NCCQroup”

Groth16 Proof Aggregation: Cryptography and

Implementation Review

Protocol Labs
June 2, 2021 - Version 1.1 Retest

Prepared for
Friedel Ziegelmayer
Nicolas Gailly

Deep Kapur

Prepared by
Eric Schorn
Paul Bottinelli
Kevin Henry

©2021 - NCC Group

Prepared by NCC Group Security Services, Inc. for Protocol Labs. Portions of this document and the
templates used in its production are the property of NCC Group and cannot be copied (in full or in part)

without NCC Group's permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group's services does not guarantee the security of a

system, or that computer intrusions will not occur.

Executive Summary

nccoroup”

Synopsis

During April 2621, Protocol Labs engaged NCC Group's
Cryptography Services team to conduct a cryptography
and implementation review of the Groth16 proof aggre-
gation functionality in the bellperson and two other
related GitHub repositories. This code utilizes inner
product arguments to efficiently aggregate existing
Groth16 proofs while re-using existing powers of tau
ceremony transcripts. Full source code access was
provided with support over Slack. The project concluded
with a brief retest several weeks after the initial review.

Scope
NCC Group's evaluation included the following primary
materials:

* The bellperson GitHub repository, commits d4120
78 and 854f254 on branch feat-ipp2, containing
source code in src/groth16/aggregate/ *

* The filecoin-ffi GitHub repository, commit c5
eb46e on branch feat-aggregation2, containing
source code in rust/src/proofs/api.rs with the
primary functions fil_aggregate_seal_proofs()
and fil_verify_aggregate_seal_proof() (along
with downstream logic)

* The rust-fil-proofs GitHub repository, commit a
b958b5 on branch feat-aggregation, containing
source codein filecoin-proofs/src/api/seal .rs
with the primary functions aggregate_seal_commit
_proofs() and verify_aggregate_seal_commit_p
roofs() (along with downstream logic)

* The technical paper titled “Proofs for Inner Pairing
Products and Applications” by Buinz et al.

* The private/preliminary technical paper titled “Pro-
posal: Practical Groth16 Aggregation”’

+ Retest performed on bellperson Pull Request 1792
filecoin-ffi Pull Request 1692 and the technical
paper “SNARKpack: Practical SNARK Aggregation” by
Gailly, Maller and Nitulescu

The testing methodology revolved around documenta-
tion review and manual source code review augmented
by fuzzing of selected components.

Limitations

While the target source code is part of a much larger
out-of-scope system undergoing rapid development,
NCC Group was able to achieve robust coverage of all
in-scope components.

Key Findings

The in-scope code was well organized and supported
by detailed technical documentation. Implementing
the target functionality in Rust prevents many common
memory-safety related errors, allows for safer use of
concurrency and provides for a straightforward build/
test environment. Nonetheless, the review uncovered a
total of eleven findings with the most notable including:

* Several instances of panic from malformed or mali-
cious input that could present denial of service attack
vectors or prevent a graceful recovery from errors.

* Aknown-constant value present in the random vector
that determines the linear combinations of proof
elements for the inner product process.

* The potential for memory churn and/or exhaustion
during the deserialization of carefully crafted objects.

+ Input validation checks utilizing debug_assertions
that the compiler removes during a release build.

After retesting, NCC Group found all findings were
fixed, with one exception of an informational obser-
vation involving toolchain and dependency versioning.
This latter issue is expected to be fixed via a normal
periodic updating process. Additional informational
material is included as Appendix B on page 27.

Strategic Recommendations

Beyond addressing the reported findings, NCC Group
recommends prioritizing the following areas during
future development:

+ Continue the focus on data validation for all input
supplied at the API level and also whenever possible
within intermediate functions (such as ensuring the
lists provided to zip are of equal and non-zero
lengths). Ensure range checks are implemented for
both minimum and maximum expected values/sizes
when appropriate.

* To better avoid denial of service scenarios stemming
from unanticipated or illegal operations, prefer a R
esult or Option over an assert which may panic
at runtime, and over a debug_assert which will be
removed during a release build. Continue utilizing
the ensure! () macro, while avoiding unwrap() and
expect () statements.

* Tighten the externally-visible API by reviewing the
visibility of internal functions, perhaps replacing pub
with pub(crate) when possible.

"File Aggregate_Groth16_via_IPP.pdf dated March 11, 2021 with shasum ac40456. . .

