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Executive Summary
Synopsis
In October 2020, Supranational, Protocol Labs and
the Ethereum Foundation engaged NCC Group’s Cryp-
tography Services team to conduct a cryptographic
implementation review of the BLST library. This library
implements support for the draft IETF specifications on
Hashing to Elliptic Curves and BLS Signatures. The
latter specification uses advanced cryptographic-pairing
operations to feature aggregation properties for secret
keys, public keys and signatures. This functionality is
central to the emerging Ethereum 2.0 Proof-of-Stake
block-validation mechanism. Full source code and
support was provided. The project was delivered by 2
consultants within 23 person-days of effort.

Scope
NCC Group’s evaluation included the following source
code repository and specifications:

• Commit 414ac6b of github.com/supranational/blst
– C source code, Assembly source code for multiple
target architectures.

– Rust and Golang bindings; Other language bind-
ings were out of scope.

• IETF CFRG draft for BLS Signatures v4
• IETF CFRG draft for Hashing to Elliptic Curves v10

Limitations
While the BLST library largely contains sufficient func-
tionality to support the target specifications, the API
does not fully correlate to the specification. In some
cases a calling application is expected to combine lower-
level primitives to perform a particular function, such
as the public key subgroup check, which demonstrates
library flexibility but also moves relevant functionality
outside of the library. As the code is minimally
documented, fully matching intent with implementation
can be subjective in a few places. Nonetheless, robust
coverage of all in-scope code was achieved.

Key Findings
The BLST library demonstrates leadership in high
performance through an optimized implementation in C
and Assembly, and leadership in broad usability through
multiple language, compiler and architecture targets.
However, the review uncovered a number of flaws falling
into several broad categories:

• Insufficient validation constraints that need to be
updated to the latest version of the BLS Signatures
specification, which risks interoperability issues.

• Exporting far more functionality and library internals
to the calling application than necessary, which
increases application complexity, risk of library misuse
and impact of changes.

• Missing and/or unevenly tested functionality for lesser
used aspects of the target specifications outside of the
Ethereum 2.0 usage profile.

• Issues involving modular reduction, point multiplica-
tion and clearing of secrets from memory.

Partial Retest Results
The latter portion of the project involved retesting
fixes for selected findings across a variety of commits
culminating in 9b4b16f. The detailed entry for each of
the addressed findings now includes a brief description
of retest observations with results summarized in
the Table of Findings on page 4. A summary of the final
position is as follows:

• There were no critical or high severity findings.
• Initially, there were 3 medium severity findings re-
ported. Subsequently, 2 were fixed and 1 categorized
as ‘risk accepted’. This leaves 0 open.

• Initially, there were 14 low severity findings reported.
Subsequently, 9 were fixed, 3 categorized as ‘risk
accepted’ and 1 partially fixed. This leaves 2 open.

• Initially, there were 3 informational observations
reported. Subsequently, 2 were addressed. These are
not considered security weaknesses.

Strategic Recommendations
The in-scope code is well structured, highly optimized,
performant and demonstrates careful attention to
detail. Beyond addressing the reported findings, NCC
Group recommends prioritizing the following areas for
future development:

• Revisit the API to present the simplest possible
interface that tightly corresponds to the target speci-
fications. Additional performance enhancements can
build upon this foundation.

• Move all possible functionality from the bindings into
the C source to maximize consistency across lan-
guages andusefulness to C users. The bindingswould
then largely contain language-specific validation and
threading support.

• Enforce strict validation upon deserialization to
externally-opaque data structures to prevent the
library from operating on invalid application data.

• Develop robust documentation to maximize devel-
oper productivity, application correctness and library
uptake.
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Dashboard
Target Metadata Engagement Data
Name BLST Signature Library for BLS12-381 Type Cryptography Implementation Review
Type Source code Method Manual source code analysis
Platforms C with Assembly for several

architectures; Rust and Golang
bindings

Dates 2020-10-13 to 2020-11-06

Environment Production commit Consultants 2
Level of Effort 23 person-days

Targets
BLST Code Repository https://github.com/supranational/blst/tree/414ac6b185f6b2ef2e6364d5716f915af966c465

Finding Breakdown
Critical issues 0
High issues 0

Medium issues 3

Low issues 14

Informational issues 3
Total issues 20

Category Breakdown
Configuration 4

Cryptography 7

Data Exposure 2

Data Validation 7

Component Breakdown
A: BLST Library 2

B: Assembly 2

C: C Source 3

D: Rust Bindings 8

E: Golang Bindings 5

Key
Critical High Medium Low Informational
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Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix C on page 50.

A: BLST Library

Title Status ID Risk

Missing PopProve() and PopVerify() Functions Reported 015 Low

Uneven Integration Test Coverage of Primary Functionality Reported 023 Informational

B: Assembly

Title Status ID Risk
Incomplete Modular Reduction (256 bits) Fixed 006 Low
Miscomputation of Parity in the Field Extension Fixed 003 Informational

C: C Source

Title Status ID Risk

Missing SecretKey Deserialization Bound Check Fixed 005 Low

Incorrect Point Multiplication Result Fixed 016 Low
Non Constant-Time Inversion Fixed 021 Informational

D: Rust Bindings

Title Status ID Risk
Insufficient Input Validation During Deserialization Fixed 004 Medium
Missing Checks in Aggregate Verify Fixed 009 Medium
Extraneous C Exports Risk Accepted 010 Medium
Unspecified Rust Toolchain Version Risk Accepted 001 Low
Sensitive Information Not Cleared Fixed 002 Low
Insufficient PublicKey Validation Fixed 007 Low

Incorrect Result for Zero Length Aggregation Partially Fixed 008 Low

Struct Fields With Extraneous pub Access Modifiers Fixed 017 Low

E: Golang Bindings
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Title Status ID Risk
Sensitive Information Not Cleared Fixed 012 Low
Missing Public KeyValidate Function Fixed 013 Low

Extraneous Type Exports Risk Accepted 018 Low
Insufficient Public Key Validation on Deserialization Risk Accepted 019 Low
Missing Checks in Aggregate Verify Fixed 020 Low
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Finding Details – A: BLST Library
Finding Missing PopProve() and PopVerify() Functions

Risk Low Impact: Medium, Exploitability: Undetermined

Identifier NCC-ETHF002-015

Status Reported

Category Cryptography

Component A: BLST Library

Location Missing functionality in (for example) Rust bindings lib.rs.

Impact An application intending to target a ciphersuite configuration corresponding to the ‘Proof
of Possession Scheme’ is required to implement the missing PopProve() and PopVerify()
functions from other complex (sub)components, with a high potential for mistakes by casual
users.

Description The BLST code repository README.md file states broad compliance with the relevant BLS spec-
ifications without describing any specific carve-outs.

This library is compliant with the following IETF draft specifications:

• IETF BLS Signature V4
• IETF Hash-to-Curve V9

The BLS Signatures specification described in Appendix B on page 44 outlines two BLS12-
381 ciphersuites1, 2 (and their many subcomponents) that target the ‘Proof of Possession
Scheme’.3 This scheme defends against rogue key attacks by using a separate public key
validation step, which then enables an optimization to aggregate signature verification where
all signatures are on the same message.

This scheme requires specific PopProve()and PopVerify() functions analogous to sign and
verify functions respectively. This functionality is missing in the BLST library. While this func-
tionality can be assembled with detailed pairing-specific components (as Ethereum 2.0 does
with DepositData4), this is a high risk approach for casual users.

Recommendation Implement the PopProve() and PopVerify() functions per the specification. It may be
possible to include an optional data field input such that the Ethereum 2.0 case is simply
handled in BLST.

Client Response The functions will be added to the library to complete the API. Currently this functionality is
being performed by the application if needed.

1BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_
2BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_
3https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-3.3
4https://github.com/ethereum/eth2.0-specs/blob/33cfcc4eb34c3cce313adeea9cdb5bc0a4447a89/specs/phase0/
beacon-chain.md#depositdata
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Finding Uneven Integration Test Coverage of Primary Functionality

Risk Informational Impact: High, Exploitability: Undetermined

Identifier NCC-ETHF002-023

Status Reported

Category Cryptography

Component A: BLST Library

Location Absence from C, Go and Rust tests

Impact Uneven integration testing of library functionality may not detect existing bugs nor prevent
changes from introducing new bugs that unexpectedly break applications.

Description The BLST library integration test coverage is uneven. While even the smallest of algorithm-
related errors typically cause obviously-detected incorrect results in basic tests of crypto-
graphic code, best practices require a robust testing suite. This entails public vectors for all
supported configurations and tests that specifically target validation corner cases alongside
the algorithm-specific tests. This ensures that any flaws introduced by future development
are (more likely) caught prior to library deployment in applications. Relying on application
users to drive test coverage is not sufficient.

There are no/minimal test cases for the C and Assembly source code, so the library is relying
on application users to drive coverage in this context.

Regarding the hash-to-curve specification, the Golang bindings utilize JSON test vectors for
the BLS12381G[1|2]_XMD_SHA-256_SSWU_RO_ ciphersuites, but not for the two BLS12381G
[1|2]_XMD:SHA-256_SSWU_NU_ ciphersuites. These two missing cases correspond to encod
e_to_curve() primary functionality.5 The existing Golang test case was adapted to incorpo-
rate these latter two vectors6 and ran successfully, so the functionality is indeed present.

The Rust bindings do not contain any of the above hash-to-curve JSON test vectors or test
functionality.

As the most recent BLS Signatures specification contains new validation constraints, such as
1 <= SK,7 the presence of finding NCC-ETHF002-005 on page 12 also indicates missing test
coverage.

Recommendation Implement additional integration testing to specifically cover the following cases from each
language binding:

• Each BLS12-381 ciphersuite in the Hashing to Elliptic Curves specification
• Each validation constraint in the BLS Signatures specification
• Public BLS12-381 test vectors when they become available (the specification currently notes
“TBA”)

• Both successful andunsuccessful paths throughprimary functionality. This is largely present
but mentioned for completeness

Client Response More test vectors will be added to Go and the JSON test vectors will be moved up a directory
in order to eventually be shared with Rust.

5https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-10#section-8.8.1
6https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/tree/master/poc/vectors
7https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-2.4
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Finding Details – B: Assembly
Finding Incomplete Modular Reduction (256 bits)

Risk Low Impact: Medium, Exploitability: None

Identifier NCC-ETHF002-006

Status Fixed

Category Cryptography

Component B: Assembly

Location src/asm/mulq_mont_256-x86_64.pl, line 518
src/asm/mulx_mont_256-x86-64.pl, line 371
src/asm/mul_mont_256-armv8.pl, line 330

Impact The functions that reduce a 512-bit input modulo r may return values which are not lower
than r. In the current code, these functions are called only as part of key pair generation, and
the out-of-spec cases happen to be fixed as a side-effect of the Montgomery multiplication
that immediately follows.

Description The redc_mont_256() function takes as inputs a 512-bit integer x and an odd modulus r
(with r ≤ 2256 − 2192 − 1), and return x/2256 mod r. That function is provided in assembly
code for 64-bit x86 (src/asm/mulq_mont_256-x86_64.pl) and ARMv8 (src/asm/mul_mont
_256-armv8.pl). The redcx_mont_256() function has the same API and replaces it on 64-
bit x86 platforms where the BMI2 (mulx) and ADX (adcx, adox) opcodes are available. These
three implementations work as follows:

• Input x is split into its high half x1 = ⌊x/2256⌋ and low half x0 = x mod 2256.
• Montgomery reduction is applied on x0, to compute z = x0/2

256 mod r.
• z + x1 is computed, then r is subtracted from that sum if it is not already lower than r.

Montgomery reduction of x0 adds kr to x0 for a 256-bit integer such that x0+kr is a multiple
of 2256. Since r is odd, it is invertible modulo 2256, and k is uniquely defined. The value x0+kr

is then divided by 2256 over the integers (the division is exact in that case). The internal __mu
lq_by_1_mont_256() (or __mulx_by_1_mont_256() or __mul_by_1_mont_256()) function
performs this operation. Note that the result z of Montgomery reduction is not necessarily
fully reduced modulo r: a value z = r is possible (with r ≈ 2254.86 the order of the BLS-381
curve subgroup, this happens only if k = 2256 − 1 or k = 2256 − 2, which in turn happens for
exactly two possible values of x0).

