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Executive Summary
Synopsis
During the spring of 2020, O(1) Labs engaged NCC
Group to conduct a cryptographic assessment of Coda
Protocol. This cryptocurrency leverages state-of-the-
art cryptographic constructions to provide traditional
cryptocurrency applications with a more lightweight
blockchain. This assessment focused on the core
cryptographic primitives as well as the overlaid protocol.

The O(1) Labs team provided source code, and was
communicative throughout the engagement. NCC
Group performed this test on a purpose-built branch of
the code available at the time of testing.

Scope
NCC Group’s evaluation included:

• Compilation of Snarky to Rank-1 Constraint System
(R1CS): This covers the process of turning the arith-
metic circuits into an instantiation of an NP-complete
problem for which efficient argument systems have
been designed.

• Implementations of Snarky Primitives: The primi-
tives implemented are a verifiable random function
(VRF), Schnorr signatures, a random oracle function,
and elliptic curve arithmetic in support of the above.

• Elliptic Curves and Generators: This includes the
choice of elliptic curves, as well as the soundness of
their instantiation and implementation.

• Ledger Hardware Wallet App: This is an implemen-
tation of the Schnorr signature scheme used to sign
Coda Protocol transactions on the Ledger BOLOS
platform.

• Blockchain SNARK: The Coda Protocol includes both
a pairing-based and discrete-log-based implemen-
tation of the MARLIN preprocessing SNARK. These
allow for proofs of correctness of the overall state
of the blockchain at a given moment, as well as the
correctness of transitions between states (i.e. blocks).

• Overall Protocol Review: The implementation of
the Coda Protocol’s core consensus mechanism
(Ouroboros Samasika), ensuring that the implementa-
tion accords with the whitepaper’s design, and ensur-
ing that the parameter choices made are appropriate
and do not introduce any issues in and of themselves.

Security issues arising from side-channels and issues
in the upstream papers that were implemented in this
project, including those authored by O(1) Labs, were not
in scope for this assessment.

More detailed discussion of NCC Group’s strategy in

evaluating these components can be found in Ap-
pendix B on page 18.

Key Findings
The assessment uncovered a set of common crypto-
graphic flaws. Two of the more notable were:

• Potential mishandling of point addition edge cases,
which could result in provers being forced to create
invalid proofs.

• In computers that used a legacy C++ standard
library or could not access cryptographically-secure
pseudorandom number generators, Schnorr secret
key values are generated such that attackers with
knowledge of the underlying system would likely be
able to predict the secret.

O(1) Labs addressed four of the six findings reported
by NCC Group, including both of the above, prior to the
release of this report.

Strategic Recommendations
O(1) Labs’s code, while largely stable on its own, relies
in some parts on upstream libraries not covered in this
audit. Time permitting, these dependencies should be
audited and/or reduced to ensure the lowest possible
attack surface.
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Dashboard
Target Metadata Engagement Data
Name Coda Type Cryptographic Assessment
Type Cryptocurrency Method Code-Assisted
Platforms OCaml, Rust Dates 2019-12-23 to 2020-04-09
Environment Local Instance Consultants 4

Level of Effort 45 days

Targets
Blockchain SNARK Implementation
Coda Protocol Consensus Implementation
Discrete-Log-Based Marlin SNARK Implementation
Elliptic Curve Implementation in R1CS-Generating OCAML Layer
Elliptic Curve Implementation Used to Instantiate Marlin SNARK
Pairing-Based Marlin SNARK Implementation
Poseidon Hash Implementation in R1CS-Generating OCAML Layer
Random Oracle
Schnorr Signature Implementation in R1CS-Generating OCAML Layer
Verifiable Random Oracle

Finding Breakdown
Critical issues 0
High issues 0

Medium issues 1

Low issues 2

Informational issues 3
Total issues 6

Category Breakdown
Cryptography 5

Other 1

Component Breakdown
Ledger App 2

Zexe 1

camlsnark_c 1

snarky 2

Key
Critical High Medium Low Informational
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https://github.com/CodaProtocol/coda/blob/develop/src/lib/blockchain_snark/blockchain_snark_state.ml
https://github.com/CodaProtocol/coda/blob/develop/src/lib/consensus/proof_of_stake.ml
https://github.com/o1-labs/marlin/tree/master/dlog
https://github.com/o1-labs/snarky/blob/master/snarky_curve/snarky_curve.ml
https://github.com/o1-labs/zexe/tree/master/algebra/src/curves/bn_382/
https://github.com/o1-labs/marlin/tree/master/pairing
https://github.com/o1-labs/snarky/blob/master/sponge/sponge.ml
https://github.com/CodaProtocol/coda/src/lib/random_oracle/random_oracle.ml
https://github.com/CodaProtocol/coda/blob/develop/src/lib/signature_lib/checked.ml
https://github.com/CodaProtocol/coda/src/lib/vrf_lib/integrated.ml


Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 16.

 

Title Status ID Risk
Schnorr Secret Key Values Are Predictably Generated in Legacy Architectures
or With Legacy C++ Standard Library Implementations

Fixed 004 Medium

Potential Mishandling of Point Addition Edge Cases Fixed 001 Low
Out-of-Bounds Memory Write Fixed 006 Low
Poseidon S-Box is Not a Bijection Under MNT Curves’ Field Fixed 002 Informational
Future Developments May Impact Subgroup Security of Discrete-Log-Based
Elliptic Curve

Reported 007 Informational

Ledger Signing Does Not Abort When k = 0 Reported 009 Informational
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Finding Details
Finding Schnorr Secret Key Values Are Predictably Generated in Legacy Architectures or

With Legacy C++ Standard Library Implementations

Risk Medium Impact: High, Exploitability: Low

Identifier NCC-O1LB001-004

Status Fixed

Category Cryptography

Component camlsnark_c

Location o1-labs/snarky/src/camlsnark_c/libsnark-caml/libsnark/misc/pedersen.cpp:133

Impact On certain architectures, attackers able to gather some knowledge of a target system will be
able to predict Schnorr secret key values.