2https://github.com/filecoin-project/bellperson/pull/179

3https://github.com/filecoin-project/filecoin-ffi/pull/169/commits/7f4effb29d 1b8bd 78125049c99da21839e778da3

2 | Filecoin: Groth16 Proof Aggregation

NCC Group

https://eprint.iacr.org/2019/1177.pdf
https://eprint.iacr.org/2019/1177.pdf
https://eprint.iacr.org/2021/529
https://github.com/filecoin-project/bellperson/pull/179
https://github.com/filecoin-project/filecoin-ffi/pull/169/commits/7f4effb29d1b0bd78125049c99da21839e778da3

Dashboard

nccoroup”

Target Metadata

Engagement Data

Name Filecoin: Groth16 Proof Aggregation

Type Cryptographic Library
Platforms Rust with C FFI
Environment Development

Type Cryptography and Implementation
Review

Method Manual Source Code Review, Fuzzing

Dates 2021-04-05 to 2021-04-16

Consultants 3

Level of Effort 15 person-days

Targets

Bellperson https://github.com/filecoin-project/bellperson/
Filecoin-FFI https://github.com/filecoin-project/filecoin-ffi/
Rust-Fil-Proofs https://github.com/filecoin-project/rust-fil-proofs/

Finding Breakdown

Critical issues 0

High issues 0

Medium issues s I]
Low issues 4 [Jf]
Informational issues 2 []

Total issues 1

Category Breakdown

Cryptography O (N | | N |
Data Validation 1]

Denial of Service 3 IO]

Error Reporting 1 L]

Patching T[]

Component Breakdown

all (I

bellperson o I I e e
filecoin-ffi 1]

Key

[Critical [JHigh [IMedium [JLow []Informational

3 | Filecoin: Groth16 Proof Aggregation

NCC Group

https://github.com/filecoin-project/bellperson/
https://github.com/filecoin-project/filecoin-ffi/
https://github.com/filecoin-project/rust-fil-proofs/

Table of Findings

nccoroup”

For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group's

risk rating and finding categorization, see Appendix A on page 25.

Title Status ID Risk
Constant Entry in Randomness Vector(s) Fixed 003 Medium
Brittle Input Validation via Debug Assertions Fixed 005 Medium

DoS in Aggregated Proof Verification via Malformed Proof Fixed 006 Medium
Uncaught Panic in FFI Code Fixed 007 Medium
Memory Exhaustion via Malformed Structured Reference String Fixed 009 Medium
Potential DoS via Inverse Computation Panic Fixed 002 Low

Panic when Aggregating Proofs of Length One Fixed 004 Low
Aggregate Proof Malleability Fixed 008 Low
Discrepancy between Reference and Implementation in KZG Challenge Point Fixed 011 Low
Computation

Marginally Inconsistent/Outdated Toolchain and Dependencies Not Fixed 001 Informational
Missing Domain Separation Parameter in Oracle Calls Fixed 010 Informational

4 | Filecoin: Groth16 Proof Aggregation

NCC Group

Finding Details nccgroup”

Finding
Risk
Identifier
Status
Category
Component

Location

Impact

Description

49
50
51
52
53
54
55
56

57

28
29
30
31
32
33

34

Constant Entry in Randomness Vector(s)
Medium Impact: Medium, Exploitability: Low
NCC-E001405-003

Fixed

Cryptography
bellperson

* structured_scalar_power () on lines 28-34 of bellperson/src/groth16/aggregate/
mod.rs

* Lines 49-57 of bellperson/src/groth16/aggregate/prove.rs

* Line 109 of bellperson/src/groth16/aggregate/verify.rs

Arandom r vector with the first element fixed to 4 (or %) will result in the first group elements
of the Z4p and Z¢ inner product terms and the first v{ and v} vector elements having no
randomness applied. This impacts a central pillar of the aggregation scheme which depends
upon checking a random linear combination of proof elements.

The technical reference paper titled “Proposal: Practical Groth16 Aggregation”# section 3.3

contains an overview of the aggregation protocol stating “...it is sufficient to prove that only
one inner pairing product of a random linear combination of these initial equations defined by
averifier'srandom challenge r € Zj,, holds’, with section 3.3.2 item 5 defining the randomness
vector as r = {r}I' ;. These statements are consistent with the approach articulated in
the other technical paper “Proofs for Inner Pairing Products and Applications” section 2.2.2
(although there are subsequent references to the first index and power starting at zero). The
code comments on lines 51 and 53 below are aligned with the approach described above for
the randomness vector and its inverse.