The returned value z + x1 is equal to x/2256 modulo r, but it is not necessarily reduced.
Indeed, x1 may range up to 2256 − 1. The single conditional subtraction of r is not enough
to bring the result down to the 0...r − 1 range; all values up to 2256 − 1 may be returned.
Therefore, redc_mont_256() and redcx_mont_256()may return values that do not comply
with the expectations of other functions that perform computations with scalars modulo r.

In practice, the redc_mont_256() (or redcx_mont_256()) function is called only as part
of key pair generation from the blst_keygen() function (src/keygen.c, line 158) and is
immediately followed by a Montgomery multiplication by the BLS12_381_rRR constant:

redc_mont_256(scratch.key, scratch.key, BLS12_381_r, r0);
mul_mont_sparse_256(scratch.key, scratch.key, BLS12_381_rRR,

BLS12_381_r, r0);

If the reduction result (scratch.key) is not lower than r, then this call is nominally invalid.
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However, on 64-bit x86, mul_mont_sparse_256() performs Montgomery multiplication by
limbs of 64 bits, with reduction rounds delayed by one iteration. This relies on the internal
intermediate result to fit on 6 limbs (384 bits). Specifically, each iteration starts with a 5-
limb intermediate value, to which is added (with a one-limb shift) the product of the first
multiplication operand by one limb of the second operand, and then amultiple of themodulus
by another limb-sized value. Since the numerically largest limb of BLS12_381_rRR is m =

0xC999E990F3F29C6D, this sum cannot exceed 2320−1+264m(2256−1)+(264−1)r, which
happens to be lower than 2384 − 1, which fits the expectations of the algorithm.

On ARMv8, mul_mont_sparse_256() is organized slightly differently (there is no one-round
delay in application of the reduction), but the same overall conclusion applies: in the specific
case of key pair generation in BLST, the out-of-range values that redc_mont_256()may return
are properly absorbed by the subsequent Montgomerymultiplication, yielding a fully reduced
result.

Recommendation Having functions that return out-of-spec values is fragile, since it relies on other functions to
tolerate such inputs; this may break whenever the implementation of Montgomery multipli-
cation (mul_mont_sparse_256()) is modified.

In the specific case of the subgroup of the BLS-381 curve, the result computed by redc_mo
nt_256() could be fully reduced modulo r by performing two extra conditional subtractions
of r (since 3r > 2256). These extra operations should have almost negligible cost compared
with the rest of the reduction cost.

If the function is supposed to be usable with much shorter moduli r, many more conditional
subtractions of r may be needed, leading to a prohibitive cost. Instead, Montgomery reduc-
tion may be applied to x1 as well, and applied again to x0, to ensure that both values are in an
appropriate range; this would also require an extra conditional subtraction (to make sure that
at least one of x0 or x1 is strictly lower than r), and the constant for the final multiplication
would need to be adjusted to account for the extra Montgomery reductions (i.e. it should be
equal to 2768 mod r instead of 2512 mod r). If such a full reduction is not implemented, then
the exact range of acceptable moduli for redc_mont_256() should be properly documented
to avoid misuse.

Retest Results NCC Group reviewed changes made in the updated 710a5ea commit,8 and observed new
code comments related to the exact range of acceptable moduli for redc_mont_256() per
the recommendation. As such, this finding has been marked as ‘Fixed’.

Client Response The redc_mont_256() function is considered to be an internal function, to be used only in
conjunction with other steps such as mul_mont_sparse_256() to ensure full reduction. This
specific constraint on function usage and expectations is documentedwith explicit comments.
See: https://github.com/supranational/blst/commit/710a5ea353ba2106a7a92b34d6a643bff
66d7d62

8https://github.com/supranational/blst/commit/710a5ea353ba2106a7a92b34d6a643bff66d7d62
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Finding Miscomputation of Parity in the Field Extension

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-ETHF002-003

Status Fixed

Category Cryptography

Component B: Assembly

Location src/asm/add_mod_384-x86_64.pl, lines 1256-1262

Impact The miscomputed bit is not used in BLST; therefore, there is no immediate security conse-
quence.

Description The sgn_pty0_mod_384x() function computes the sign and parity of an element of the field
Fq2 . An element y ∈ Fq2 can be uniquely written as y = a + ib where a and b are elements
of Fq , and i is the conventional square root of −1 in Fq2 . Values a and b are the real part and
imaginary part of y, respectively.

The sign of y is used for serializing curve points to bytes (in compressed format), while the
parity is used for hashing arbitrary data into a curve point. Both are used for the same
mathematical functionality (disambiguation between the two square roots of a given field
element) but are defined differently for historical reasons:

• The sign of y is 1 if its imaginary part (b), as an integer in the 0...q− 1 range, is greater than
(q − 1)/2, or 0 otherwise. If the imaginary part of y is b = 0, then the real part (a) is used
instead.

• The parity of y is the least significant bit of the real part (a), when represented as an integer
in the 0...q−1 range. If the real part of y is a = 0, then the imaginary part (b) is used instead.

The sgn_pty0_mod_384x() function first computes the sign and parity of the real part of the
input y, then proceeds to compute the same values for the imaginary part. A few instructions
then select the proper bits to pack them into the returned value:

not $r_ptr # 2*x > p, which means "negative"

test @acc[0], @acc[0]
cmovnz $r_ptr, %rax # a->im!=0? sgn0(a->im) : sgn0(a->re)

test @acc[6], @acc[6]
cmovz $r_ptr, @acc[7] # a->re==0? prty(a->im) : prty(a->re)

and \$1, @acc[7]
and \$2, %rax
or @acc[7], %rax # pack sign and parity

In the conventions of the assembly code generator Perl script:

• @acc[0] contains zero if and only if the imaginary part of the input y is zero
• rax contains the packed sign and parity of the real part of y (bit 0 is the parity, bit 1 is the
sign)

• @acc[6] contains zero if and only if the real part of y is zero
• @acc[7] contains the least significant limb of the imaginary part of y
• $r_ptr contains the negation of the sign of the imaginary part of y (i.e. -1 or 0)
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Thus, in the event that the input value y has a real part equal to zero (@acc[6] contains zero),
then @acc[7] is overwritten by the cmovz opcode with a copy of $r_ptr; its least significant
bit, which is then used in the returned value as the parity of y, is then equal to the least
significant bit of $r_ptr, which is the sign of y, not its parity.

Therefore, sgn_pty0_mod_384x() returns the wrong parity for about half of the values y

whose real part is zero.

There is no immediate security consequence on BLS signatures, for the two following reasons:

• The parity is used only as part of hashing to a curve point, in which case the value whose
parity is computed is obtained as the output of a one-way hash function, and finding an
input to that hash function such that the parity is evaluated on a field element whose real
part is zero is computationally infeasible (it would require breaking the preimage resistance
of the hash function).

• When the parity of an element of Fq2 is used (as part of hashing into group G2, in src/map
_to_g2.c, function map_to_isogenous_E2()), the called function is not sgn_pty0_mod_3
84x(), but one of sgn_pty0_mont_384x() or sgn_pty0x_mont_384x(), which work with
inputs in the Montgomery domain, and do not have the issue described here.

Recommendation The sequence above can be fixed by using the following instead:

not $r_ptr # 2*x > p, which means "negative"

test @acc[6], @acc[6]
cmovnz %rax, @acc[7] # a->re!=0? prty(a->re) : prty(a->im)

test @acc[0], @acc[0]
cmovnz $r_ptr, %rax # a->im!=0? sgn0(a->im) : sgn0(a->re)

and \$1, @acc[7]
and \$2, %rax
or @acc[7], %rax # pack sign and parity

Retest Results NCC Group reviewed changes made in the updated 668f17b commit.9 Code changes in the
src/asm/add_mod_384-x86_64.pl file similar to those described above were observed per
the recommendation. As such, this finding has been marked as ‘Fixed’.

9https://github.com/supranational/blst/commit/668f17b664e285b02b8158ecb37adc36a8d553ff
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Finding Details – C: C Source
Finding Missing SecretKey Deserialization Bound Check

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-ETHF002-005

Status Fixed

Category Data Validation

Component C: C Source

Location Lines 410-419 of blst/src/exports.c

Impact Allowing the deserialization of a zero SecretKey violates the (recently changed) BLS-signature
specification and may cause application interoperability issues involving the ‘zero signature’.

Description The deserialize() function implemented in the Rust bindings lib.rs10 performs a Fr
check via the blst_scalar_fr_check() function found in the C source. This latter function
is implemented on lines 410-419 of exports.c as shown below.

410 limb_t blst_scalar_fr_check(const pow256 a)
411 {
412 vec256 value, zero = { 0 };
413

414 limbs_from_le_bytes(value, a, 32);
415 add_mod_256(zero, zero, value, BLS12_381_r);
416 return vec_is_equal(zero, value, sizeof(zero));
417 vec_zero(zero, sizeof(zero));
418 vec_zero(value, sizeof(value));
419 }

The above function unpacks the input into value limbs on line 414 and then adds 0 mod
BLS12_381_r on line 415. If the result is unchanged per the check on line 416, the value is
less than Fr and a success indicator is returned. Note that lines 417-418 are unreachable as
shown – this was addressed in the subsequent commit c08a9ae.

This approach is consistent with the output constraints required from the KeyGen algorithm
as defined in section 2.3 of draft-irtf-cfrg-bls-signature-02.11

- SK, a uniformly random integer such that 0 <= SK < r.

However, in the latest version draft-irtf-cfrg-bls-signature-0412, 13 the output con-
straint has been expanded to disallow 0.

- SK, a uniformly random integer such that 1 <= SK < r.

The code does not implement the expanded check for 0 present in the latest specification.
An attacker able to deserialize a zero secret key may be able to trigger (likely detected) down-
stream problems involving the ‘zero signature’, which has been a subject of recent debate.14

Recommendation Add a !vec_is_equal check against the zero value. This does not necessarily need to be in

10https://github.com/supranational/blst/blob/414ac6b185f6b2ef2e6364d5716f915af966c465/bindings/rust/src/lib.
rs#L377
11https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-02#section-2.3
12https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-2.3
13https://github.com/ethereum/eth2.0-specs/issues/2072
14https://github.com/status-im/nimbus-eth2/issues/555
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the blst_scalar_fr_check() function shown above, but instead in the deserialization and
keyGen paths in C (rather than bindings).

Retest Results NCC Group reviewed changes made in the updated 15f6383 commit.15 Code changes in the
bindings/go/blst.go source file now utilize blst_sk_check() check, which is exported by
the C source (though implemented in assembly) and checks against the zero case. As such,
this finding has been marked as ‘Fixed’.

15https://github.com/supranational/blst/commit/15f63834dad3a3d9588574b302669f34d9f252bc
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Finding Incorrect Point Multiplication Result

Risk Low Impact: Medium, Exploitability: None

Identifier NCC-ETHF002-016

Status Fixed

Category Cryptography

Component C: C Source

Location src/ec_mult.h, line 165

Impact In the context of BLS signatures, signature generation and public key derivation from the
private key fail for a specific private key value. Since it is very improbable that a properly
generated private key has that value, the impact is mostly negligible.

Description The POINTonE1_mult_w5() and POINTonE2_mult_w5() functions compute products of a
curve point by a scalar, for points with coordinates in the base field Fq or the extended field
Fq2 , respectively. The scalar is an integer modulo the prime r. These functions assume that
the point which is multiplied is in the proper subgroup of order r, and that the scalar is fully
reduced.