Description Snarky generates a Schnorr secret key in the OCaml layer as follows:

scalar schnorr_secret_key() {

return scalar_field::random_element().as_bigint();

}

The random_element function that is called here comes from libff, the underlying C library
used to perform some curve operations within Snarky. The pedersen.cpp file references
the mnt4 and mnt6 implementations found within libff, and both of these implement the
random_element roughly as below:

mnt4_G1 mnt4_G1::random_element()

{

return (scalar_field::random_element().as_bigint()) * G1_one;

}

The underlying scalar_field::random_element function has multiple implementation paths
depending on the type of the scalar_field that calls it; however, all of these differing field
implementations use the same base class implementation to get a random field element. This
is implemented as follows:

template<mp_size_t n, const bigint<n>& modulus>

Fp_model<n, modulus> Fp_model<n,modulus>::random_element() /// returns random ele
ment of Fp_model

{

/* note that as Montgomery representation is a bijection then

selecting a random element of {xR} is the same as selecting a

random element of {x} */

Fp_model<n, modulus> r;

do
{

r.mont_repr.randomize();

/* clear all bits higher than MSB of modulus */

size_t bitno = GMP_NUMB_BITS * n - 1;

while (modulus.test_bit(bitno) == false)
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{

const std::size_t part = bitno/GMP_NUMB_BITS;

const std::size_t bit = bitno - (GMP_NUMB_BITS*part);

r.mont_repr.data[part] &= ~(1ul<<bit);

bitno--;

}

}

/* if r.data is still >= modulus -- repeat (rejection sampling) */

while (mpn_cmp(r.mont_repr.data, modulus.data, n) >= 0);

return r;

}

This function generates a random point in the Montgomery representation, then presents it
to the caller without much alteration. NCC Group confirmed that none of the other callers
include any randomness, so any entropy in the final response is derived from the call to the
mont_repr.randomize() function. Since mont_repr is a type alias for an appropriately-sized
bigint, this function is a call to the randomize function in bigint.tcc. This function is as
follows:

template<mp_size_t n>

bigint<n>& bigint<n>::randomize()

{

static_assert(GMP_NUMB_BITS == sizeof(mp_limb_t) * 8, "Wrong GMP_NUMB_BITS va
lue");

std::random_device rd;

constexpr size_t num_random_words = sizeof(mp_limb_t) * n / sizeof(std::r
andom_device::result_type);

auto random_words = reinterpret_cast<std::random_device::result_type*>(th
is->data);

for (size_t i = 0; i < num_random_words; ++i)

{

random_words[i] = rd();

}

return (*this);

}

This function pulls random data from the C++ std::random_device engine, which is not
guaranteed to return cryptographically secure content. Old implementations of C++ libraries
will return deterministic randomness from low-quality sources such as a Mersenne twister,
which can be trivially broken.1 In these cases, adversaries will be able to break the Schnorr
secret generation process. Even the highest-quality and most modern implementations of
the language include similar insecure sources as fallback generators.2 As a result, these low-
quality fallback implementations will be occasionally offered in unusual architectural config-
urations or even in typical ones due to the heterogeneous, unpredictable environment of
1For more information on how this particular randomness generator can be broken, see this video https://www.yo

utube.com/watch?v=f841Y7d3oDo.
2See line 159 of the LLVM implmentation at https://llvm.org/viewvc/llvm-project/libcxx/trunk/src/random.cpp?view=

markup or line 267 of the GNU implementation at https://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/src/c%2
B%2B11/random.cc?view=markup#l276.
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computers, and in these cases Schnorr secret generation will be broken.

The scalar_field::random_element function sees a good deal of use in other parts of
libsnark-caml. NCC Group did not investigate these, as they were not in the scope of this
review. Nevertheless, any other secrets generated in this manner will have the same issues.

Recommendation One option for the Snarky project is patching their version of libff to ensure it uses a robust
source of secure randomness. Fixing this purely through passing a flag preferring one of the
secure random number sources will not necessarily work, as architectures that do not support
the relevant option may still pass through to insecure options. Instead, consider sourcing
randomness from a secure construct like the libsodium randombytes function,3 or otherwise
by ensuring that the code uses and generates secure randomness in a portable way. An
exemplar implementation of portable secure randomness can be found in the libsodium
project’s own implementation, available at https://github.com/jedisct1/libsodium/blob/maste
r/src/libsodium/randombytes/sysrandom/randombytes_sysrandom.c.

Alternatively, it may be easier to change the scalar_field::random_element call to a dif-
ferent function. This can be via one of the paths suggested above, or, on modern Linux
systems only, through the getrandom syscall with the GRND_NONBLOCK bit not set. This can be
made more portable with equivalent #ifdef-guarded calls to /dev/urandom/ on older Linux
Machines and Apple devices, getentropy on BSD devices, and CryptGenRandom on WIndows
devices.

Client Response O(1) Labs has migrated this randomness generation subroutine to that of libsodium in the fix
for issue 466 (commits 5ad0b9c, bf468ac, and 721d70b) as per NCC Group’s suggestion. As
a result, this issue has been fixed.

3Project hosted at https://github.com/jedisct1/libsodium
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Finding Potential Mishandling of Point Addition Edge Cases

Risk Low Impact: Low, Exploitability: Undetermined

Identifier NCC-O1LB001-001

Status Fixed

Category Cryptography

Component snarky

Location o1-labs/snarky/snarky_curve/snarky_curve.ml:360

Impact In a scenario where a prover acts on malicious input, the prover might be forced to generate
an invalid proof that verifiers will reject, but the prover may not notice it.