// Random linear combination of proofs
let r = oracle!(&com_ab.0, &com_ab.1, &com_c.0, &com_c.1);
// r, 2, "3, "4 ...
let r_vec = structured_scalar_power(proofs.len(), &r);
/) -1, rA-2, rA-3
let r_inv = r_vec
.par_iter()
.map(lri| ri.inverse().unwrap())
.collect::<Vec< >>();

However, the implementation of structured_scalar_power () functioninmod.rs excerpted
below initializes the first element of the powers vector with a fixed value of F: :one() on line
29,

fn structured_scalar_power<F: Field>(num: usize, s: &F) -> Vec<F> {
let mut powers = vec![F::one()];
for i in 1. .num {
powers.push(mul!(powers[i - 1], s));

}

powers

}

4AggregateﬁGrOtm 6_via_IPP.pdf dated March 11, 2021
Shttps://eprint.iacr.org/2019/1177.pdf

5 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/mod.rs#L28-L34
https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/mod.rs#L28-L34
https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/prove.rs#L49-L57
https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/verify.rs#L109
https://eprint.iacr.org/2019/1177.pdf

nccoroup”

As a result, the first entries in the r_vec and r_inv vectors on lines 52 and 54 of the earlier
code snippet are fixed and predictable without randomness. These vectors ultimately factor
into subsequent calculations for the Z4p and Z¢ inner product terms, and the v} and v}
vectors. While the test cases demonstrate that a constant value still works, this conflicts with
the random linear combination pillar of the aggregation algorithm.

Recommendation In the structured_scalar_power() function, initiate the powers vector with s rather than
F::one() online 29.

Separately and informationally, since the intended length of the powers vector is known prior
to its declaration, utilizing the Vec: :with_capacity() initializer will eliminate repeated re-
sizing which may marginally improve performance.

Retest Results Regarding the Client Response noted immediately below, Protocol Labs offered the newly
released paper titled “SnarkPack: Practical SNARK Aggregation” at https://eprint.iacr.org/20
21/529. Notably, the i index for constructing the randomness vector now starts at@ in step 5
of the Prove algorithm described on page 13. This corresponds to the earlier external paper
titled “Proofs for Inner Pairing Products and Applications” at https://eprint.iacr.org/2019/117
7.pdf which clearly indicates that the verifier constructs the randomness vector with a1 in
the leading position (which corresponds to r? with an initial index of @) on page 26. Pull
Request 179 contained no code changes pertinent to this finding. While allotted time and
project scope prevented NCC Group from performing a full analysis of the paper’s implications,
the code and technical documentation are now aligned here. As such, this finding has been
marked ‘Fixed'.

Client Response Developer discussions over Slack greatly clarified the context to this finding. The constant
value is proposed to be safe as-is and an internal writeup by Protocol Labs is being prepared
to describe the supporting rationale. Additionally (lightly edited),

There is an ongoing PR which is bringing the paper and the implementation into
“sync”: namely, before we wrote the paper our scheme was using commitment
keys as g and g fori: [1,n]. We realized we could use the “smaller” bases
¢ and g“"“ later on for ¢ : [0,n — 1], so we wrote the paper using these bases,
because it allows to aggregate more proofs. But the implementation was still using
the old way. Because it led to some confusion, the PR is here to close that gap.

6 | Filecoin: Groth16 Proof Aggregation NCC Group

https://eprint.iacr.org/2021/529
https://eprint.iacr.org/2021/529
https://eprint.iacr.org/2019/1177.pdf
https://eprint.iacr.org/2019/1177.pdf
https://github.com/filecoin-project/bellperson/pull/179
https://github.com/filecoin-project/bellperson/pull/179
https://github.com/filecoin-project/bellperson/pull/172

nccoroup”

Finding Brittle Input Validation via Debug Assertions
Risk Medium Impact: Medium, Exploitability: Medium
Identifier NCC-E0Q01405-005
Status Fixed
Category Data Validation
Component bellperson

Location -« Lines 13 and 30 of bellperson/src/groth16/aggregate/inner_product.rs
* Lines 78-81 of bellperson/src/groth16/aggregate/prove.rs
* Lines 288-291 of bellperson/src/groth16/aggregate/srs.rs

Impact Depending upon the execution path, unvalidated values from external input may result in
unexpected behavior and potential Denial of Service attacks.