The implementation of both functions is providedby the POINT_MULT_SCALAR_WX_IMPLmacro,
which uses a classic double-and-add algorithm, with window optimizations (here, with 5-bit
windows) to avoid most of the point additions. Booth recoding is applied to the scalar:

• For w-bit windows, a scalar value k is written as k =
∑d−1

i=0 ki2
wi with each ki in the range

−(2w−1 − 1)...+2w−1. The number of digits is d = ⌈(n+1)/w⌉, where n is the maximum
size of the scalar, expressed in bits (normally equal to the size of r). The top digit kd−1 is
nonnegative.

• For the base point P , the window is filled with points jP for j = 1 to 2w−1 (inclusive).
• The algorithm operates over an accumulator pointQ, whose initial value is kd−1P (which is
either the point-at-infinity, if kd−1 = 0, or one of the window points). Then, each iteration
consists in firstmultiplyingQ by 2w (i.e. applyingw successive point doublings), then adding
kiP , which is either a point from the window (if ki ≥ 0), or the negation of a point of the
window (if ki < 0), the latter being inexpensive to compute dynamically. Iteration number
i ranges from d− 2 down to 0.

In the BLST implementation, the specialized POINTinE1_add() (or POINTinE2_add()) func-
tion is used. This function uses the classic point addition formulas for short Weierstraß curves
in Jacobian coordinates, with cost 11M+5S. Crucially, these formulas have exceptional cases
when one of the operands is the point-at-infinity, or when both operands designate the same
curve point. The implementation in POINTinE1add() handles the former with two constant-
time vec_select() calls, but not the latter: if the two points to add are the same point T ,
then the function returns an all-zero point, i.e. a representation of the point-at-infinity, instead
of the expected 2T .

Unfortunately, it is possible for the last call to POINTinE1_add() (respectively POINTinE2_add
()) in POINTinE1_mult_w5() (respectively POINTinE2_mult_w5()) to be in that problematic
situation. With the BLS12-381 subgroup order r (of size 255 bits), with 5-bit windows, this
happens when the scalar has value exactly r − 2. In that case, the POINTinE1_add() and
POINTinE2_add() functions incorrectly return the point-at-infinity for any source point in the
subgroup.
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It can be shown that when all of the following hold:

• the source point P is in the right subgroup of order r;
• the order r is prime;
• the scalar is fully reduced modulo r (i.e. is in the range 0 to r − 1);

then the problematic situation may happen only in the point addition of the last iteration, and
for only a single scalar value. Therefore, in the context of BLS signatures, this issue is unlikely
to be exploitable: all uses of thatmultiplication function use the private key as a scalar, and the
private key is, by definition, not adversarially chosen, and unlikely to be equal to the unique
scalar that triggers the bug.

Recommendation Since the problemmay occur only on the last iteration, it is sufficient to call the generic addition
function (POINTinE1_dadd(), POINTinE2_dadd()) for that last iteration, which would incur
only negligible overhead compared to the whole point multiplication cost.

In full generality, this is not sufficient if the function is to be used on points whose order is
not prime, or with scalars which are not fully reduced. If such extended, generic functionality
is needed, then all point addition calls should use a complete routine that does not have
exceptional cases, such as the POINTinE1_dadd() function.

Retest Results NCC Group reviewed changes made in the updated f17999f commit.16 Code changes in
the src/ec_mult.h file causing POINTinE2_dadd() to be called for the last iteration were
observed per the recommendation. As such, this finding has been marked as ‘Fixed’.

16https://github.com/supranational/blst/commit/f17999fcdf29b33bfbb6b0313a36e5fd41d38b49
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Finding Non Constant-Time Inversion

Risk Informational Impact: High, Exploitability: None

Identifier NCC-ETHF002-021

Status Fixed

Category Cryptography

Component C: C Source

Location • Lines 533-548 of blst/src/fp12_tower.c

Impact Non constant-time code operating on secret data risks the potential for exposure through
timing side-channels.

Description The inverse_fp2() function as implemented in the fp12_tower.c source file is shown be-
low. The comment on lines 541-542 pertains to the following non constant-time eucl_inver
se_fp() function, and highlights an assumption of only operating on public data.

533 static void inverse_fp2(vec384x ret, const vec384x a)
534 {
535 vec384 t0, t1;
536

537 /* 1/(a0^2 + a1^2) */
538 sqr_fp(t0, a[0]);
539 sqr_fp(t1, a[1]);
540 add_fp(t0, t0, t1);
541 /* It's assumed that "higher-dimension" operations are performed
542 * on public data, hence no requirement for constant-time-ness. */
543 eucl_inverse_fp(t1, t0);
544

545 mul_fp(ret[0], a[0], t1);
546 ...

When deriving a G2 public key PK from a secret key SK via skToPk(),17 it is true that the
inversion happens at the end of the process on essentially the ‘public Z coordinate’. However,
while the resulting PK point is meant to be public, its Z coordinate does contain traces of
private operations, i.e., different SK values will translate into different Z values. Thus, there is
the potential for side-channel leakage of secret information via timing differences18 in eucl
_inverse_fp. Since skToPk() is not a publicly-observable repeated operation, in this case
the risk is minimal.

The min-pk configuration’s signing process CoreSign()19 functionmay verywell be a publicly-
observable repeated operation of the above nature, and thus of higher risk. Proof-of-stake
users in this configuration emit signatures under a high-value key on a regular basis. Note
that Ethereum 2 operates in the min-sig configuration.

In BLST, the inverse_fp2() appears to be used strictly inside tower operations rather than
curve operations involving G2. As such, this finding has been marked ‘Informational’.

Recommendation Review the usage of inverse_fp2() to confirm that it is not used within curve operations. If
it is used within curve operations, there are at least two paths described below for mitigation.
17https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-2.4
18Section 3, Projective coordinates leak: https://tches.iacr.org/index.php/TCHES/article/view/8596/8163
19https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-2.6
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Preferably, implement a constant-time inversion for Fp2 utilizing Fermat’s Little Theorem or
another suitable algorithm.

Alternatively, mask the operand with randomness – multiply by a non-zero random value
t, invert the product, and multiply that result again by t. Given a random and uniformly
distributed t, the inversion of the product will not reveal anything to an attacker provided the
multiplications themselves are constant-time.20 This will require a random number generator.

Retest Results NCC Group has confirmed that Supranational has reviewed the usage of inverse_fp2() and
confirms that it is not used within curve operations. As such, this finding has been marked as
‘Fixed’.

Client Response Inversion functionality is being reworked for performance and to be constant time every-
where.

20https://botan.randombit.net/handbook/side_channels.html#rsa
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Finding Details – D: Rust Bindings
Finding Insufficient Input Validation During Deserialization

Risk Medium Impact: High, Exploitability: Medium

Identifier NCC-ETHF002-004

Status Fixed

Category Data Validation

Component D: Rust Bindings

Location • Lines 373-382 and 388-390 of blst/blob/bindings/rust/src/lib.rs
• Lines 473 and 879 of blst/blob/bindings/rust/src/lib.rs

Impact Attempting to deserialize undersized input may cause an unsafe out-of-bounds read risking a
panic, while oversized input will result in the excess data to be ignored. Each case may result
in inconsistent behavior that is difficult to debug.

Description As a positive example, in the Rust bindings lib.rs source file, the public serialize() func-
tion shown below returns a byte array of exactly 32 bytes. Also note that &self resolves to a
fixed-size 32-byte struct.

364 pub fn serialize(&self) -> [u8; 32] {
365 let mut sk_out = [0; 32];
366 unsafe {
367 blst_bendian_from_scalar(sk_out.as_mut_ptr(), &self.value);
368 } ....

However, the sibling (adjacent) public deserialize() function shown below accepts sk_in
as an arbitrary-sized byte slice. This slice is then passed as a pointer to the C blst_scala
r_from_bendian() function inside an unsafe block. This latter function is implemented in
exports.c21 and assumes a 32-byte input.

373 pub fn deserialize(sk_in: &[u8]) -> Result<Self, BLST_ERROR> {
374 let mut sk = blst_scalar::default();
375 unsafe {
376 blst_scalar_from_bendian(&mut sk, sk_in.as_ptr());
377 if !blst_scalar_fr_check(&sk) {
378 return Err(BLST_ERROR::BLST_BAD_ENCODING);
379 } }
380 Ok(Self { value: sk })
381 }

As a result, if a BLST library user calls the deserialize() function with incorrectly sized input,
this input will be passed into unsafe code that does not expect it. Data in excess of 32-bytes
in length will be ignored, while undersized data may cause an out-of-bounds read.

Note that the nearby from_bytes()22 function has the same input type declaration and
internally utilizes the above deserialize() function (and thus has the same issue). Since
the corresponding PublicKey routines implement a size check, they do not have this issue.

Separately, note that two from_bytes() functions containing line 473 and line 879 may at-

21https://github.com/supranational/blst/blob/414ac6b185f6b2ef2e6364d5716f915af966c465/src/exports.c#L372-L
378
22https://github.com/supranational/blst/blob/414ac6b185f6b2ef2e6364d5716f915af966c465/bindings/rust/src/lib.
rs#L388-L390
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tempt to access the first element of zero-length input before testing its length.

Recommendation Change the deserialize() and from_bytes() function declarations to require input of type
[u8; 32], or perform length check.

Adapt both from_bytes() functions on lines 473 and 879 to test for input length before
accessing input contents.

Retest Results NCC Group reviewed changes made in the updated aae0c7d commit.23 Code changes in the
bindings/rust/src/lib.rs file involving a check for sk_in.len() != 32 were observed
per the recommendation. As such, this finding has been marked as ‘Fixed’.

23https://github.com/supranational/blst/commit/aae0c7d70b799ac269ff5edf29d8191dbd357876
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Finding Missing Checks in Aggregate Verify

Risk Medium Impact: Medium, Exploitability: Medium

Identifier NCC-ETHF002-009

Status Fixed

Category Data Validation

Component D: Rust Bindings

Location • Lines 589-680 of blst/bindings/rust/src/lib.rs
• Lines 703-817 of blst/bindings/rust/src/lib.rs

Impact A zero-length list of msgs/pks input provided to the aggregate_verify() function does not
return INVALID as the BLS Signatures specification requires, but instead may cause a panic.
Allowing non-distinctmessages violates theMessageAugmentation Scheme (sub)specification
and may allow attacks involving a rogue key.

Description There are two instances of this finding, each containing the same two aspects.

The first instance involves the aggregate_verify() function as implemented on lines 589-
680 lib.rs which is partially excerpted below.

pub fn aggregate_verify(&self, msgs: &[&[u8]], dst: &[u8], pks: &[&PublicKey] )
-> BLST_ERROR {
let n_elems = pks.len();
if msgs.len() != n_elems {

return BLST_ERROR::BLST_VERIFY_FAIL;
}

// TODO - check msg uniqueness?
// TODO - since already in object form, any need to subgroup check?

let pool = da_pool();
let (tx, rx) = channel();
let counter = Arc::new(AtomicUsize::new(0));
let valid = Arc::new(AtomicBool::new(true));

// Bypass 'lifetime limitations by brute force. It works,
// because we explicitly join the threads...
let raw_pks = unsafe {

transmute::<*const &PublicKey, usize>(pks.as_ptr())
};
let raw_msgs =

unsafe { transmute::<*const &[u8], usize>(msgs.as_ptr()) };
let dst =

unsafe { slice::from_raw_parts(dst.as_ptr(), dst.len()) };
...

The first aspect relates to the BLS Signature specification requiring that the aggregate_ver
ify() function must return INVALID when provided with zero-length msgs/pks lists as input.
The function shown above will instead progress down to the three transmute statements
shown at the bottomwithout checking for zero-length input (on each of the three parameters).
The Rust documentation states24:
24https://doc.rust-lang.org/std/mem/fn.transmute.html
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transmute is incredibly unsafe. There are a vast number of ways to cause unde-
fined behavior with this function. transmute should be the absolute last resort.

The second aspect is indicated by the first code comment above: the implemented logic does
not check for distinct messages as the Message Augmentation Scheme (sub)specification
requires.25

As an aside, note that the BLS Signature specification section 3.3.4 outlines a FastAggregat
eVerify function that does not require message uniqueness (and in fact only takes a single
message). The code implements this function on lines 682-691 wheremost of its functionality
is delegated to the function shown above.