Description The snarky_curve elliptic curve implementation uses a standard “short Weierstraß” curve.
The formulas for adding two points P1 = (x1, y1) and P2 = (x2, y2) involve computing the
slope λ = (y2−y1)/(x2−x1); this operation does not work in the edge cases where x1 = x2,
i.e. when P1 = P2 or P1 = −P2. The R1CS constraints generated from the addition operation
duly verify that none of such additions is an edge case.

When doing a point multiplication operation (computing kP for a given curve point P and an
integer k), the implementation uses a skew and a 2-bit window:

• An “unrelated base” S point is used.
• The window contains S, S + P , S + 2P , and S + 3P .
• If k is an m-bit integer (less than 2m, with m even), then the multiplication operation really

computes kP + (2m − 1)S, and the point (2m − 1)S is subtracted at the end.

In general, k is the output of a hash function, and may be larger than the curve order. De-
pending on the exact points P and S, one of the involved additions may be an edge case.
The current implementation, during proof generation, will not notice such an occurrence,
and produce an invalid proof; verifiers will reject it, since the constraints will not be met.

As long as k and P are obtained “normally”, this happens only with negligible probability.
However, this raises the question of whether a specific context where the prover computes
the point multiplication on externally provided values could be abused by a malicious attacker
to force the prover to hit an edge case and generate an invalid proof. Whether such a context
applies depends on how the Snarky library is used; it is a property of the overall protocol.

It can be shown that forcing an edge case requires knowledge of the discrete logarithm of S
relatively toP , i.e. the integer z such thatS = zP . Therefore, this potential attack is prevented
with minimal effort if S is obtained as the output of a random oracle over the point P . This
feature is apparently planned but not implemented yet:

module Scaling_precomputation = struct

type t = {base: Constant.t; shifts: Constant.t array; table: Window_table.t}

(* TODO: Compute unrelated_base from g as

unrelated_base = group_valued_random_oracle(gx, gy) *)

let create ~unrelated_base base =
let shifts = pow2s unrelated_base in

{base; shifts; table= Window_table.create ~shifts base}

end
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Recommendation Implement the generation of S from P as a random oracle. The goal is to make the discrete
logarithm of S relatively to P unknown to attackers; a simple method to do so is the following:

1. Use an encoding of P as seed into a cryptographically secure PRNG (e.g. a XOF such as
SHAKE).

2. Generate a sequence of n bits (where n is the bit length of the field) from the PRNG, and
interpret it as an integer xs.

3. If xs ≥ q, where q is the field order, then loop to step 2.
4. If x3

s +axs+ b is not a quadratic residue in the field (with a and b being the curve equation
parameters), then loop to step 2.

5. Compute ys as a square root of x3
s + axs + b.

6. Obtain one more bit from the PRNG; if that bit is 1, replace ys with −ys.

This process yields a point S = (xs, ys) whose discrete logarithm relatively to P is fully
unknown (insofar as the PRNG is indeed cryptographically secure).

Note: the above assumes that the curve has prime order. If the curve order is equal to hr for
a prime r and another integer h (known as the cofactor), then multiply the obtained point S
by h to ensure that S is part of the subgroup of order r.

Client Response The client has remediated this issue as per NCC Group’s suggestion at commit 2a85945. As a
result, this is marked as fixed.
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Finding Out-of-Bounds Memory Write

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-O1LB001-006

Status Fixed

Category Other

Component Ledger App

Location coda/ledger-coda-app/src/crypto.c:443

Impact Key generation results in an out-of-bounds memory write, resulting in potentially unexpected
behavior and leakage of 16 bytes of the private key.

Description O(1) Labs has constructed a Ledger app that implements the transaction authorization scheme
used in the Coda Protocol, based on Schnorr signatures, in low-level code for supported
Ledger hardware wallet devices. NCC Group reviewed the implementation for its adherence to
the signature scheme specified in the Coda documentation. In addition, NCC Group reviewed
the implementation for any issues that could result in the exposure or loss of private key
material, for example the secure generation of the nonce k used in Schnorr signatures.

The Ledger app defines a function generate_keypair for deriving key material from the
device’s root seed. This function uses the built-in os_perso_derive_node_bip32 function
to derive a private key using the device hardware. Since Coda Protocol’s keys are 48 bytes,
but the derived secret is 32 bytes, subsequent calls to os_memcpy are used to combine the
derived key with the “chain code”:

// ...snip...

os_perso_derive_node_bip32(CX_CURVE_256K1, bip32_path,

sizeof(bip32_path) / sizeof(bip32_path[0]),

priv_key, chain);

os_memcpy(priv_key + 32, chain, 32);

os_memcpy(priv_key + 64, chain, 32);

// ...snip...

priv_key is a scalar, which has a 48-byte capacity:

// ...snip...

#define scalar_bytes 48

// ...snip...

typedef unsigned char scalar[scalar_bytes];

// ...snip...

Thus, the call to os_memcpy will overwrite the memory boundary of the private key. 64 bytes
are written, starting at priv_key + 32, resulting in the 48 bytes adjacent to priv_key being
overwritten with the contents of chain. The impact of this finding is reduced, since the “chain
code” is actually the output of HMAC with an unknown key—this is to say the chain code is
pseudo-random, and therefore an attacker will be severely constrained in their ability to craft
any effective memory corruption exploit to usurp the Ledger app’s control flow. However,
overwriting out-of-bounds memory may result in unexpected behavior. In addition, since the
first 16 bytes of chain are included in the private key, writing chain to an out-of-bounds
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location may result in partial leakage of the private key.

Recommendation Write only 16 bytes of chain to priv_key + 32.

Retest Results In commit 828660e, the write was changed to write only 16 bytes of chaincode, successfully
addressing this finding.
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Finding Poseidon S-Box is Not a Bijection Under MNT Curves’ Field

Risk Informational Impact: None, Exploitability: None

Identifier NCC-O1LB001-002

Status Fixed

Category Cryptography

Component snarky

Location o1-labs/snarky/sponge/sponge.ml:127

Impact Poseidon may not have the expected security properties when used with MNT curves.