Description The pairing_miller_affine() function implemented in inner_product.rs returns the
miller loop evaluated on pairs of inputs, as shown below. This function is usable externally
as it appears to be marked pub from the crate root down to the function modifier® on line
12 shown below (though this may be a transient development artifact). Note that Rust’s strict
type checking ensures that proper parameter types are passed, and that the debug_assert
_eq! () statement on line 13 validates the parameter contents.

12 |pub fn pairing_miller_affine<E: Engine>(left: &[E::G1Affine], right:
-» &[E::G2Affine]) -» E::Fqgk {

13 debug_assert_eq!(left.len(), right.len());

14 let pairs = left

15 .par_iter()

16 .map(lel e.prepare())

17 .zip(right.par_iter().map(le| e.prepare()))

18 .collect::<Vec<_>>();

19 let pairs_ref: Vec< > = pairs.iter().map(|(a, b)| (a, b)).collect();

20

2 E::miller_loop(pairs_ref.iter())

2 |}

However, the Rust compiler eliminates debug assertions such as debug_assert_eq! when
code is built for release, thus removing the input validation. When a test case was modified to
invoke the above function with unequal length parameters and run viacargo test —-relea
se, the error was only caught when the test case compared actual versus expected results at
its conclusion. This is somewhat fortuitous, as some functions such as copy_from_slice()
7 will panic on malformed input, which can lead to a denial of service. In this instance, if the
length of left and right lists do not match, elements from the longer list will be considered
extraneous and silently ignored by the zip function. See also finding NCC-E001405-006 on
page 9 for another example of input validation and further perspective on consequences.

Note that the function cannot return any indication of failure, such as a Result® orOption.

There are two additional instance of the same scenario present in the prove.rs and srs.rs
source files.

bhttps://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/std/primitive.slice.html#method.copy_from_slice
8https://doc.rust-lang.org/std/result/

7 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/inner_product.rs#L13
https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/prove.rs#L78-L81
https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/srs.rs#L288-L291
https://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/std/primitive.slice.html#method.copy_from_slice
https://doc.rust-lang.org/std/result/

nccoroup”

Recommendation This finding is at the intersection of several concerns - function visibility, input validation and
return types. Typically, a library should only expose the minimal API necessary for its use, each
function in the exposed API should carefully validate all inputs, and the return type of each
function should be able to indicate failure. In this specific instance:

+ Consider whether the function should be externally visible. The pub(crate) modifier may
instead be appropriate.

« Convert the debug_assert_eq! () statement to a functional non-debug equivalent, and
consider whether additional input attributes can be validated.

+ Modify the function return type to Result or Option to support input validation failures.

Note that there are other (out of scope) debug_assert statements present in the codebase
insrc/multicore.rs,src/groth16/proof.rs,src/groth16/multiscalar.rs andsrc/g
roth16/verifier.rs.

Retest Results A review of Pull Request 179 indicates the noted pairing_miller_affine() function now
has the pub(crate) visibility modifier, no longer contains a debug_assert and returns a
Result«<>. Separately, developer discussions indicate that the debug_assert in prove.rs is
to support debugging rather than production. Similarly, the multiple debug_assert insrs.rs
are contained within the setup_fake_srs() function which is also not a production path. As
such, this finding was marked ‘Fixed'.

8 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/pull/179

nccoroup”

Finding
Risk
Identifier
Status
Category
Component
Location

Impact

Description

DoS in Aggregated Proof Verification via Malformed Proof
Medium Impact: Medium, Exploitability: Medium
NCC-E001405-006

Fixed

Denial of Service

bellperson
bellperson/src/groth16/aggregate/verify.rs:307

By tampering with an aggregated proof, an attacker is able to trigger a crash during the
verification process, effectively exercising a Denial of Service attack on the verifier.

Aggregated proofs are deeply nested structures composed of a large number of fields. All
proof types are declared inthebel lperson/src/groth16/aggregate/proof.rs file. Specif-
ically, the structure AggregateProof includes commitment values, aggregators, and a struc-
ture named TippMippProof. The latter contains KZG openings for the v and w values, as well
as another proof structure called GipaProof. An adversary able to tamper with elements of
this last GipaProof structure is able to perform a DoS on the verifier.