The second instance of the above two aspects involves nearly duplicate code for the verify
_multiple_aggregate_signatures() function implemented on lines 703-817. This code is
also sensitive to zero-length input and non-distinct messages as described above.

Recommendation For each instance, implement checks for zero-length input (msgs, pks, dst). To support the
Message Augmentation Scheme, implement checks in each instance for message unique-
ness. Consider documenting which function in the specification message schemes map to
which function in the code.

Retest Results NCC Group reviewed changes made in the updated b280835 commit.26 Code changes in
the bindings/rust/src/lib.rs file involving a check for zero length input lists (2X) were
observed per the recommendation. The calling function must ensure message uniqueness.
As such, this finding has been marked as ‘Fixed’.

25https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-3.2
26https://github.com/supranational/blst/commit/b280835065fcfb3102ffb82bdde5adcb2975ab7c
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Finding Extraneous C Exports

Risk Medium Impact: High, Exploitability: Low

Identifier NCC-ETHF002-010

Status Risk Accepted

Category Configuration

Component D: Rust Bindings

Location blst/bindings/rust/src/bindings.rs

Impact An application may bypass the Rust bindings to incorrectly utilize internal C library functions.
The application then risks functionalitymisuse, overlooked validation checks ormisinterpreted
returned values which can impact stability, correctness, interoperability and thus consensus.
Allowing dependencies upon internal functionality will make library evolution brittle.

Description The bindings.rs source file contains declarations for functions within blst.h, such as those
shown below. The highlighted pub keyword effectively makes all of these functions accessible
to a Rust application developer.

extern "C" {
pub fn blst_scalar_from_uint64(out: *mut blst_scalar, a: *const u64);

}
extern "C" {

pub fn blst_core_verify_pk_in_g1( pk: *const blst_p1_affine, signature:
*const blst_p2_affine, hash_or_encode: bool, msg: *const byte, msg_len:
usize, DST: *const byte, DST_len: usize, aug: *const byte, aug_len:
usize) -> BLST_ERROR;

}
extern "C" {

pub fn blst_miller_loop(ret: *mut blst_fp12, Q: *const blst_p2_affine, P:
*const blst_p1_affine);

}

The first internal function shown above is utilized by the Sigma Prime Lighthouse27 application
in a sensitive verify_signature_sets() function.

The second function is commonly used in subgroup checks, such as that BLST itself performs
in the (public key) key_validate() function.28 Providing this check may lead the application
to neglect the ‘non-identity point’ check required by the latest BLS Signatures specification,29
as it was not present in an earlier version.30

The third function involves the intermediate internals of a pairing calculation and should not
be used by an application under any circumstances. Specifying this function (and others like
it) will make evolving library internals difficult and brittle.

Recommendation The Rust bindings should export functions directly matching those in the BLS Signature spec-
ification and no others. If some extraneous exports are required for interim third-party logis-
tical reasons, these functions should be prefixed by a term like “unsafe” or “dangerous”.
27https://github.com/sigp/lighthouse/blob/ncc-october/crypto/bls/src/impls/blst.rs#L71
28https://github.com/supranational/blst/blob/414ac6b185f6b2ef2e6364d5716f915af966c465/bindings/rust/src/lib.
rs#L406
29https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-5.1
30https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-02#section-5.1
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Client Response This is a concisous decision, for two core reasons: 1) The underlying structures are exported
so that other languages can handle all memorymanagement. 2) Library users have requested
these exports due to their high performance for use in other applications such as zk-proof
systems. These structures are being formally verified to improve their assurance.
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Finding Unspecified Rust Toolchain Version

Risk Low Impact: Medium, Exploitability: Undetermined

Identifier NCC-ETHF002-001

Status Risk Accepted

Category Configuration

Component D: Rust Bindings

Location A rust-toolchain file should be placed in the rust directory alongside the Cargo.toml file.

Impact An unspecified toolchain version may cause divergence in application behavior between de-
velopers and users with different environments, as well as allowing silently changing toolchain
versions that can introduce consensus instability which is difficult to debug and audit. A
specific toolchain version also highlights support expectations.

Description The Cargo package manager for Rust31 allows the developer to specify the exact toolchain
version to be used via the rust-toolchain32 file. This allows a consistent, known and au-
ditable process for building an application that will reduce the potential for confusion and
poor debug visibility. This is particularly important for consensus-oriented projects that are
currently undergoing rapid development and change. The missing rust-toolchain file typ-
ically indicates both a channel along with an exact numeric or dated version (though their
specification varies; see below).

Recommendation Specify an explicit version of the Rust toolchain in a rust-toolchain file placed at the root
of the code. Place this file under version control to ensure consistent builds across all users
and environments. Add a periodic gating milestone to the development process that involves
reviewing and updating the toolchain version along with project dependencies.

As an example, on an updated Ubuntu 20.04 machine, the following shell session demon-
strates how to find the latest stable toolchain version, create the necessary file, place that file
under version control and consistently build the project.

# Find out the latest stable toolchain version by installing it
$ rustup toolchain install stable
...<snip>...
stable-x86_64- ... rustc 1.47.0 (18bf6b4f0 2020-10-07)...

# Create `rust-toolchain` file at root of repository; carefully note format
$ echo '1.47.0' > rust-toolchain

# Add file to git so other developers will use the same version
git add rust-toolchain

# Project will now build consistently
$ cargo test # Or cargo bench

Note that the rust-toolchain file is not well documented and nightly versions are specified
as nightly-2020-10-13 (and only appears to support dates rather than an explicit version
number).

Client Response Given the stable toolchain is utiilized and the Rust code is minimal, the rust-toolchain is un-
31https://rust-lang.github.io/rustup/concepts/toolchains.html
32https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file
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necessary in our view. The expectation is the library will function for all recent versions. We
rely on a diversity of CI platforms (Travis and Github actions) with the intention of catching
any issues quickly. In addition, we spoke with multiple application developers using the Rust
bindings and their opinion is that the file is not needed.
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Finding Sensitive Information Not Cleared

Risk Low Impact: High, Exploitability: Low

Identifier NCC-ETHF002-002

Status Fixed

Category Data Exposure

Component D: Rust Bindings

Location • blst/bindings/rust/Cargo.toml
• blst_scalar in blst/bindings/rust/src/bindings.rs
• SecretKey, serialize() and deserialize() in blst/bindings/rust/src/lib.rs

Impact If regions of memory become accessible to an attacker, perhaps via a core dump, attached
debugger or disk swapping, the attacker may be able to extract non-cleared secret values.

Description Typically, all of a function’s local stack variables and heap allocations remain in process mem-
ory after the function goes out of scope, unless they are overwritten by new data. This stale
data is vulnerable to disclosure through means such as core dumps, an attached debugger
and disk swapping. As a result, sensitive data should be cleared from memory once it goes
out of scope.

As suggested in code comments,33 BLST as a library sensibly aims to minimize ownership of
memory containing secret material, leaving responsibility for clearing secrets to the larger
application. The repository README.md states “…these ultimately belong in language-specific
bindings”. The Rust bindings are the intermediary to the larger application, and the location
where the responsibility begins.

The secret key serialize() and deserialize() functions on lines 364-382 of lib.rs have
an opportunity to include simple memory-clearing functionality.

Since the results of memory-clearing functions are not used for functional purposes else-
where, these functions can become the victim of compiler optimizations and be eliminated.
While there are a variety of “tricks”34 to attempt to avoid compiler optimizations and ensure
that a clearing routine is performed reliably, the Rust community has largely adopted the
approach provided by the Zeroize35 crate.

Recommendation Utilize the Zeroize crate to derive the zeroize-on-drop trait for senstive values such as secret
keys and scalars. As an example, this entails minor edits to the three files as shown below
(line numbers are approximate).

1. Include the zeroize crate dependency in the Cargo.toml file.
38 [dependencies]
39 threadpool = "^1.8.1"
40 zeroize = { version = "1.1.1", features = ["zeroize_derive"] }

2. Attach a derived zeroize-on-drop to the blst_scalar (which is needed for the following
step) in the bindings.rs file. Note that this file is created by rust-bindgen so upstream

33https://github.com/supranational/blst/blob/414ac6b185f6b2ef2e6364d5716f915af966c465/bindings/rust/src/lib.
rs#L357
34https://www.usenix.org/sites/default/files/conference/protected-files/usenixsecurity17_slides_zhaomo_yang.pdf
35https://docs.rs/zeroize/1.1.1/zeroize/
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modifications36 will be required.
16 use zeroize::Zeroize;
17

18 #[derive(Zeroize)]
19 #[zeroize(drop)]
20 #[repr(C)]
21 #[derive(Debug, Default, Clone, PartialEq, Eq)] // Copy not needed
22 pub struct blst_scalar {
23 pub b: [byte; 32usize],
24 }

3. Attach a derived zeroize-on-drop trait to the SecretKey in the lib.rs file.
286 /// Secret Key
287 #[derive(Zeroize)]
288 #[zeroize(drop)]
289 #[derive(Default, Debug, Clone)]
290 pub struct SecretKey {
291 pub value: blst_scalar,
292 }

4. Adapt the secret key serialize() functions to return a type alias struct with the zeroize-
on-drop trait attached per step 2 above (an example can be found in Sigma Prime’s Light-
house37, 38). The deserialize() function can remain unchanged as Self is addressed by
step 3 above.

After the above shown edits, cargo test and cargo bench run successfully.

Ensure the same approach is taken to attach the zeroize-on-drop trait to all secret material
found in the Rust bindings.

Retest Results NCC Group reviewed changes made in the updated 2c8038d commit.39 Code changes in the
bindings/rust/Cargo.toml, bindings/rust/src/bindings.rs and bindings/rust/sr
c/lib.rs files involving the zeroize crate were observed per the recommendation. As such,
this finding has been marked as ‘Fixed’.

36https://github.com/rust-lang/rust-bindgen/issues/1089
37https://github.com/sigp/lighthouse/blob/ncc-october/crypto/bls/src/generic_secret_key.rs#L24
38https://github.com/sigp/lighthouse/blob/ncc-october/crypto/bls/src/zeroize_hash.rs#L6-L9
39https://github.com/supranational/blst/commit/2c8038d3eef7f01e773089be93f4e21b2ad7981d
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Finding Insufficient PublicKey Validation

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-ETHF002-007

Status Fixed

Category Data Validation

Component D: Rust Bindings

Location Lines 402-412 of blst/bindings/rust/src/lib.rs

Impact An incomplete key_validate() function permits an identity public key where the corre-
sponding secret key is equal to zero. This does not meet the BLS Signature specification
and may allow a valid signature for every message under this key. A malicious signer could
then introduce uncertainty about which messages were signed.

Description This finding is a sibling to finding NCC-ETHF002-005 on page 12 involving deserialization of
SK==0.

The key_validate() function as implemented in lib.rs is shown below. After deserializing
a candidate public key on line 403, the code confirms it is in the correct subgroup on line 406
(which is required to ensure that subsequent pairing operations is defined). If this check is
successful, the key is returned to the function caller.

402 pub fn key_validate(key: &[u8]) -> Result<Self, BLST_ERROR> {
403 let pk = PublicKey::from_bytes(key)?;
404 let err: bool;
405 unsafe {
406 err = $pk_in_group(&pk.point);
407 }
408 if err != true {
409 return Err(BLST_ERROR::BLST_POINT_NOT_IN_GROUP);
410 }
411 Ok(pk)

The above check is sufficient to meet the requirements of section 5.1 of the BLS Signature
specification version 2.40 However, the subsequent BLS Signature specification version (v441)
excerpted below has an additional requirement: that the public key not correspond to the
identity-point. The code shown above does not perform this check.

A non-identity point is required because the identity public key has the property that
the corresponding secret key is equal to zero, which means that the identity point
is the unique valid signature for every message under this key. A malicious signer
could take advantage of this fact to equivocate about which message he signed.
…equivocation is infeasible for BLS signatures under any nonzero secret key …
Prohibiting SK == 0 eliminates the exceptional case, which may help to prevent
equivocation-related security issues in protocols that use BLS signatures.