Description A common class of zero-knowledge proof (ZKP) used in Coda Protocol proves that a user
knows the preimage of a hash; for instance, a user might want to prove they know the preim-
age of Merkle tree nodes to show they are the originator of a transaction included in it. Using
a cryptographic hash function such as SHA-256 for this purpose seems like a natural choice,
but embedding information about these proofs into Coda Protocol’s ZKPs would be extremely
expensive. In R1CS, the circuit description format used by Coda Protocol, the number of mul-
tiplications in a particular program is generally predictive of the computational complexity of
proof generation. This clashes directly against the design of nearly all modern cryptographic
hashes, which tend to take advantage of the efficiency of bit rotation on common hardware;
bit rotation is mathematically modeled as multiplication or division by two, meaning that
computing the hash function is extremely complex. To sidestep this problem, the O(1) Labs
team chose to use Poseidon,4 a hash algorithm specifically designed to be both secure and
efficient when expressed as an R1CS circuit.

One of the key choices for Poseidon’s efficiency is its substitution box (S-box), which provides
non-linearity (a key cryptographic security property) to the function. Poseidon’s S-box is de-
signed to be bijective, which is desirable as it

…ensures that all possible 2n n-bit input vectors will map to distinct output vectors
(i.e., that the s-box is a permutation of the integers from 0 to 2n − 1); this is a
necessary condition for invertibility of the s-box (which may or may not be impor-
tant, depending on the structure of the surrounding network) and ensures that all
output vectors appear once (which guarantees that all possible input vectors are
available to the next stage in the network).5

The S-box O(1) Labs has chosen will not be bijective if used with the MNT curve because it is
not bijective over the prime field in which the MNT curves operate.

Snarky defines the core of the Poseidon algorithm as follows:

let block_cipher {Params.round_constants; mds} state =

let sbox = to_the_alpha in

let state = ref state in
add_block ~state:!state round_constants.(0) ;

...

The S-box here is defined as the to_the_alpha function, which is itself defined as:
4A full description of this function can be found at https://eprint.iacr.org/2019/458.pdf.
5Taken from “The Structured Design of Cryptographically Good S-Boxes”, available at https://link.springer.com/cont

ent/pdf/10.1007/BF00203967.pdf
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let to_the_alpha x =

let open Field in

let res = square x in

res *= res ; (* x^4 *)
res *= x ; res

As can be seen here, Snarky makes use of the HADESFIFTH S-box, which is computed as x5.
The Poseidon paper notes that when using this S-box, it is only a bijection over the prime field
GF (p) in the case that p ̸≡ 1 mod 5. However, the underlying field for MNT4 is defined by a
prime that is in fact equivalent to one modulo five6 .

Since p ≡ 1 mod 5 there are 5 distinct 5th roots of 1 modulo p, equal to 1, v, v2, v3 and v4

for some v. Then, only (p−1)
5 non-zero elements of Zp have a 5th root, and each that has a

5th root has 5 of them. In this case, the function is not a bijection. Since the proof of security
relies on an S-box structure that is explicitly intended to be bijective, it does not necessarily
apply any longer in this case.

The O(1) Labs team has informed NCC Group that the field over which the Poseidon S-box is
calculated will change soon, so this issue has been graded as Informational to reflect that the
system will likely not be at risk due to this.

Recommendation There are two avenues for fixing this issue. First, the S-box may be switched from HADESFIFTH
to HADESINVERSE, which is calculated as x−1. This will immediately solve the problem, but
could result in a different performance profile. The other option would be to compute the
Poseidon S-box over a different field. The included BN-128 and BN-382 curves appear to
be suitable, with their primes both being equivalent to 3 modulo 5, making this a relatively
pain-free switch if necessary.

Client Response The BN-based cycle now uses x17 as the S-box. The O(1) Labs team reports that this is a more
efficient S-box than those suggested above, and believes it should be equivalently secure in
practice. This change can be seen at commit 2a85945.

6The prime, 475922286169261325753349249653048451545124879242694725395555128576210262817955800
483758081, is equivalent to one modulo five, which can be observed from its decimal representation ending in a
trailing one.
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Finding Future Developments May Impact Subgroup Security of Discrete-Log-Based Ellip-
tic Curve

Risk Informational Impact: None, Exploitability: None

Identifier NCC-O1LB001-007

Status Reported

Category Cryptography

Component Zexe

Location N/A

Impact Future protocol developments could lead to a case in which an attacker with the ability to
perform fine timing measurements on a victim could result in a key leak.

Description A small subgroup attack can be mounted on a discrete-logarithm-based cryptographic scheme
that uses a prime-order group that is contained in a larger group of order divisible by small
prime factors.

In particular, by forcing a protocol participant to carry out an exponentiation of a non-prime-
order group element with a secret exponent, an attacker could obtain information about
that secret exponent. This is possible if the protocol implementation does not check that
the group element being exponentiated belongs to the correct subgroup and thus has large
prime order.

Generally speaking, any addition to the protocol that would allow a malicious user to require
a victim to exponentiate a given point over the group G2 (such as a blind signature primitive)
could result in a timing attack. This is a result of G2 ’s possession of a cofactor that has a
small subgroup of size 5, in which the discrete logarithm problem is easy. The attacker then
proceeds as typical in a small subgroup attack, by repeatedly forcing the victim to exponenti-
ate chosen points until the attacker can successfully deduce the underlying key (or a portion
thereof). This attack is possible due to the underlying library used for exponentiation not
checking for group membership prior to performing the operation.

It should be noted that this attack does not apply to the current iteration of the Coda Protocol
(hence the Informational rating of this finding), but is noted for posterity.