The representation of these different proofs is provided below, for reference.

pub struct AggregateProof<E: Engine> {
pub com_ab: commit::Output<E>,
/AT
pub tmipp: TippMippProof<E>,

pub struct TippMippProof<E: Engine> {
pub gipa: GipaProof<E>,
pub vkey_opening: KZGOpening<E::G2Affine>,
pub wkey_opening: KZGOpening<E::G1Affine>,
pub struct GipaProof<E: Engine> {
pub nproofs: u32,
pub comms_ab: Vec<(commit::Output<E>, commit::Output<E>)>,
pub comms_c: Vec<(commit::Output<E>, commit::Output<E>)>,
pub z_ab: Vec<(E::Fqgk, E::Fgk)>,

pub z_c: Vec<(E::G1, E::G1)>,
pub final_a: E::G1Affine,

V/AEYT

When submitting an aggregated proof for verification with an empty vector for either tmip
p.gipa.comms_ab, tmipp.gipa.comms_c, tmipp.gipa.z_ab, or tmipp.gipa.z_c, a crash
is triggered in the function verify_tipp_mipp(), on line 207, where a call to the first()

9 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/verify.rs#L307

nccoroup”

function returns None, which is then unwrap()-ed and leads to a panic. An excerpt of that
function is provided below for reference.

/// verify tipp_mipp returns a pairing equation to check the tipp proof. r is
/// the randomness used to produce a random linear combination of A and B and
/// used in the MIPP part with C
fn verify_tipp_mipp<E: Engine>(

v_srs: &VerifierSRS<E>,

proof: &AggregateProof<E>,

r_shift: &E::Fr,
) —> PairingCheck<E> {

Y/

// (T,U), Z for TIPP and MIPP and all challenges
let (final_res, mut challenges, mut challenges_inv) = gipa_verify_tipp_mipp(
- &proof);

Y oo

// KZG challenge point
let ¢ = oracle!(
&challenges. first().unwrap(),

&fvkey.0,
&fvkey.1,
&fwkey .0,
&fwkey.1
)i
V/ARTE

Note that the panic is triggered relatively deep into the call stack, which might indicate some
oversights in the validations of parameters. Indeed, to verify an aggregated proof, one calls
the verify_aggregate_proof() function, which in turns calls the gipa_verify_tipp_mip
p() function (in which no error is triggered regarding the empty fields), before finally calling

verify_tipp_mipp().

The reason for that crash is that the challenges vector returned by the gipa_verify_ti
pp_mipp() function is empty. This is because the for-loop in that function (highlighted in
the code excerpt below), tries to iterate over one of the empty vectors, and thus immediately
stops, without triggering any error.

fn gipa_verify_tipp_mipp<E: Engine>(
proof: &AggregateProof<E>,

) —=> (GipaTUZ<E>, Vec<E::Fr>, Vec<E::Fr>) {
info!("gipa verify TIPP");
1Y oo

// We first generate all challenges as this is the only consecutive process
// that can not be parallelized then we scale the commitments in a
// parallelized way
for ((comm_ab, z_ab), (comm_c, z_c)) in comms_ab
Liter()
.zip(zs_ab.iter())
.zip(comms_c.iter().zip(zs_c.iter()))

Recommendation Perform stricter parameter validation, as early as possible in the execution, and in particular

10 | Filecoin: Groth16 Proof Aggregation NCC Group

nccoroup”

around functions that accept potential adversarial input. Additionally, consider writing func-
tions that validate whether structures, such as proofs, are well-formed.

Retest Results Aparsing_check() method was added as part of Pull Request 173 (and also contained in Pull
Request 179) to the AggregateProof structure, which ensures that proofs are well-formed.

This function is now called as a first step during the verification process performed by the
verify_aggregate_proof() function, mitigating this finding.

11 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/pull/173

nccoroup”

Finding Uncaught Panic in FFI Code
Risk Medium Impact: Medium, Exploitability: Medium
Identifier NCC-E001405-007
Status Fixed
Category Error Reporting
Component filecoin-ffi

Location fil_verify_aggregate_seal_proof() on lines 544-598 and convert_aggregation_inp
uts() onlines 452-472 of filecoin-ffi/rust/src/proofs/api.rs

Impact An external caller to the Rust FFI function fil_verify_aggregate_seal_proof() may en-
counter a panic that does not gracefully return control (e.g., potentially a core dump).

Description Thefil_verify_aggregate_seal_proof() functionimplemented on lines 544-598 of api .
rs is called by an external FFI function to verify the output of an aggregated seal. The function
returns a pointer to a constructed fil_VerifyAggregateSealProofResponse struct defined
in filecoin-ffi/rust/src/proofs/types.rs which includes an is_valid boolean field. After some
initial input validation, the function calls convert_aggregation_inputs() on each element
of a slice of the commit_inputs.