Recommendation Add a check that disallows the identity point. As noted separately, the bindings should have
minimal logic, so ultimately these checks (including subgroup) shouldmigrate to the C source.
40https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-02#section-5.1
41https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-5.1
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Retest Results NCC Group reviewed changes made in the updated d9c8de7 commit.42 Code changes in
the bindings/rust/src/lib.rs file involving a check for pk_is_inf were observed per the
recommendation. As such, this finding has been marked as ‘Fixed’.

42https://github.com/supranational/blst/commit/d9c8de70b433fb4f798eb2244759bbbcca974b01
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Finding Incorrect Result for Zero Length Aggregation

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-ETHF002-008

Status Partially Fixed

Category Data Validation

Component D: Rust Bindings

Location • Lines 521-557 of blst/bindings/rust/src/lib.rs
• Lines 928-964 of blst/bindings/rust/src/lib.rs

Impact Zero-length input given to four aggregate*() functions does not meet the BLS Signature
specification behavior and will panic.

Description The aggregate_serialized() function on AggregatePublicKey from lib.rs are shown
below. As indicated in the first comment, the scenario involving a zero length pks input array
is not handled.

537 pub fn aggregate_serialized(
538 pks: &[&[u8]],
539 ) -> Result<Self, BLST_ERROR> {
540 // TODO - handle case of zero length array?
541 // TODO - subgroup check
542 // TODO - threading
543 let mut pk = PublicKey::from_bytes(pks[0])?;
544 let mut agg_pk = AggregatePublicKey::from_public_key(&pk);
545 for s in pks.iter().skip(1) {
546 pk = PublicKey::from_bytes(s)?;
547 unsafe {
548 // TODO - does this need add_or_double?
549 $pk_add_or_dbl_aff(
550 &mut agg_pk.point,
551 &agg_pk.point,
552 &pk.point,
553 );
554 }
555 }
556 Ok(agg_pk)
557 }

When the above function is called with a zero-length pks input array, line 543 will cause a
panic.43 Note that the adjacent aggregate() function on lines 522-535 has the same issue.
However, its function signature returns Self rather than a Result<> as in the function shown
above. Finally, both functions are again implemented for AggregateSignature on lines 928-
964 with the same issue again.

The BLS Signature specification44 requires that n >= 1 or return INVALID.

Recommendation Implement a check for a zero-length pks input array in each of the four functions, and return
an appropriate Err(BLST_ERROR) if found. Two of the four functions will need their return
type modified to Result<Self, BLST_ERROR>.

43https://doc.rust-lang.org/reference/expressions/array-expr.html#array-and-slice-indexing-expressions
44https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-2.8
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Retest Results NCC Group reviewed changes made in the updated 1e288d9 commit.45 Code changes in the
bindings/rust/src/lib.rs file involving checks for .len() == 0 on both pks and sigs
were observed per the recommendation. However, line 530 of the adjacent aggregate()
function will panic when given an empty list. As such, this finding has beenmarked as ‘Partially
Fixed’.

Client Response The aggregate()-related portion of this finding will be resolved in the nearest API change.
For now, presenting a crash is preferred over returning incorrect data.

45https://github.com/supranational/blst/commit/1e288d96ed2a336aacb380bcbd8eab6fc2ddb1e4
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Finding Struct Fields With Extraneous pub Access Modifiers

Risk Low Impact: Low, Exploitability: Undetermined

Identifier NCC-ETHF002-017

Status Fixed

Category Configuration

Component D: Rust Bindings

Location • Lines 289, 395, 501, 574 and 907 of blst/bindings/rust/src/lib.rs
• Line 19 of blst/bindings/rust/src/bindings.rs

Impact Exposing internal library struct fields to the application increases the risk of misuse and the
impact of field changes, and may be indicative of an incomplete API.

Description The Rust bindings implemented in lib.rs define the SecretKey, PublicKey, AggregatePu
blicKey, Signature, and AggregateSignature structs for use by the application, with the
first struct shown below.

288 pub struct SecretKey {
289 pub value: blst_scalar,
290 }

Annotating the internal field with the pub modifier, as highlighted above, causes it to be
accessible to the calling application. This accessibility allows the application to bypass the
API and directly perform operations on the internal fields which is generally inadvisable. For
example, the application may attempt to deserialize a SecretKey46 without performing the
necessary bounds check.47 The application may (or may not) be performing these direct
operations due to the lack of a suitable API function.

In addition, structs with public fields may become entwined with application code such that
internal BLST library changes cause unanticipated application breakage,48 e.g., through brittle
pattern matching logic.

Line 19 of bindings.rs adds the pub access modifier to an internal field of the blst_scalar
struct as described above.

Recommendation Remove the pub access modifier from the internal fields of the six structs noted.

The above change does not impact cargo test but may initially impact application users.
This impact will then inform either proper API usage or further API development.

Retest Results NCC Group reviewed changes made in the updated f1a2b9f commit.49 Code changes in the
bindings/rust/src/lib.rs file involving the removal of the pub keyword from the Secret
Key, PublicKey, AggregatePublicKey, Signature and AggregateSignature structs were
observed per the recommendation. As such, this finding has been marked as ‘Fixed’.

46https://github.com/sigp/lighthouse/blob/ncc-october/crypto/bls/src/impls/blst.rs#L71
47https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-2.3
48https://users.rust-lang.org/t/structs-with-public-fields-are-brittle/989
49https://github.com/supranational/blst/commit/f1a2b9f53c4685c55c632d3147aaa47c6d501770
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Finding Details – E: Golang Bindings
Finding Sensitive Information Not Cleared

Risk Low Impact: High, Exploitability: Low

Identifier NCC-ETHF002-012

Status Fixed

Category Data Exposure

Component E: Golang Bindings

Location Line 42 of blst/bindings/go/blst.go

Impact If regions of memory become accessible to an attacker, perhaps via a core dump, attached
debugger or disk swapping, the attacker may be able to extract plaintext secret values.

Description This finding is a sibling of finding NCC-ETHF002-002 on page 26 which relates to the Rust
bindings.

Typically, all of a function’s local stack variables and heap allocations remain in process mem-
ory after the function goes out of scope, unless they are overwritten by new data or garbage
collection is performed. This stale data is vulnerable to disclosure through means such as
core dumps, an attached debugger and disk swapping. As a result, sensitive data should be
cleared from memory once it is no longer needed.

As suggested in code comments,50 BLST as a library sensibly aims to minimize ownership of
memory containing secret material, leaving responsibility for clearing secrets to the larger
application. The repository README.md states “…these ultimately belong in language-specific
bindings”. TheGolang bindings are the intermediary to the larger application, and the location
where the responsibility begins.

The secret key struct on line 42 of blst.go has no associated functionality to assist in clearing
its contents from memory after use. Since the results of memory-clearing functions are not
used for functional purposes elsewhere, these functions can become the victim of compiler
optimizations and be eliminated. While there are a variety of tooling-specific “tricks”51 to
attempt to avoid compiler optimizations and ensure that a clearing routine is performed reli-
ably, Golang offers the opportunity for the programmer to either A) explicitly call a C function
to immediately perform this task, or B) utilize runtime functionality52 to defer zeroizing to
garbage collection time.

Recommendation Preferably, expose and document the usage of the existing vec_zero()53 function to clear
secrets from memory after use.

Alternatively, document the usage of runtime.SetFinalizer()54 as shown below (from ht
tps://github.com/golang/go/issues/21865#issuecomment-494054993):

type Secret struct { key [16]byte }

s := &Secret{key: ...}
runtime.SetFinalizer(s, func(s *Secret) { s.key = [16]byte{} })

50https://github.com/supranational/blst/blob/414ac6b185f6b2ef2e6364d5716f915af966c465/bindings/rust/src/lib.
rs#L357
51https://www.usenix.org/sites/default/files/conference/protected-files/usenixsecurity17_slides_zhaomo_yang.pdf
52https://github.com/golang/go/issues/21865#issuecomment-494054993
53https://github.com/supranational/blst/blob/f3647bc54593258eecc995c88045e02ab48e1996/src/vect.h#L315
54https://golang.org/pkg/runtime/#SetFinalizer
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Retest Results NCC Group reviewed changes made in the updated 10346f4 commit.55 Code changes in the
bindings/go/blst.go file involving the addition of a Zeroize() function for execution at
garbage collection time, along with corresponding test cases, were observed per the recom-
mendation. As such, this finding has been marked as ‘Fixed’.

55https://github.com/supranational/blst/commit/10346f4bfc57c13c9955f27a03454dc3bc1e78c6
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Finding Missing Public KeyValidate Function

Risk Low Impact: High, Exploitability: Low

Identifier NCC-ETHF002-013

Status Fixed

Category Cryptography

Component E: Golang Bindings

Location Absent from Golang bindings

Impact An absent KeyValidate() function (which is present in the Rust bindings) will require the
application to correctly validate public keys, which may introduce oversights.

Description Section 5.156 of the BLS Signatures specification discusses the necessity of validating public
keys prior to their use, though requirements vary by scheme as excerpted below:

All algorithms in Section 2 and Section 3 that operate on public keys require first
validating those keys. For the basic and message augmentation schemes, the use
of KeyValidate is REQUIRED. For the proof of possession scheme, each public key
MUST be accompanied by a proof of possession, and use of PopVerify is REQUIRED.

This suggests the need for a KeyValidate() API function for the Golang bindings (as is
provided in the Rust bindings). Section 2.5 of the specification defines the central functionality
to be “… ensures that a public key represents a valid, non-identity point that is in the correct
subgroup”.

Without this Golang API, an application is required to implement this logic and there is sig-
nificant potential for mistakes. If the user refers to an older version of the specification,57 the
check for a non-identity key may be missed. If the user refers to the BLST root README.md
file58 for direction, this same check may be missed. If the user refers to the existing Rust
bindings,59 this same check may be missed.

Recommendation Implement and expose a KeyValidate() function that matches section 2.5 of the BLS Signa-
tures specification; the Golang and Rust interfaces should have an identical signature except
for necessary language-specific differences.

Retest Results NCC Group reviewed changes made in the updated e75e2ad commit.60 Code changes in the
bindings/go/blst.go file involving the addition of a KeyValidate() function for each point
type was observed per the recommendation. As such, this finding has beenmarked as ‘Fixed’.

56https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-5.1
57https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-02#section-2.5
58https://github.com/supranational/blst/blob/414ac6b185f6b2ef2e6364d5716f915af966c465/README.md#signat
ure-verification
59https://github.com/supranational/blst/blob/master/bindings/rust/src/lib.rs#L402
60https://github.com/supranational/blst/commit/e75e2add28767eeeaac11a55548c3aa06dd84e33
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Finding Extraneous Type Exports

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-ETHF002-018

Status Risk Accepted

Category Configuration

Component E: Golang Bindings

Location Lines 31-39 of blst/bindings/go/blst.go

Impact Exposing internal library types to the application increases the risk of misuse and the impact
of internal library changes on application users, and may be indicative of an incomplete API.

Description This finding is a sibling to finding NCC-ETHF002-010 on page 22 and finding NCC-ETHF002-
017 on page 32.

The blst.go source file implements the Golang bindings and exports a variety of types, as
shown below.

31 type Scalar = C.blst_scalar
32 type Fp = C.blst_fp
33 type Fp2 = C.blst_fp2
34 type Fp6 = C.blst_fp6
35 type Fp12 = C.blst_fp12
36 type P1 = C.blst_p1
37 type P2 = C.blst_p2
38 type P1Affine = C.blst_p1_affine
39 type P2Affine = C.blst_p2_affine
40 type Message = []byte
41 type Pairing = []uint64
42 type SecretKey = Scalar

The code above effectively aliases the internal C types to Golang. However, when the first
character of a Golang identifier is capitalized, that identifier is exported61 and becomes usable
to the calling application.

Several identifiers, such as Fp2 and Fp6, correspond to strictly internal types that should not
be used outside of the library. These types are exported along with additional associated
functionality such as Equals(), FromBEndian(), ToBEndian() etc.