Recommendation If any future protocol additions require exponentiation of elements of G2, ensure that the
exponentiation function fails if the received point is not in the correct subgroup.
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Finding Ledger Signing Does Not Abort When k = 0

Risk Informational Impact: High, Exploitability: None

Identifier NCC-O1LB001-009

Status Reported

Category Cryptography

Component Ledger App

Location ledger-coda-app/src/crypto.c L489 (sign)

Impact Signing diverges from the specification, introducing the possibility of a fault injection attack.

Description Coda Protocol uses an implementation of Schnorr-based signatures to authorize transactions.
The implementation of signing is deterministic; the signature values are dependent solely on
the message, public key, and private key. The scheme takes the following form:

• Compute k = H(m+ pk.x+ pk.y + sk)

• Compute r = gk

• Compute e = H(x+ pk.x+ pk.y + r.x+m)

• Compute s = k + e ∗ sk

Where g is the generator of the prime-order subgroup, sk is the private key, pk is the public
key, and the signature is the pair (e, s).

The Coda Protocol documentation explicitly calls for a check that k ̸= 0; however, this check
is missing from the implementation. This represents a divergence from the specification.

Since the hash function H is assumed to be a random oracle that chooses uniformly from Zq ,
the probability of k = 0 is 2−382. It is also assumed that H is preimage resistant, therefore an
attacker should not be able to choose a message m for which k = 0. However, if a signature
is produced with k = 0, this will immediately leak the private key.

Recommendation Add the check called for in the documentation to the Ledger implementation. Alternatively,
update the code with a comment to explain why it is not necessary.
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Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.
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Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.
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Appendix B: Testing Methodology
NCC Group’s overall strategy in this assessment relied largely on manual review of the program paradigm while looking
for issues that the team had seen in implementations of constructs similar to those explored in this engagement. For
each of these, the team looked for potential typos and logic issues that may occur in the source programming language,
such as integer overflows, type confusion, or incorrect binding of if statements. Past these common checks, each
construct has its own particularities requiring deeper study to ensure its security. These are detailed per-examined-
primitive below:

Compilation of Snarky to Rank-One Constraint Satisfiability (R1CS) System
At its core, the Coda Protocol leverages a system of zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs, or just SNARks), a type of cryptographic proof proving that a particular person has some special knowledge
(for instance, that they control a specially-structured secret key) without revealing anything else. These are expressed
by mathematical programs called circuits that can be expressed in a number of ways. The Coda Protocol has chosen
to express these circuits as R1CS systems.

Rigorously defined, an R1CS system is an instance of the following problem7: given a vector v ∈ F k and three matrices
A,B,C ∈ Fm×n, can one augment v to z ∈ Fn such that Az · Bz = Cz? In other words, the system is compiled
of a set of requirements (constraints), all of which must have rank one (i.e. the constraint equation is expressed in
linear combinations of variables). As an example, an R1CS argument that a variable x is Boolean might be expressed
as x == 0‖x == 1.

In Snarky, O(1) Labs’s approach is to map high-level OCaml types to R1CS constraints. In this way, O(1) Labs leverages
the strength of OCaml’s type system alongside the underlying R1CS variables to ensure that OCaml Snarky programs
will automatically coerce themselves to R1CS arguments that are valid by virtue of their typing.

As a result, the validity of the translation from OCaml type constraints to R1CS constraints is a key concern, as this
translation layer is responsible for the coherence and effectiveness of the programs made at higher levels. NCC Group
tested these translations both statically and dynamically. The team statically tested the OCaml layer using the Mascot8

static analysis tool, and also via manual review of the code for general soundness (i.e. ensuring that the R1CS constraint
fully captured the same concept as its higher-level type constraint). The team also tested dynamically by attempting
to create programs with invalid types. NCC Group tested the R1CS layer statically by ensuring that the emitted logic
matched the design and examining the relevant code.

Schnorr Signatures
As mentioned above, the Coda Protocol’s consensus mechanism relies on SNARKs expressed as R1CS systems to police
the validity of transactions and blocks. However, this means that all of the cryptographic signatures in the consensus
protocol (e.g. signatures on the transactions themselves) must be validated by embedding it as a SNARK, whereas
typical consensus schemes can validate their signatures directly. This presents an issue, as typical signature schemes
like ECDSA have mathematical structure that does not mesh with that of the Coda Protocol’s SNARKs. As a result, most
common cryptographic signature schemes could not be computed and verified efficiently in the context of the Coda
Protocol. As a result, O(1) Labs uses Schnorr signatures, which can be securely instantiated over any group with prime
order in which the discrete logarithm problem is hard. By instantiating Schnorr signatures in the group used by the
Coda Protocol’s SNARKs, computations around the mathematical validity of the signatures come “for free”, so the team
only needed to add in constraints ensuring the validity of the signature structure itself.

To test Schnorr signatures’ integration into Snarky, the NCC Group team needed to ensure that the implementation
was correct, and that the scheme was secure over Coda Protocol’s chosen parameters. The team was able to verify the
correctness of the scheme through inspection of the code due to its simplicity, and the security of the scheme over
the MNT4 and MNT6 parameters was supported by the literature. The more challenging portion was ensuring that
the integration of the signature into the SNARK itself was secure; for this NCC Group needed to ensure the following:
7Definition taken from https://eprint.iacr.org/2018/828.pdf, section 1.2
8Hosted at http://mascot.x9c.fr/ (note this site is served over plain HTTP and should not be viewed over an unsecured Internet connection)
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• the use of the weak formation of the Fiat-Shamir transform is valid for all cases9

• the verifier can ensure liveness of the signature
• the signature does not have malleability issues allowing re-submission of previous signatures

The weak Fiat-Shamir transform is valid because of users’ publication of their public keys prior to producing Schnorr
signatures claiming knowledge of their discrete logarithms (in the terms of the paper cited below for the discussion
of weak vs. strong Fiat-Shamir transforms, the X value is prepublished and cannot be selected by a malicious prover
such that they can create a trivial proof). The signature’s liveness is assured by the Coda Protocol’s inclusion of a per-
account incrementing nonce in the transaction body (which is what the Schnorr signature will be signing). Signature
malleability can arise either from mathematical properties of the signature itself (e.g. adding the curve order to the
s value of an ECDSA signature as seen in early Bitcoin transactions10) or from properties of the encoding used to
communicate the signature (e.g. the OpenSSL DER encoding issue in early secp256k1 signatures for Bitcoin11)—
fortunately, Schnorr signatures are provably non-malleable from a mathematical perspective12; while the encoding
scheme itself is malleable, it cannot be abused to re-submit signatures due to the embedded per-transaction nonces.