The convert_aggregation_inputs() function is implemented on lines 452-472 of api .rs
contains a statement involving .unwrap_or_else(|_| { panic!(.... When this is en-
countered control may not be returned to the caller in a graceful manner.

Note that other nearby functions implement a similar pattern surrounded by a catch_unwind
function.? Rust documentation indicates that:

It is currently undefined behavior to unwind from Rust code into foreign code,
so this function is particularly useful when Rust is called from another language
(normally C). This can run arbitrary Rust code, capturing a panic and allowing a
graceful handling of the error.

Itis not recommended to use this function for a general try/catch mechanism. The
Result type is more appropriate to use for functions that can fail on a regular basis.
Additionally, this function is not guaranteed to catch all panics, see the “Notes”
section below.

However, the catch_unwind() function is absent from the noted location. Further, lines 580-
592 indicate functionality that does involve the is_valid boolean flag (and is thus unused
for this panic case).

Recommendation Indicate function failure through the Result or Option mechanism (e.g., through the is_v
alid flag) rather than through a panic. The catch_unwind mechanism can be a secondary
'defense in depth’ mechanism, but should not be the primary intended functional path.

Retest Results A review of Pull Request 169 indicates the convert_aggregation_inputs() function no
longer panics but rather returns a Result per the recommendation. Additionally, the pri-
mary return path for the fil_aggregate_seal_proofs() function now involves a Result«<>
and also contains a catch_panic_response mechanism (with catch_unwind) similar to its
siblings. As such, this finding has been marked ‘Fixed'.

9https://doc.rust-lang.org/std/panic/fn.catch_unwind.html

12 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/filecoin-ffi/blob/c5e646e79e9019b0034bbad1b318a20cbfb774e6/rust/src/proofs/api.rs#L564
https://github.com/filecoin-project/filecoin-ffi/blob/c5e646e79e9019b0034bbad1b318a20cbfb774e6/rust/src/proofs/api.rs#L452-L472
https://github.com/filecoin-project/filecoin-ffi/blob/c5e646e79e9019b0034bbad1b318a20cbfb774e6/rust/src/proofs/api.rs#L452-L472
https://github.com/filecoin-project/filecoin-ffi/blob/c5e646e79e9019b0034bbad1b318a20cbfb774e6/rust/src/proofs/types.rs#L747
https://github.com/filecoin-project/filecoin-ffi/pull/169/commits/7f4effb29d1b0bd78125049c99da21839e778da3
https://doc.rust-lang.org/std/panic/fn.catch_unwind.html

nccoroup”

Finding
Risk
Identifier
Status
Category
Component

Location

Impact

Description

Recommendation

Retest Results

Memory Exhaustion via Malformed Structured Reference String
Medium Impact: High, Exploitability: Medium

NCC-E001405-009

Fixed

Denial of Service

bellperson

* bellperson/src/groth16/aggregate/srs.rs:345
* bellperson/src/groth16/aggregate/srs.rs:216

An adversary may trigger the allocation of large amounts of memory, eventually impeding the
normal behavior of processes.

In the file srs.rs, the functions read() and read_mmap() are used to parse a Structured
Reference String (SRS). Both functions use helper functions to read vectors (read_vec() and
mmap_read_vec(), respectively), and follow the same pattern when doing so; they first read
a 32-bit integer, and then allocate a vector of that length. This can be seen in the highlighted
portion of the read_vec() function provided below for reference.

fn read_vec<G: CurveAffine, R: Read>(r: &mut R) -> io::Result<Vec<G>> {
let vector_len = r.read_u32::<BigEndian>()? as usize;
let mut data = vec![G::Compressed: :empty(); vector_len];
for encoded in &mut data {
r.read_exact(encoded.as_mut())?;
}
Ok (data
.par_iter()
.map(lenc| {
enc.into_affine()
.map_err(lel| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|s| Ok(s))
b

.collect::<io::Result<Vec< >>>()?)

In the case of a malformed (potentially adversarial) SRS, a large amount of memory may be
incorrectly allocated, which would impede normal functioning. Specifically, a 5-byte vector
may result in the allocation of more than 4GB of memory.

Consider enforcing an upper bound on the expected size of SRS fields when parsing them.
Additionally, check possible mismatches between the parsed lengths and expected buffer
sizes (possibly also enforcing @ length checks) where appropriate.

AMAX_SRS_SIZE constant was added as part of Pull Request 173 (and also contained in Pull
Request 179) to the bellperson/src/groth16/aggregate/srs.rs file. When reading data
using the functions read_vec() and mmap_read_vec(), an error is now returned if the vector
length is larger than this upper bound, mitigating this finding.