The latter three identifiers shown in the above code fragment relate to the library’s top-level
functionality and thus are appropriate. However, the absence of PublicKey and Signature
is notable and explains the need to export the variety of ‘points’. This suggests an incomplete
API that requires unnecessary expertise on the part of the library user (e.g., to differentiate
which type of point is used for a particular value in a specific ciphersuite configuration).

Recommendation Export all necessary types corresponding to the top-level library functionality only. Remove
the internal types from export by using a lower-case leading character.

Client Response Same rationale as with Rust in NCC-ETHF002-010 finding NCC-ETHF002-010 on page 22.

61https://golang.org/ref/spec#Exported_identifiers
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Finding Insufficient Public Key Validation on Deserialization

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-ETHF002-019

Status Risk Accepted

Category Data Validation

Component E: Golang Bindings

Location • Lines 1323-1336 of blst/bindings/go/blst.go
• Lines 1515-1528 of blst/bindings/go/blst.go

Impact Incomplete validation permits an identity public key where the corresponding secret key is
equal to zero. This does not meet the BLS Signature specification and may allow a valid sig-
nature for every message under this key. A malicious signer could then introduce uncertainty
about which messages were signed.

Description This finding is partially related to finding NCC-ETHF002-007 on page 28.

As noted in finding NCC-ETHF002-018 on the preceding page, the blst.go source file does
not export a PublicKey struct. Thus, the library user must utilize the correct exported ‘point’
type to perform any necessary operations. One significant operation is deserialization in
which the BLS Signatures specification requires the public key to be a valid, non-identity point
in the correct subgroup. The relevant function for the P1Affine type is shown below.

1323 func (p1 *P1Affine) Deserialize(in []byte) *P1Affine {
1324 if len(in) != BLST_P1_SERIALIZE_BYTES {
1325 return nil
1326 }
1327 if C.blst_p1_deserialize(p1,
1328 (*C.byte)(&in[0])) != C.BLST_SUCCESS {
1329 return nil
1330 }
1331

1332 if !bool(C.blst_p1_affine_in_g1(p1)) {
1333 return nil
1334 }
1335 return p1
1336 }

The validation test on lines 1332-1334 checks subgroupmembership via a technique outlined
in the paper “Faster Subgroup Checks for BLS12-381”.62 The required check for the identity
point63 is not performed.

This same scenario is also present in the Deserialize() function for P2Affine as imple-
mented on lines 1515-1528.

Recommendation Ensure the deserialized public key is validated against the identity point as required by the
specification. This may necessitate a new API function if the current deserialization function
is used for multiple purposes with different requirements.

Client Response Added KeyValidate function (see NCC-ETHF002-013 finding NCC-ETHF002-013 on page 35).
62https://eprint.iacr.org/2019/814.pdf
63https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-5.1
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The expectation is the application will deserialize/uncompress an object and call KeyValidate
if that object is a previously unvalidated public key. The deserialize interface is agnostic to the
higher level object type.
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Finding Missing Checks in Aggregate Verify

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-ETHF002-020

Status Fixed

Category Data Validation

Component E: Golang Bindings

Location • Lines 282-309 in blst/bindings/go/blst.go
• Lines 313-365 in blst/bindings/go/blst.go
• Lines 830-857 in blst/bindings/go/blst.go

Impact A zero-length list of msgs/pks input provided to the AggregateVerify() function incorrectly
returns true, rather than INVALID (or false) as the BLS Signatures specification requires.

Description This finding is a sibling to finding NCC-ETHF002-009 on page 20. There are multiple instances
of this finding.

The first instance involves the AggregateVerify() function as implemented on lines 282-309
blst.go which is partially excerpted below.

func (sig *P2Affine) AggregateVerify(pks []*P1Affine, msgs []Message, dst []byte,
optional ...interface{}) bool { // useHash bool, augs [][]byte

// sanity checks and argument parsing
if len(pks) != len(msgs) {

return false
}
_, augs, useHash, ok := parseOpts(optional...)

...<snip>...

return coreAggregateVerifyPkInG1(sigFn, pkFn, msgs, dst, useHash)
}

The BLS Signatures specification requires that the AggregateVerify() function return INV
ALID (or false) when provided with zero-length msgs/pks lists as input. The function shown
above will instead progress down to its return statement with a function closure passed to
coreAggregateVerifyPkInG1() shown below. This latter function will then return true.

func coreAggregateVerifyPkInG1(sigFn sigGetterP2, pkFn pkGetterP1, msgs
[]Message, dst []byte, optional ...bool) bool { // useHash

n := len(msgs)
if n == 0 {

return true
}

...

Additional instances of the same issue can be found on lines 313-365, 830-857 and 861-913.
In the same way, this pattern is repeated for several functions calling multipleAggregateVe
rifyPkInGx().

Recommendation For each instance, implement early checks for zero-length input that return false.
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Retest Results NCC Group reviewed changes made in the updated 9b4b16f commit.64 Code changes in the
bindings/go/blst.go file involving the addition of early checks for length==0 returning
false was observed per the recommendation. As such, this finding has been marked as
‘Fixed’.

64https://github.com/supranational/blst/commit/9b4b16fb42692370ba8a6ccfbca1803691225413
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Appendix A: Optimization Suggestions
In this section, we present a few suggestions for achieving performance improvements in BLST.

Modular Inversion
Inversion modulo a prime p is classically performed through two possible methods: Fermat’s Little Theorem (FLT), i.e.
raising to the power p − 2, and the extended Euclidean algorithm. There are several variants of the latter; the most
used in cryptographic applications are of the “binary GCD” type, which uses only subtractions and right shifts. It is
generally considered that the FLT method should be used when processing secret values, to avoid timing-based side
channels.

In 2019, Bernstein and Yang published a new constant-time algorithm to compute modular inverses65; they found it
to be faster than FLT when working modulo 2255 − 19 on 64-bit x86 systems, even though such a situation is known
to favour the FLT, owing to the efficient 64-bit multipliers of the CPU and the fast modular reduction allowed by the
special format of the modulus. In 2020, Pornin described a variant of the binary GCD which is also constant-time, and
even faster.66 Using this latter article, we find that for modulus p = 2255 − 19, the optimized binary GCD completes
with a cost roughly equal to that of 180 squarings in that field. As another data point, using the same field but a much
smaller target architecture (ARM Cortex M0+), an assembly implementation of the binary GCD can be made in 54973
cycles, i.e. about 55 squarings.67

In the case of curve BLS12-381, the field of interest uses a 381-bit modulus p. Since the binary GCD has a quadratic
cost in the size of the modulus, we can expect its cost in that field to be no more than 180 squarings, and probably
less than that, since multiplications in that field are comparatively more expensive due to the use of Montgomery
reduction instead of the fast reduction allowed by quasi-Mersenne primes. As a rough estimate, we may hope for an
implementation of the optimized binary GCD to have a cost equivalent to about 140 squarings, i.e. less than a third of
the cost of FLT-based inversion in that field (461 squarings, as implemented in BLST with an optimized addition chain).

Variable-time variants of both the Bernstein-Yang and the Pornin algorithms are possible, and can yield some additional
speed-ups, applicable to situations where the value to invert is not secret (e.g. when handling public keys and verifying
signatures). In another 256-bit fieldwith a special format (used for curve secp256k1), on 64-bit x86 CPU, inversion times
below 4000 cycles have been reported.68

Normalization to Affine Coordinates
Even with an optimized modular inversion, as described in the previous section, doing all computations on elliptic
curve points in strict affine coordinates is still much more expensive than using fractional coordinates, e.g. Jacobian
coordinates, as currently implemented in BLST. However, a fast modular inversion may make it worthwhile to convert
the precomputed points in the window back to affine coordinates, when multiplying a non-fixed point by a scalar.

The current implementation of POINTonE1_add() uses the classic 11M+5S formulas. The alternate function POINT
onE1_add_affine(), which expects the second operand to be in affine coordinates, does so in 7M+4S, i.e. saves a
cost of 4M+1S. When multiplying a point in the subgroup of order r (e.g. to generate a signature), scalars have size
255 bits, and the point multiplication routine with 5-bit windows makes 51 calls to the generic point addition routine,
using a point from the window (or its opposite) as second operand. If all window points are in affine coordinates, then
the cumulated savings are 204M+51S. The question is then whether such savings are enough to offset the cost of
converting all window points to affine coordinates.

To convert a point from Jacobian (X:Y :Z) coordinates to affine coordinates (x, y) = (X/Z2, Y /Z3), one needs to
compute one inversion (to obtain Z−1), then 3M+1S to finish the conversion. If several inversions must be computed,
then they can be mutualized, using a trick due to Montgomery: for any two values a and b that must be inverted, one
can do a single inversion 1/(ab) and then obtain 1/a = b/(ab) and 1/b = a/(ab). Applied recursively on a list of
n values to invert, this method allows computing the n inverses with a single modular inversion, and 3(n − 1) extra
65https://eprint.iacr.org/2019/266
66https://eprint.iacr.org/2020/972
67https://github.com/pornin/x25519-cm0
68https://github.com/bitcoin-core/secp256k1/pull/767#issuecomment-687583246
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multiplications. In the case of BLST, with 5-bit windows, there are n = 16 points to convert to affine coordinates, so
the total cost of that conversion should be that of one modular inversion, and 93M+16S extra cost.

Using these figures as estimates, the conversion of window points to affine coordinates should incur net overall savings
if the cost of the inversion is less than 111M+35S. Since we estimated the cost of the optimized binary GCD at about
140S in the field of interest, and since squarings are normally faster thanmultiplications, we conclude that it is probable
that this technique would lower the cost of multiplying group elements on the base curve (E1) by scalars (and, in
particular, the cost of signature generation).

On the extended curve in the field extension Fp2 , larger savings are expected. This can be seen as a two-step process:
first, point coordinates can be modified so that their Z coordinates are part of the base field Fp; then, these simplified
coordinates may be inverted to fully convert all window points to affine coordinates, similarly to above.

In the description below, we will denote the costs of multiplication and squaring in Fp by M and S, respectively, and the
costs of multiplication and squaring in Fp2 by M’ and S’. With the implementation techniques used in BLST, we have
the following approximate correspondences:

• Generic multiplication in Fp2 : 1M’ = 3M
• Generic squaring in Fp2 : 1S’ = 2M
• Mixed multiplication (one element of Fp2 by one element of Fp): 2M

Any field element z ∈ Fp2 can be uniquely represented as z = a+ ib where a and b are elements of Fp (the “real part”
and “imaginary part” of z, respectively). Then, one can notice that 1/z = (a − ib)/(a2 + b2). Using this technique, a
point in Jacobian coordinates (X:Y :Z) can be converted to (X ′:Y ′:Z ′) with Z ′ ∈ Fp with cost 3M’+1S’+2S = 11M+2S.
Applying this conversion on all 16 window points thus costs 176M+32S. On the other hand, when the conversions
are applied, cost of generic point addition (POINTinE2_add() function) is reduced, from 11M’+5S’ = 43M down to
37M+1S; over the 51 point additions involved in the point multiplication routine (with a 255-bit scalar), these amount
to saving 255M, and furthermore replacing 51 multiplications with cheaper squarings. The savings exceed the cost of
the conversion, thus making the optimization worthwhile.

As a second step, when all Z coordinates are in Fp, they can be inverted with the techniques previously described; that
way, all window points can be converted to affine coordinates at an extra cost of one inversion in Fp, and 125M+16S.
This brings the total cost of conversion of all 16 window points to affine coordinates to 301M+48S and one inversion
in Fp. Mixed point addition over the extended field has cost 7M’+4S’ = 29M, which is 14M lower than the generic point
addition; over 51 point additions, this leads to a savings of 714M, thus net savings overall as long as the inversion is
less expensive than 365M, which is very likely to be true if using the optimized binary GCD, as detailed in a previous
section.