Verifiable Random Function (VRF)
The Coda Protocol’s proof-of-stake consensus system uses a random stake-weighted selection of “slot leaders” (entities
that execute some necessary computations for a particular round of consensus and produce parameters to be used
in blocks generated in their slot). The Coda Protocol produces the provable pseudo-randomness used to select slot
leaders via a VRF, a cryptographic construction that takes in arbitrary data and a key and produces cryptographically
secure pseudo-randomness along with a proof that this pseudo-randomness was generated securely and fairly. Note
that the distinction between randomness and pseudo-randomness is not relevant to the security of the protocol and
is largely semantic.

The Coda Protocol’s VRF implementation follows the outlines of the ongoing IETF standardization of ECVRF13 (due to
implementation concerns about efficiently embedding the resulting program into an arithmetic circuit, some specific
algorithm choices differ). The RFC describes a set of concerns that come into play for a VRF implementation that
wants to ensure full uniqueness, pseudo-randomness, and full collision resistance14; namely, an attacker that supplies
a maliciously-crafted public key can potentially cause predictable output from the VRF.

The team examined the constraints around public key interpretation to ensure that an attacker cannot supply a public
key that is not on the curve, that is a member of a small subgroup, or that is a point at infinity. In addition, the team
performed dynamic analysis on the protocol to ensure that these potential edge cases are handled correctly in the
case that an attacker broadcasted a malicious public key over the network on an altered or improvised wallet.

Finally, the team examined the VRF’s capability to supply the required pseudo-randomness in the case that an attacker
maliciously generates their secret key, as generally speaking it is not possible for a VRF to ensure that its output is
pseudo-random under selection of malicious secret keys. Specifically, the team considered the potential of a malicious
secret key choice to result in pseudo-randomness that would allow an attacker or group thereof to repeatedly choose
themselves as slot leaders, potentially permitting malicious forking. The team considered many attack scenarios,
primarily focusing on the case in which a cabal of attackers collaborated to choose specially-structured keypairs in
order to artificially increase the odds that members of the cabal could act as slot leaders.
9The “weak” Fiat-Shamir transform does not include the statement in its challenge (i.e. the statement is not hashed to create the NIZK’s equivalent

of a two-party zero knowledge protocol’s challenge), which can have undesirable effects in certain protocols. See https://eprint.iacr.org/2016/771.p
df for more details.
10See https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki for a description and fix of this issue
11ibid.
12This arises directly from the proof that Schnorr signatures are multi-user strongly unforgeable under chosen-message attacks given in https://ep
rint.iacr.org/2016/191.pdf
13At the time of this writing, draft 5 was the most recent update available. This can be found at https://tools.ietf.org/html/draft-irtf-cfrg-vrf-05
14See sections 3.1, 3.2, and 3.3 of the RFC linked in the previous footnote for more information about these properties.
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Elliptic Curve Arithmetic
The Snarky package fields an elliptic curve expressed by a short Weierstraß equation working on points in the affine
representation. Traditionally, this implementation can suffer from problems if an attacker maliciously supplies the point
at infinity, points that are not on the intended curve in the first place, or additionally in cases where they are computing
on points P1, P2 | {P1 = P2 ∥ P1 = −P2} (as the standard addition algorithm does not account for these cases). The
NCC Group team inspected the code to ensure that these cases are handled correctly.

Additionally, the NCC Group team examined the choice of elliptic curve parameters used for the blockchain SNARK to
ensure that they would be suitable for the intended application and that they would not impact the security of the
various functions computed over them.

Ledger Hardware Wallet Implementation
The Coda Protocol will be integrated onto the Ledger platform, a hardware wallet intended to securely store a user’s
cryptocurrency keys. The Coda Protocol re-implemented core primitives of the protocol to allow the device to integrate
with the larger Coda ecosystem. The NCC Group team examined this re-implementation both for fidelity to the
original implementations as well as security in its integration with the Ledger device. After ensuring that the two
implementations were a matched pair via inspection, the team concentrated on traditional application security issues
with the implementation with a focus on special issues that can arise on the Ledger platform.

The hardware wallet cooperates with a host over USB to sign and broadcast transactions. The job of the host is to
construct transaction data and send this transaction data to the device, where the user can manually confirm details
of the transaction using the device’s on-board display and buttons. Once confirmed, the device signs the transaction
and sends it back to the host, who then broadcasts the transaction. NCC Group reviewed the implementation of Coda’s
Schnorr signatures for any issues that could result in the exposure of key material or the bypass of the transaction
confirmation flow. The implementation’s handling of untrusted host data was checked for any potential memory
corruption vulnerabilities that could result in the exfiltration of private key material or the surreptitious approval of
a transaction crafted by a malicious host. The method used by the implementation to generate the critical Schnorr
nonce k was investigated. The methods used for private key derivation were also probed. Additionally, the methods
used to generate public addresses were examined, ensuring that a malicious host could not generate an address for
which the private key would be unrecoverable without secret information held by the host.