13 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/srs.rs#L345
https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/srs.rs#L216
https://github.com/filecoin-project/bellperson/pull/173

nccoroup”

Finding Potential DoS via Inverse Computation Panic
Risk Low Impact: Medium, Exploitability: Low
Identifier NCC-E001405-002
Status Fixed
Category Cryptography
Component bellperson
Location bellperson/src/grothi6/aggregate/verify.rs:73

Impact With overwhelmingly low probability, a panic may be triggered during the aggregated proof
verification process, effectively exercising a Denial of Service attack on the verifier. This con-
dition may also be leveraged by an attacker.

Description The function verify_aggregate_proof() is the main function used to verify aggregated
proofs. During the verification process, a random challenge r is computed and then used to
check the aggregate pairing product equation. During this computation, one is subtracted
to r before computing the inverse of that quantity. The code excerpted below highlights this
process.

// Check aggregate pairing product equation

// SUM of a geometric progression

// SUM a*i = (1 — a*n) / (1 - a) = -(1-a”n)/-(1-a)
// = (an-1) / (a-1)

info!("checking aggregate pairing");

let mut r_sum = r.pow(&[public_inputs.len() as u64]);
r_sum.sub_assign(&E: :Fr::one());

let b = sub!(r, &E::Fr::one()).inverse().unwrap();
r_sum.mul_assign(&b);

If the variable r were equal to one, the result of the subtraction would be 0, which does not
have a modular inverse in the field. Thus, the call to inverse() above would return None,
which would trigger a panic when unwrap()-ing. However, since that variable is computed
as the output of a hash function (which is used to model a random oracle based on the Fiat-
Shamir heuristic, see below), the probability of it being one is negligible.

// Random linear combination of proofs
let r = oracle!(

&proof.com_ab.0,

&proof.com_ab.1,

&proof.com_c.0,

&proof.com_c.1

)

Note that the input to the random oracle may be controlled by an adversary. However, it does
not seem feasible for an attacker to craft inputs hashing to such value.

The NCC Group team also noted that the implementation of the oracle currently guards
against another such edge case. Specifically, if the value computed as the output of the hash
function does not have an inverse, the oracle will perform additional iterations in order to
generate a value for which an inverse exists.

Recommendation Consider adding a check in the oracle macro to protect against the generation of one.

14 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/verify.rs#L73

nccoroup”

Retest Results As part of Pull Request 173 (and also contained in Pull Request 179), the following check that
mitigates this finding was added to bellperson/src/groth16/aggregate/macros.rs:

if ¢ == one {
continue;

}

15 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/pull/173

nccoroup”

Finding
Risk
Identifier
Status
Category
Component
Location

Impact

Description

Panic when Aggregating Proofs of Length One
Low Impact: Medium, Exploitability: Medium
NCC-EQ01405-004

Fixed

Denial of Service

bellperson
bellperson/src/groth16/aggregate/prove.rs:109

A panic may be triggered during the proof aggregation process, effectively exercising a Denial
of Service attack on the prover.

The proof aggregation process, implemented in the aggregate_proofs() function, converts
an array of n zkSNARK proofs to an aggregate proof. Currently, the number of aggregated
proofs must be a power of 2. The aggregate_proofs() function starts by performing a few
sanity checks on its inputs before proceeding with the aggregation, as can be seenin the code
excerpt below.

/// Aggregate “n° zkSnark proofs, where ‘n° must be a power of two.
pub fn aggregate_proofs<E: Engine + std::fmt::Debug>(
srs: &ProverSRS<E>,
proofs: &[Proof<E>],
) —=> Result<AggregateProof<E>, SynthesisError> {
if !proofs.len().is_power_of_two() {
return Err(SynthesisError::NonPowerOfTwo);

}

if !srs.has_correct_len(proofs.len()) {
return Err(SynthesisError: :MalformedSrs);

}
2l oo

// Random 1linear combination of proofs

let r = oracle!(&com_ab.9, &com_ab.1, &com_c.Q, &com_c.1);
// r, r2, r"3, r"4d ...

let r_vec = structured_scalar_power(proofs.len(), &r);

/) rh-1, -2, rA-3

V/AETY

// we prove tipp and mipp using the same recursive loop
let proof = prove_tipp_mipp::<E>(&srs, &a, &b_r, &c, &wkey_r_inv, &r_vec)?;

However, if the number of individual zZkSNARK proofs passed in to the aggregate_proof
s() function is equal to 1, a panic will be triggered in the prove_tipp_mipp() function,
highlighted above. Note that 1 is a power of two (2° = 1), and as such the check proofs
.len().is_power_of_two() above will succeed.