All these figures are estimates based on the number of multiplications and squarings; computations on points also
involve other operations, such as additions and subtractions, which are cheaper but not necessarily negligible. There-
fore, benchmarks should be performed to measure the savings that can thus be obtained. At least the first step of
reduction for curve E2 (reducing Z coordinates to the base field) is independent of the modular inversion technique
and is likely to have tangible benefits by itself.

Alternate Formulas
BLST currently uses the classic 11M+5S addition formulas for point addition over short Weierstraß curves in Jacobian
coordinates (13M+5S for generic addition that can also compute doublings). These are described in various places,
notably the Explicit-Formulas Database.69 However, the EFD is not fully up-to-date, especially with regard to any
formulas discovered after 2013 or so. In late 2015, Renes, Costello and Batina published new formulas for short
Weierstraß curves.70 These formulas, when applied to points of a short Weierstraß curve in projective coordinates,
compute a generic point addition in only 12M, which is noticeably faster. Furthermore, these formulas are complete,
69http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
70https://eprint.iacr.org/2015/1060
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i.e. they handle all combinations of operands, including when either (or both) is the point-at-infinity, or the result is
the point-at-infinity, or the two operands represent the same point.71 This fully avoids issues such as the one reported
in finding NCC-ETHF002-016 on page 14.

The Renes-Costello-Batina operate in projective coordinates (coordinates (Xp:Yp:Zp) correspond to the affine point
(Xp/Zp, Yp/Zp)), not in the Jacobian coordinates currently used by BLST. The article contains formulas specialized for
curves with equation y2 = x3+b, a category which includes BLS12-381; the point doubling formulas have cost 6M+2S,
which is fast, but not as fast as the 3M+4S formulas currently used in Jacobian coordinates. One possible strategy is
to convert from projective to Jacobian before performing a sequence of doublings, then back to projective afterwards.
This can be equivalently described as converting from Jacobian to projective coordinates before performing point
addition, and back to Jacobian afterwards.

Conversion from projective (Xp:Yp:Zp) to Jacobian (Xj :Yj :Zj) coordinates can be done in cost 2M+1S (with Xj =

XpZp, Yj = YpZ
2
p and Zj = Zp), while conversion back from Jacobian to projective coordinates has cost 2M+1S (with

Xp = XjZj , Yp = Yj and Zp = Z3
j . Important: note that the Renes-Costello-Batina formulas require that the point-

at-infinity is represented as (0:Yp:0) for a non-zero Yp; therefore, conversion from Jacobian to projective should make
sure that Yp is set to a non-zero value when Zj = 0.

The cost of conversion between the two coordinate systems is such that keeping to projective coordinates is a better
choice except for long runs of successive point doublings; the number of doublings at which the switch to Jacobian
coordinates is worthwhile depends on the relative costs of multiplications and squarings. Starting from a point in
projective coordinates and going back to projective coordinates, a sequence of n point doublings has cost 6n multi-
plications and 2n squarings if keeping to projective coordinates, but 3n + 4 multiplications and 4n + 2 squarings if
converting to Jacobian coordinates and back. If squarings and multiplications have the same cost, the use of Jacobian
coordinates implies savings only when n > 6; if the cost of a squaring is 2/3 of that of a multiplication, then Jacobian
coordinates take the advantage when n ≥ 4. For long runs of doublings (e.g. as part of testing whether a point is in
the expected subgroup, in the POINTonE1_times_zz_minus_1_div_by_3() function, where up to 41 doublings may
be performed in a row), Jacobian coordinates are certainly more efficient.

In the context of multiplying a point by a scalar, with 5-bit windows, then it is unclear whether remaining on projective
coordinates is faster than converting to Jacobian coordinates for doubling; this matter could be resolved only by
benchmarking. No big savings (or extra costs) are expected, compared to the current BLST implementation in pure
Jacobian coordinates. However, when doing a linear combination of points (a sum of products of multiple points, as
implemented by POINTonE1s_mult_w5() and POINTonE2s_mult_w5()), the use of projective coordinates and the
Renes-Costello-Batina formulas for at least the point additions (if not the doublings) will probably induce savings since
their cost per point addition (12M, or 11M if the windows were normalized to affine coordinates) is lower than the cost
of generic point addition (13M+5S, or 8M+5S with normalization to affine coordinates); this is where the completeness
of formulas is most useful.

Use of complete formulas, in general, is recommended for security reasons; it makes the analysis simpler, and the
implementation more robust (for instance, when verifying whether an incoming point is in the right subgroup, com-
plete formulas don’t have trouble even with low order points, as discussed for instance in GitHub issue #1672). These
security considerations, by themselves, justify exploring implementations that use complete formulas. But it is also
possible that such formulas yield, in practice, some performance improvements.

71Completeness is ensured as long as neither of the operands is a point of order 2 (i.e. such that y = 0). However, curve BLS12-381 does not
contain any point of order 2; therefore, the formulas are indeed complete for the whole curve.
72https://github.com/supranational/blst/issues/16
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Appendix B: BLS Signatures API Notes

1.0 Overview
This informational appendix contains API notes and observations related to the BLS Signatures specification and
the BLST library implementation. The next section below presents a simplified view of the specification from the
perspective of the user, alongside informal notes regarding input parameter formats and validation checks. This is
followed by a section summarizing the implementation interface delivered by the Rust bindings for BLST. The appendix
concludes with observations and recommendations on prioritizing future usability development to better support safe
and reliable applications.

2.0 BLS Signatures API
The BLS Signature specification73 specifies two configurations – the first features a minimum signature size (min-sig
) and the second features a minimum public key size (min-pk). The specification then outlines a number of core
operations involving key generation, signing, verifying and aggregation. Next, three different signature schemes are
elaborated which differ in the ways that they defend against rogue key attacks. These signature schemes incorporate
various combinations of the core operations via inheritance, delegation and wrapping them alongside additional logic.
Finally, specific ciphersuites are defined to unambiguously specify the exact schemes and their configurations to enable
application interoperability. As a result of this complexity, the definition and correct use of the API for each ciphersuite
can be challenging to understand.

The following three subsections are intended to ‘flatten’ the API specification for each of three signature schemes
(and their ciphersuite set) to aid in understanding. The content originated as an intermediate project artifact, but is
presented here to support a comparison of specification against implementation. Each section can be considered an
API, with the appropriate functions and combinations of input highlighted for the two configurations, and the required
input validation noted. One item that becomes somewhat more clear in the sections that follow is that the zero-public-
key and the zero-signature may occur when using the aggregation functions, but cannot occur outside of this.

2.1 BLS Signatures ‘Basic Scheme’ API From Specification Section 3.1
Relevant Ciphersuites:
> BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_NUL_ – Basic scheme, min-sig
> BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_ – Basic scheme, min-pk

• KeyGen() is the core operation defined in section 2.3
– min-sig and min-pk: KeyGen(IKM) -> SK_scalar
– BLS Signatures specification of KeyGen algorithm is RECOMMENDED (but not a required algorithm)
– key_info is optional octet string input parameter; when not supplied, it defaults to an empty string
– SK_scalar output must be deterministic
– Input check: IKMmust be at least 32 bytes long; it can be longer
– Output: A uniform SK such that 1 <= SK < r

• SkToPk() is the core operation defined in section 2.4
– min-sig: SkToPk_p2(SK_scalar) -> PK_p2
– min-pk: SkToPk_p1(SK_scalar) -> PK_p1
– Input check: SK input such that 1 <= SK < r
– Output: PK is valid, non-identity point in the correct subgroup

• Sign() delegates to the identical CoreSign operation defined in section 2.6
– min-sig: Sign_p1(SK_scalar, message) -> Sig_p1
– min-pk: Sign_p2(SK_scalar, message) -> Sig_p2
– Input check: SK input in the format output by KeyGen (note range constraint)
– Output: Sig cannot be invalid or in the wrong subgroup; calculation precludes identity result

73https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04
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• Verify() delegates to the identical CoreVerify operation defined in section 2.7
– min-sig: Verify_p2_p1(PK_p2, message, Sig_p1) -> VALID/INVALID
– min-pk: Verify_p1_p2(PK_p1, message, Sig_p2) -> VALID/INVALID
– Input check: PKmust be checked via KeyValidate 2.5: valid, non-identity point in the correct subgroup
– Input check: Sig from Sign is valid, non-identity point in the correct subgroup

• Aggregate() is the core operation defined in section 2.8
– min-sig: Aggregate_p1(list of Sig_p1) -> Sig_p1/INVALID
– min-pk: Aggregate_p2(list of Sig_p2) -> Sig_p2/INVALID
– Input check: List of signatures must be >= 1, otherwise return INVALID
– Input check: Each Sig from Sign is valid, non-identity and in the correct subgroup
– Output: Sig cannot be invalid or in the wrong subgroup; calculation does not preclude identity

• Section 3.1.1 AggregateVerify() utilizes CoreAggregateVerify (2.9) routine with extra logic
– min-sig: Aggregate_p2_Verify_p1((list of PK_p2), (list of messages), Sig_p1)
– min-pk: Aggregate_p1_Verify_p2((list of PK_p1), (list of messages), Sig_p2)
– Input check: List of messages must be >= 1, otherwise return INVALID
– Input check: If any two messages are equal, return INVALID
– Input check: Length of PKmust match length of messages, otherwise return INVALID
– Input check: CoreAggregateVerify checks PKs via KeyValidate for valid, non-identity point in the correct
subgroup

– Input check: CoreAggregateVerify checks Sig for point validity and the correct subgroup (identity not stated)

2.2 BLS Signatures ‘Message Augmentation Scheme’ API From Specification Section 3.2
Relevant Ciphersuites:
> BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_AUG_ – Message augmentation, min-sig
> BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_AUG_ – Message augmentation, min-pk

• KeyGen() is the core operation defined in section 2.3
– min-sig and min-pk: KeyGen(IKM) -> SK_scalar
– BLS Signatures specification of KeyGen algorithm is RECOMMENDED (but not a required algorithm)
– key_info is optional octet string input parameter; when not supplied, it defaults to an empty string
– SK_scalar output must be deterministic
– Input check: IKMmust be at least 32 bytes long; it can be longer
– Output: A uniform SK such that 1 <= SK < r

• SkToPk() is the core operation defined in section 2.4
– min-sig: SkToPk_p2(SK_scalar) -> PK_p2
– min-pk: SkToPk_p1(SK_scalar) -> PK_p1
– Input check: SK input such that 1 <= SK < r
– Output: PK is valid, non-identity point in the correct subgroup

• Section 3.2.1 Sign() utilizes CoreSign (2.6) routine with extra logic
– min-sig: Sign_p1(SK_scalar, message) -> Sig_p1
– min-pk: Sign_p2(SK_scalar, message) -> Sig_p2
– Roughly CoreSign(SK, PK || message)
– Input check: SK input in the format output by KeyGen (note range constraint)
– Output: Sig cannot be invalid or in the wrong subgroup; calculation precludes identity result

• Section 3.2.2 Verify() utilizes CoreVerify (2.7) with extra logic
– min-sig: Verify_p2_p1(PK_p2, message, Sig_p1) -> VALID/INVALID
– min-pk: Verify_p1_p2(PK_p1, message, Sig_p2) -> VALID/INVALID
– Roughly CoreVerify(PK, PK || message, signature)
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– Input check: PKmust be checked via KeyValidate 2.5: valid, non-identity point in the correct subgroup
– Input check: CoreVerify checks Sigs to be valid and in correct subgroup

• Aggregate() is the core operation defined in section 2.8
– min-sig: Aggregate_p1(list of Sig_p1) -> Sig_p1/INVALID
– min-pk: Aggregate_p2(list of Sig_p2) -> Sig_p2/INVALID
– Input check: List of signatures must be >= 1, otherwise return INVALID
– Input check: Each Sig from Sign is valid, non-identity point in the correct subgroup
– Output: Sig cannot be invalid or in the wrong subgroup; calculation does not preclude identity