Blockchain SNARK
As discussed, the Coda Protocol uses SNARKs to ensure the validity of overall blockchain state transitions. This allows
for less-data-intensive blockchain participation, as O(1) Labs has implemented special SNARK constructions. These
SNARKs leverage the concept of incremental computability to ensure that a user can validate the blockchain’s entire
history at any point using data that increases linearly in relation only to the number of transactions since the preceding
block. Coda includes both a pairing-based and discrete-log-based implementation based on the MARLIN preprocess-
ing SNARK.15 One is a pairing-based construction instantiated using the Kate polynomial commitment scheme,16 and
the other is a discrete-logarithm-based construction instantiated using Halo’s polynomial commitment scheme.17 Each
of these SNARKs (designated by O(1) Labs as “Tick” and “Tock” respectively) verifies proofs generated by the other and
generates its own proofs that the other is expected to verify. Additionally, Tick has the ability to merge two Tock proofs
into a single Tick proof. This simple property is the key to the succinctness of the Coda Protocol.

Coda Protocol emits single proofs of full blocks by structuring them into a tree of proofs with a root that carries the
data of all leaves. This occurs as follows:

1. the Tick SNARK proves the validity of each individual transaction (note that NCC Group did not review this mode of
Tick)

2. the Tock SNARK validates these and emits its own “wrapping” proof of the same statement
15The paper for this scheme is available at https://eprint.iacr.org/2019/1047.pdf
16This scheme is detailed in https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf
17This scheme is detailed in https://eprint.iacr.org/2019/1021.pdf
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3. Tick can then validate the intersection of two of these wrapping proofs and emit a proof that is effectively a merger
of the two wrapped proofs (i.e. validating the merger proof is equivalent to validating each of the wrapper proofs
individually)

4. Tock then validates this merged proof and emits a new wrapper
5. Tick validates two wrappers and emits a new merged proof
6. Repeat steps four and five until left with a single Tick proof; this is the root of the tree, and the validation of this

proof is equivalent to simultaneously validating all leaf transactions

An illustration of this structure can be found below:

Figure 1: Reproduced from section 4.1.2 of “Coda: Decentralized Cryptocurrency at Scale”

The team evaluated the following assumptions of SNARK security:

• The implementations matched their theoretical counterparts
• No sensitive or bypass elements were included as part of the protocol
• Degenerate or edge case mathematical entities were handled appropriately

NCC Group reviewed the code side-by-side with the source papers as well as O(1) Labs’s own work to ensure that there
was a match between the implementation and the upstream research. Similarly, the team tracked all of the elements
of the protocol that could potentially reveal unintended or excess information to the external world throughout the
code base to ensure that they were never output. Finally, the team proceeded to ensure that all mathematical edge
cases were successfully handled by the SNARKs. The team specifically checked for the following:

• All group members are verified to be in the appropriate subgroup
• Polynomials of inappropriate degree are not accepted
• Insertion of the group identity element is filtered or does not result in undesirable functionality
• Insertion of the field additive or multiplicative identity is filtered or does not result in undesirable functionality

NCC Group leveraged static analysis as much as possible, supplementing with a simulation of dynamic analysis for
particularly complex pieces. For static analysis, the team examined the relevant portions of code to ensure that the
appropriate security functionality existed and was faithfully implemented to the specifications of its source academic
work. In some cases, NCC Group could not predict the interaction of the mathematical construct under study with
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some of the edge cases discussed above. To increase overall confidence, the team created models of the relevant
construct in Sage, then inserted appropriate elements as an approximation of dynamic analysis. However, the team
could not be certain that the models were a one-to-one match to the source constructs.

NCC Group did not attempt to test or verify any mathematical claims in any source papers, including those produced
by O(1) Labs. Instead, the team attempted to validate that the project was a faithful and secure implementation of
those constructs in the assumption that the security properties asserted in these papers did in fact apply.

Overall Protocol Review
The Coda Protocol’s consensus protocol is largely implemented in two high-level functions: update_var, which ad-
vances the internal consensus state within the SNARK; and select, which implements the chain-selection rule. These
are discussed separately below.

Review of update_var
The Coda Protocol’s consensus core relies on a single incrementally-computable SNARK S that computes and verifies
state transitions that update the blockchain state Σ, the set of pairs of ledger hash values and consensus states, and
T , the set of blocks. Each block is a tuple consisting of a new (incrementally increasing) serial number, a record of its
proposer’s public key, the ledger state prior to the current block (represented as a state hash), a proof that this block
is a valid state transition, a set of transactions, and the proposer’s signature over all previous values. Each transaction
is a tuple of the sender’s public key, the receiver’s public key, the amount to be sent, the sender’s account nonce, and
the sender’s signature over all the preceding other than the sender’s public key.

At a high level, the update_var function updates the current state of the blockchain via a transition that is specified
by a new block proposed by the leader of the current slot. This transition updating Σ, implemented in update_var, is
as follows:

1. Ensure that all transactions in the block are valid
2. Check that the block faithfully represents the current state of the ledger
3. Validate the current block’s proof that it is a valid state transition
4. Verify the slot leader’s signature over the information presented in this block
5. If all these work, update the ledger and consensus states, then return the new states

The team examined each of these sub-steps separately, and discusses the process behind each below.

Transaction Validation
The validation procedure for a Coda Protocol transaction succeeds if all of the following questions are answered in the
affirmative:

1. Does the sender have sufficient funds in their account?
2. Does the sender’s public key have the appropriate nonce?
3. Did the sender sign this transaction?

For the implementation of the first, the team was primarily checking to ensure that there were no tricks that could be
pulled around the representation of currency amounts as integers. The Coda Protocol implements a custom signed
integer type for tracking currency, which ensures that a person cannot perform actions such as sending “negative
zero” (i.e. the two’s complement of zero) and having this validate in transaction checking but resulting in the recipient
being artificially credited. For the second issue, the team also ensured that there were no equivalent tricks surrounding
nonces, but again these are tracked securely. NCC Group had already checked signature validation by this point (see
the discussion of Schnorr signatures above).

