.size() >= 6, 0, "Invalid bulletproof L size");
4 return 1 << (proof.L.size() - 6);
5 }
6

7 size_t n_bulletproof_amounts(const std::vector<Bulletproof> &proofs)

FOR PUBLIC RELEASE Page � of ��

Bulletproofs Security Audit Monero

8 {
9 size_t n = 0;

10 for (const Bulletproof &proof: proofs)
11 {
12 size_t n2 = n_bulletproof_amounts(proof);
13 if (n2 == 0)
14 return 0;
15 n += n2;
16 }
17 return n;
18 }

Consequently, size_t n_bulletproof_amounts() will return � if any of the proofs in
the vector received is longer than ��. (Note that this can depend on the compiler, and
might also result in unde�ned behavior.)

This function is called in is_canonical_bulletproof_layout() where a � return value
will cause the function to return true without entering the while loop, and therefore
without doing the checks it is supposed to do.

When is_canonical_bulletproof_layout() is called in
core::handle_incoming_tx_accumulated_batch(), a true return value will lead the
proofs vector to be added to the delayed batch veri�cation vector, despite the
invalide L value contained in one of the proofs.

This behavior, if unintended, may be exploited in order to force the veri�cation of
proofs with non-canonical layout.

Recommendation

Have correct boundary checks to avoid the over�ow.

Status

This has been patched in 68f7606.

FOR PUBLIC RELEASE Page � of ��

� Observations

This section reports various observations that are not security issues to be �xed.

�.� BP-O-���: Possible DoS in the Java version

Unlike the C version that checks the maximum length M of a proof before setting maxMN
to 2M, the Java version accepts any value of maxLength in the veri�cation function:

1 public static boolean VERIFY(ProofTuple[] proofs)
2 {
3 // Figure out which proof is longest
4 int maxLength = 0;
5 for (int p = 0; p < proofs.length; p++)
6 {
7 if (proofs[p].L.length > maxLength)
8 maxLength = proofs[p].L.length;
9 }

10 int maxMN = (int) Math.pow(2,maxLength);

Since maxMN is a ��-bit signed integer, and the double result is cast to an int, this code
will only behave correctly for proofs of length up to ��.

Status

The prototyping Java code was not written for use in production, and for this reason
does not implement this DoS protection. Therefore nothing will be changed.

�

Bulletproofs Security Audit Monero

�.� BP-O-���: Unit tests have no test vectors

The unit tests in tests/unit_tests/bulletproofs.cpp cover the code used in
production checking that the functionality works as expected, a few edge cases.
However it contains no reproducible test values to check this implementation against
another one. In particular these tests don’t check that the implementation matches
the Java version.

Test vectors can’t be directly generated since the generation of a proof is not
deterministic, but a typical trick is to use a DRBG with a �xed seed. Having
reproducible test values would also help debugging third-party implementations.

Status

The Java and C++ implementations produce proof elements that are not compatible
with each other. Therefore, their test vectors would not match.

�.� BP-O-���: Functions and variables naming improvements

The naming of functions and variables could be improved to make the code easier to
understand and to match against the Bulletproofs paper. In particular:

• The skGen() and skvGen() functions are often used not to generate secret keys
but just to get random scalars (which they do). It would be cleaner to have a
function to generate random values, and call it from a key generation function as
needed.

• The g and h generators from the paper (e.g. as in equation ��) are respectively H
and G in the code, via rct::scalamultH() and rct::scalarmultBase. The same
change of notation is made in the Java version.

• The type rct::key is used to hold di�erent objects that should not necessarily
be interoperables, such as scalars, or curve points, typically storing private keys
and public keys.

FOR PUBLIC RELEASE Page � of ��

Bulletproofs Security Audit Monero

Status

The listed functions and variables are named according to their use elsewhere in
production code. Therefore nothing will be changed.

�.� BP-O-���: Conversion functions leak amount range

The conversion functions d2h(), d2b(), h2b(), b2h() don’t run in constant-time with
respect to the XMR value converted and therefore may leak the range of the amount.

This seems unlikely to be a security issue, but this is easily avoided.

For example:

1 void d2h(key & amounth, const xmr_amount in) {
2 sc_0(amounth.bytes);
3 xmr_amount val = in;
4 int i = 0;
5 while (val != 0) {
6 amounth[i] = (unsigned char)(val & 0xFF);
7 i++;
8 val /= (xmr_amount)256;
9 }

10 }

Status

Local transaction code is not required to run in constant time in the considered threat
model. Therefore nothing will be changed.

�.� BP-O-���: Statistical bias in randomness used for testing

The modular reduction introduces a bias in randXmrAmount():

FOR PUBLIC RELEASE Page �� of ��

Bulletproofs Security Audit Monero

1 //generates a random uint long long (for testing)
2 xmr_amount randXmrAmount(xmr_amount upperlimit) {
3 return h2d(skGen()) % (upperlimit);
4 }

This function is only used in testing routines though, therefore this is not a security
risk.

Using rejection sampling would eliminate the bias.

Status

Nothing will be changed.

�.� BP-O-���: Condition based on modulo �

Certain checks are relying on condition checked against some value %
NUM_BLOCKS_PER_CHUNK For example:

1 if (m_cur_height % NUM_BLOCKS_PER_CHUNK == 0) {
2 num_blocks_written += NUM_BLOCKS_PER_CHUNK;
3 }

but the NUM_BLOCKS_PER_CHUNK is de�ned as being 1, and operation modulo 1 are
always equal to �.

This seems to be "in case multi-block chunks are later supported", but certain code
path are never taken as a consequence:

1 if (m_cur_height % NUM_BLOCKS_PER_CHUNK != 0)
2 {

FOR PUBLIC RELEASE Page �� of ��

Bulletproofs Security Audit Monero

3 flush_chunk();
4 }

There are other such occurrences where a modulo 1 reduction take place.

Status

This code was originally written with future expansion in mind.

�.� BP-O-���: Unde�ned behavior shifting signed value

In crypto/crypto-ops.c, the following function shifts a signed ��-bit value (left of
right):

1 static int64_t signum(int64_t a) {
2 return (a >> 63) - ((-a) >> 63);
3 }

As reported by cppcheck, the shift of a signed type is unde�ned or implementation-
de�ned (ISO C��, �.�.�, ���� & ����).

Status

The function has been rewritten using a ternary operator in 68f7606.

FOR PUBLIC RELEASE Page �� of ��

� About

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of
security experts delivers end-to-end consulting, technology, managed services, and
threat intelligence to help organizations build and run successful security programs.
Our global reach and cyber solutions focus is reinforced by key international
partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com.

Kudelski Security
route de Genève, ��-��
���� Cheseaux-sur-Lausanne
Switzerland

This report and all its content is copyright (c) Nagravision SA ����, all rights reserved.

��

https://www.kudelskisecurity.com

	Summary
	Findings
	BP-F-001: Unsafe use of environment variables
	BP-F-002: Lack of input validation in prover
	BP-F-003: Integer overflow in bulletproof L size computation

	Observations
	BP-O-001: Possible DoS in the Java version
	BP-O-002: Unit tests have no test vectors
	BP-O-004: Functions and variables naming improvements
	BP-O-005: Conversion functions leak amount range
	BP-O-006: Statistical bias in randomness used for testing
	BP-O-007: Condition based on modulo 1
	BP-O-008: Undefined behavior shifting signed value

	About