• Section 3.2.3 AggregateVerify() utilizes CoreAggregateVerify (2.9) with extra logic
– min-sig: Aggregate_p2_Verify_p1((list of PK_p2), (list of message), Sig_p1) -> VALID/INVALID
– min-pk: Aggregate_p2_Verify_p1((list of PK_p2), (list of message), Sig_p2) -> VALID/INVALID
– Roughly: concat message/PK pairs, CoreAggregateVerify((PKs), (concat-pairs), Sig)
– Input check: List of messages must be >= 1, otherwise return INVALID
– Input check: Length of PKmust match length of messages, otherwise return INVALID
– Input check: CoreAggregateVerify checks PKs via KeyValidate for valid, non-identity point in the correct
subgroup

– Input check: CoreAggregateVerify checks Sig for point validity and the correct subgroup (identity not stated)

2.3 BLS Signatures ‘Proof of Possession Scheme’ API From Specification Section 3.3
Relevant Ciphersuites:
> BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_ – Proof of possession, min-sig
> BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_ – Proof of possession, min-pk

• KeyGen() is the core operation defined in section 2.3
– min-sig and min-pk: KeyGen(IKM) -> SK_scalar
– BLS Signatures specification of KeyGen algorithm is RECOMMENDED (but not a required algorithm)
– key_info is optional octet string input parameter; when not supplied, it defaults to an empty string
– SK_scalar output must be deterministic
– Input check: IKMmust be at least 32 bytes long; it can be longer
– Output: A uniform SK such that 1 <= SK < r

• SkToPk() is the core operation defined in section 2.4
– min-sig: SkToPk_p2(SK_scalar) -> PK_p2
– min-pk: SkToPk_p1(SK_scalar) -> PK_p1
– Input check: SK input such that 1 <= SK < r
– Output: PK is valid, non-identity point in the correct subgroup

• Sign() delegates to the identical CoreSign operation defined in section 2.6
– min-sig: Sign_p1(SK_scalar, message) -> Sig_p1
– min-pk: Sign_p2(SK_scalar, message) -> Sig_p2
– Input check: SK input in the format output by KeyGen (note range constraint)
– Output: Sig cannot be invalid or in the wrong subgroup; calculation precludes identity result

• Verify() delegates to the identical CoreVerify operation defined in section 2.7
– min-sig: Verify_p2_p1(PK_p2, message, Sig_p1) -> VALID/INVALID
– min-pk: Verify_p1_p2(PK_p1, message, Sig_p2) -> VALID/INVALID
– Input check: PKmust be checked via KeyValidate 2.5: valid, non-identity point in the correct subgroup
– Input check: Sig from Sign is valid, non-identity point in the correct subgroup

• AggregateVerify() delegates to the identical CoreAggregateVerify operation defined in section 2.9
– min-sig: CoreAggregate_p2_Verify_p1((list of PK_p2), (list of messages), Sig_p1) -> VALID/INV
ALID
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– min-pk: CoreAggregate_p1_Verify_p2((list of PK_p1), (list of messages), Sig_p2) -> VALID/INV
ALID

– Input check: List of messages must be >= 1, otherwise return INVALID
– Input check: Length of PKmust match length of messages, otherwise return INVALID
– Input check: CoreAggregateVerify checks PKs via KeyValidate for valid, non-identity and in the correct sub-
group

– Input check: CoreAggregateVerify checks Sig for point validity and the correct subgroup (identity not stated)

• Section 3.3.2 PopProve()
– min-sig and min-pk: Pop_p1_Prove(SK_scalar) -> proof
– Roughly: Q = hash_pubkey_to_point, R = SK * Q, return point_to_sig(R)
– Input check: SK input in the format output by KeyGen (note range constraint)
– Output: proof is an octect string

• Section 3.3.3 PopVerify()
– min-sig: Pop_p2_Verify(PK_p1, proof) -> VALID/INVALID
– min-pk: Pop_p1_Verify(PK_p2, proof) -> VALID/INVALID
– Input check: PK is checked via KeyValidate 2.5: valid, non-identity and in the correct subgroup
– Input check: derive sig and check validity, subgroup

• Section 3.3.4 FastAggregateVerify()
– min-sig: FastAggregate_p2_Verify_p1((list of PK_p2), message, Sig_p1) -> VALID/INVALID
– min-pk: FastAggregate_p2_Verify_p1((list of PK_p2), message, Sig_p1) -> VALID/INVALID
– Roughly: aggregate PKs then CoreVerify(aggPK, message, sig)
– Input check: CoreVerify checks PK via KeyValidate 2.5: valid, non-identity and in the correct subgroup
– Input check: CoreVerify checks Sigs to be valid and in correct subgroup

3.0 BLST Library API (by Struct)
The BLS bindings for Rust contained in lib.rs are presented below for the min-sig configuration. Each API function
is listed under the particular struct it is ‘attached’ to. Note that the extraneous public exports (noted in finding NCC-
ETHF002-010 on page 22) from bindings.rs are not shown.

Struct blst::min_sig::SecretKey
pub fn key_gen(ikm: &[u8], key_info: &[u8]) -> Result<Self, BLST_ERROR>
pub fn sk_to_pk(&self) -> PublicKey
pub fn sign(&self, msg: &[u8], dst: &[u8], aug: &[u8]) -> Signature
pub fn serialize(&self) -> [u8; 32]
pub fn deserialize(sk_in: &[u8]) -> Result<Self, BLST_ERROR>
pub fn to_bytes(&self) -> [u8; 32]
pub fn from_bytes(sk_in: &[u8]) -> Result<Self, BLST_ERROR>

Struct blst::min_sig::PublicKey
pub fn key_validate(key: &[u8]) -> Result<Self, BLST_ERROR>
pub fn from_aggregate(agg_pk: &AggregatePublicKey) -> Self
pub fn compress(&self) -> [u8; 96]
pub fn serialize(&self) -> [u8; 192]
pub fn uncompress(pk_comp: &[u8]) -> Result<Self, BLST_ERROR>
pub fn deserialize(pk_in: &[u8]) -> Result<Self, BLST_ERROR>
pub fn from_bytes(pk_in: &[u8]) -> Result<Self, BLST_ERROR>
pub fn to_bytes(&self) -> [u8; 96]

Struct blst::min_sig::Signature
pub fn verify(&self, msg: &[u8], dst: &[u8], aug: &[u8], pk: &PublicKey) -> BLST_ERROR
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pub fn aggregate_verify(&self, msgs: &[&[u8]], dst: &[u8], pks: &[&PublicKey]) -> BLST_ERROR
pub fn fast_aggregate_verify(&self, msg: &[u8], dst: &[u8], pks: &[&PublicKey]) -> BLST_ERROR
pub fn fast_aggregate_verify_pre_aggregated(&self, msg: &[u8], dst: &[u8], pk: &PublicKey)

-> BLST_ERROR
pub fn verify_multiple_aggregate_signatures(msgs: &[&[u8]], dst: &[u8], pks: &[&PublicKey],

sigs: &[&Signature], rands: &[blst_scalar], rand_bits: usize) -> BLST_ERROR
pub fn from_aggregate(agg_sig: &AggregateSignature) -> Self
pub fn compress(&self) -> [u8; 48]
pub fn serialize(&self) -> [u8; 96]
pub fn uncompress(sig_comp: &[u8]) -> Result<Self, BLST_ERROR>
pub fn deserialize(sig_in: &[u8]) -> Result<Self, BLST_ERROR>
pub fn from_bytes(sig_in: &[u8]) -> Result<Self, BLST_ERROR>
pub fn to_bytes(&self) -> [u8; 48]

Struct blst::min_sig::AggregatePublicKey
pub fn from_public_key(pk: &PublicKey) -> Self
pub fn to_public_key(&self) -> PublicKey
pub fn aggregate(pks: &[&PublicKey]) -> Self
pub fn aggregate_serialized(pks: &[&[u8]]) -> Result<Self, BLST_ERROR>
pub fn add_aggregate(&mut self, agg_pk: &AggregatePublicKey)
pub fn add_public_key(&mut self, pk: &PublicKey)

Struct blst::min_sig::AggregateSignature
pub fn from_signature(sig: &Signature) -> Self
pub fn to_signature(&self) -> Signature
pub fn aggregate(sigs: &[&Signature]) -> Self
pub fn aggregate_serialized(sigs: &[&[u8]]) -> Result<Self, BLST_ERROR>
pub fn add_aggregate(&mut self, agg_sig: &AggregateSignature)
pub fn add_signature(&mut self, sig: &Signature)

In the API shown above, the signing functionality is associated with the SecretKey struct and the verify functionality
is associated with the Signature struct.

The PopProve() and PopVerify() functions from the ‘Proof of Possession Scheme’ are missing from the SecretKey
and PublicKey structs (respectively) shown above. While these functions can be assembled from other components,
the risk of user mistakes is high. This issue is captured in finding NCC-ETHF002-015 on page 6.

The PublicKey::key_validate() function should operate on &self rather than key: &[u8]. Arguably, the Secret
Key::sk_to_pk() function should return Result<PublicKey, BLST_ERROR> rather than PublicKey to account for
the possibility of bad input.

There are several functions, such as fast_aggregate_verify_pre_aggregated() and verify_multiple_aggreg
ate_signatures() that appear complex, undocumented, and are not present in the BLS Signatures specification.
These cannot be reviewed for correctness and risk misuse.

Note that several of the Rust bindings API perform detailed validation (e.g., see finding NCC-ETHF002-007 on page 28).
This implies its absence in the C source which risks oversights by users of the C library74 and divergence across the
different bindings.

Finally, the BLST repository top-level README.md takes a much lower-level view of the API as a very flexible set of
operations. This reflects the exports noted in finding NCC-ETHF002-010 on page 22.

API

The BLST API is defined in the C header bindings/blst.h. The API can be categorized as follows, with some
example operations:

74https://github.com/status-im/nim-blscurve/blob/master/blscurve/blst/blst_abi.nim#L5
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• Field Operations (add, sub, mul, neg, inv, to/from Montgomery)
• Curve Operations (add, double, mul, to/from affine, group check)
• Intermediate (hash to curve, pairing, serdes)
• BLS12-381 signature (sign, verify, aggregate) Note: there is also an auxiliary header file, bindings/blst_aux.h,
that is used as a staging area for experimental interfaces that may or may not get promoted to blst.h.

Complementing the view above, the README.md also states: “The essential point to note is that it’s the caller’s respon-
sibility to ensure that public keys are group-checked with blst_p1_affine_in_g1”. The level of detail in the above API and
statement around validation responsibilities places a heavy and complex burden on the library user. There is a risk of
specification changes (such as requiring non-identity keys75) being overlooked by users.

4.0 Observations and Recommendations
The BLST library offers a tremendous amount of optimized technology, performance and flexibility for applications to
deploy BLS Signature functionality. As suggested by the immediately preceding content above, there are some uneven
aspects to the API and some pairing-cryptography expertise is required to correctly use the library. History suggests
that users are challenged to correctly use basic cryptography76 and mistakes can have significant consequences that
remain unnoticed over extended periods of time77,.78

The largest opportunity for BLST improvement involves robust user-facing documentation (and perhaps limited API
restructuring) that encourages simple and failsafe operation by non-experts. Improvements may include:

• Ciphersuite definitions alongside a description of the correct API usage for each.
• Articulate examples targeting prominent usage scenarios (e.g., Ethereum 2.0).
• Minimizing the API surface, make internal pairing opaque, and move validation checks into the C source where
possible.

• Documentation around each individual function specifying input parameters and type, external expectations/requirements,
internal checks and corresponding specification heading.

• Perform point validation at the point of deserialization to ensure all internal operations utilize valid data.
• Relegate all functions not specifically in the BLS Signatures specification to bindings/blst_aux.h for use by power-
users only.

75https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04#section-5.1
76https://securityboulevard.com/2020/04/simple-illustration-of-zoom-encryption-failure/
77Zerologon: Unauthenticated domain controller compromise by subverting Netlogon cryptography (CVE-2020-1472) https://www.secura.com/pat
htoimg.php?id=2055
78https://www.zdnet.com/article/zerologon-attack-lets-hackers-take-over-enterprise-networks/
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Appendix C: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.
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Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.
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