Ledger State Validation
As discussed before, the ledger state is represented here as a state hash that is computed recursively over the set
of tuples of prior ledger state hashes and their related consensus states. Fortunately, the Coda Protocol represents
the current ledger state as a frozen hash and does not recompute it, which makes it challenging for an attacker to
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manipulate. The NCC Group team checked that the equality relation did not allow for more than one value to be “equal”
to itself,18 but the strong typing of OCaml prevents these issues.

State Transition Validation
The Coda Protocol validates a state transition using the blockchain SNARK. In this paradigm, the prospective block is
seen as a transition from one ledger/blockchain state to another whose validity is proven by a zero-knowledge proof
embedded in the block. NCC Group’s procedure in evaluating the mathematical portion of this construction is covered
in the “Blockchain SNARK” section above.

Signature Validation
NCC Group’s examination of signature validation can be found in the “Schnorr Signatures” section above.

Review of select
As the final step for resolving forks in the protocol, the Coda Protocol implements chain selection as a select function.
This function has two possible techniques to apply: a short-range fork rule and a long-range fork rule.

The function chooses the short-range rule when a fork is introduced that does not affect the block density distribution
(i.e. an attacker has created their own blocks on top of prior blocks opportunistically); it simply chooses the longest
chain, since such an attacker will not be able to backfill the number of blocks the legitimate chain has.

The function chooses the long-range rule at when the fork occurred long enough in the past that an attacker may
have been able to affect block production. The long-range rule relies on a core Coda Protocol property: even after
a successful fork, an attacker cannot alter consensus for a specific length of time19 . Since a fork would presumably
have fewer participants than the main chain, its block density is assumed to be lower during the period where a fork
has occurred but has not affected consensus. Following from this observation, the long-range rule selects the chain
with the highest minimum density in a specially chosen window following the fork. The testing methodology for both
rules and the manner in which the blockchain chooses between them are discussed below:

Rule Selection
The selection of the rule to apply relies on the Coda Protocol’s internal determination of time. Individual rounds of the
consensus protocol (the base unit of blockchain time) are called slots, and these are in turn grouped into epochs (the
first epoch length is determined at Genesis, and thereafter is dynamically determined). Intuitively, the rule selection
algorithm is meant to apply the short-range rule to any forks whose size is less than or equal to two-thirds of an
epoch20 and to apply the long-range rule to all larger forks.

One issue arises from the intuitive description above: how can a blockchain node be aware of epoch timing if it tracks
the ledger state with a simple hash? Requiring nodes to indefinitely maintain data about past epochs and slots would
defeat the goal of producing a succinct blockchain in the first place. Coda Protocol solves this issue by storing two
checkpoints of ledger state per epoch: a start checkpoint at the beginning of each epoch, and a lock checkpoint at the
last block of the first two-thirds of the epoch (e.g. for an epoch of length 6, the start checkpoint would be taken from
block 1 and the lock checkpoint would be taken from block 4).

Given these checkpoints, rule selection is as follows:

1. Call one candidate chain cand_1 and call the other cand_2
2. If the lock checkpoint of cand_1 and cand_2 is the same, apply the short-range selection rule
3. Otherwise, apply the long-range selection rule

First, NCC Group manually checked the relevant piece of code to ensure that it correctly implemented the algorithm
above. From this point, the team checked to ensure that the epoch checkpoints’ equality function did not allow for
18Consider, for instance, that in JavaScript [] == ![]; such type confusion around equality would be catastrophic here.
19For more information on this, see section 7.3 of “Coda: Decentralized Cryptocurrency at Scale”
20Such a size is chosen because Coda Protocol’s underlying consensus algorithm will not be appreciably affected by a malicious change within the
first third of the epoch in which the fork occurs.
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multiple values to be equal to one another.

Application of Short-Range Rule
As discussed above, the short-range rule returns the longer of the two chains. To test that this rule was applied
correctly, NCC Group checked that the chain length was recomputed on checking (i.e. that a malicious fork could
not simply report an arbitrary length) and that the type of the chain length safely implemented comparison (e.g. not
allowing for representation such that a chain could claim a length equivalent to the two’s complement of zero, then
have this be interpreted as a large unsigned integer in comparison).

Application of Long-Range Rule
At a high level, the long-range rule attempts to maintain a space-efficient record of minimal block densities within a
window structured such that the effect of a malicious fork’s distortion is captured, even if the fork itself is not.

The first concept to tackle is the dynamic window structuring: the Coda Protocol employs a novel construct called a
ν-shifting ω-window. In this construct, ν is called the shift parameter, and ω is known as the window-length parameter.
The goal for this construct is to ensure that the window is slightly larger than the rate at which new non-empty blocks
are produced (measured in slots), and that it is shifted to appropriately capture new slots when the old ones pass out
of scope for consideration of forking. In practice, this is implemented via a set of sub-windows of length ν; when the
oldest passes out of scope, a new sub-window is created.

This structure is defined by the shiftWindow algorithm, which takes the existing set of sub-windows and a vector of
new Coda Protocol consensus slots, updating them to fit the new slots. This occurs as follows:

1. First, set the minimum density to the lowest among the combination of new slots and slots existing in current
sub-windows

2. Advance all sub-windows by the shift amount, allowing the oldest ν to pass out of scope
3. Return the new set of sub-windows

NCC Group first examined the code to ensure the function was implemented faithfully. Following this, the team
brainstormed potential implementation issues and checked for them. Particularly, that the density of each slot is
re-calculated prior to its insertion in the appropriate sub-window, to ensure that a malicious fork could not arbitrarily
submit inaccurate densities and that the window density type did not allow for any type confusion in its underlying
container that could affect the calculation of the minimum. Finally, the team ensured that there were no ways to alter
ν such that it did not accurately reflect the protocol window.

The team moved on to examining the overall implementation of the chain rule after vetting the shiftWindow algorithm.
This consisted solely of ensuring that the algorithm was faithfully executed, as the types and validity for the underlying
information had already been verified in the previous step.
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