More specifically, the prove_tipp_mipp() function tries to access the r_vec array at index 1,
which is the same length as the proof array, resulting in an ‘index out of bounds' panic if the
latter is of length one. This is highlighted in the code excerpt below.

16 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/prove.rs

nccoroup”

fn prove_tipp_mipp<E: Engine>(
srs: &ProverSRS<E>,
a: &[E::G1Affine],
b: &[E::G2Affine],
c: &[E::G1Affine],
wkey: &WKey<E>, // scaled key w’r-1
r_vec: &[E::Fr],
) —> Result<TippMippProof<E>, SynthesisError> {
if la.len().is_power_of_two() || a.len() != b.len() {
return Err(SynthesisError: :MalformedProofs);
}

let r_shift = r_vec[1].clone();

Reproduction Steps Change the NUM_PROOFS value to 1 in the test test_groth16_aggregation() of the file bel
lperson/tests/groth16_aggregation.rs and run the test to observe the panic.

const NUM_PROOFS: usize = 1;

Recommendation Consider adding a guard to prevent aggregation of less than 2 proofs. Additionally, consider
performing stricter parameter validation, as early as possible in the function executions.

Retest Results As part of Pull Request 173 (and also contained in Pull Request 179), the following check was
added to the function aggregate_proofs() inbellperson/src/groth16/aggregate/pro
ve.rs:

if proofs.len() < 2 {
return Err(SynthesisError: :MalformedProofs(
"aggregating less than 2 proofs is not allowed".to_string(),

));

This check now mitigates the finding.

17 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/pull/173

nccoroup”

Finding Aggregate Proof Malleability
Risk Low Impact: Low, Exploitability: Low
Identifier NCC-E001405-008
Status Fixed
Category Cryptography
Component bellperson
Location bellperson/src/grothi6/aggregate/verify.rs:307

Impact An adversary may be able to arbitrarily inflate aggregated proofs. If other components were
relying on assumptions surrounding proof non-malleability, unexpected issues might occur.

Description Aggregated proofs are deeply nested structures composed of a large number of fields. All
proof types are declared inthebel lperson/src/groth16/aggregate/proof.rs file. Specif-
ically, the structure AggregateProof includes commitment values, aggregators, and a struc-
ture named TippMippProof. The latter contains KZG openings for the v and w values, as well
as another proof structure called GipaProof. A sibling finding (see finding NCC-E001405-006
on page 9) shows the nesting between these proofs and provides code excerpts.

An adversary able to tamper with elements of this GipaProof structure (given a valid instance
of an AggregateProof) may arbitrarily inflate the proof, and the verification will still succeed.
Note that this does not mean that an adversary is able to forge individual (or aggregated)
ZkSNARK proofs.

Similar to the sibling finding referred to above, the reason for the malleability of this proof
structure is twofold: the verify_aggregate_proof() function performs limited parameter
checks, and the Rust zip(') operator on iterators will return as soon as one of the iterators is
exhausted. An excerpt of vulnerable code from the verify_aggregate_proof() function is
provided below.

for ((comm_ab, z_ab), (comm_c, z_c)) in comms_ab
Liter()
.zip(zs_ab.iter())
.zip(comms_c.iter().zip(zs_c.iter()))

{

V/arrr

As a result, when submitting an aggregated proof for verification with vectors of different
sizes for either tmipp.gipa.comms_ab, tmipp.gipa.comms_c, tmipp.gipa.z_ab, or tmipp
.gipa.z_c, the function will loop over elements of these fields until it reaches the end of the
shortest vector, at which point it will exit. Thus, an attacker may inflate the proof structure by
appending an arbitrary number of elements to either of these fields, and the verification will
succeed.

The exploitability (and corresponding risk rating) of this finding was set to Low, since the
function to read an AggregateProof performs appropriate checks on the fields of the proof
structures and the function verify_aggregate_proof() is not expected to be publicly ac-
cessible, as per the Filecoin team.

Reproduction Steps In bellperson/tests/groth16_aggregation.rs, add the following lines to the test_gro
th16_aggregation() and observe that the test still succeeds.

18 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/verify.rs#L307

nccoroup”

// 1. Valid proofs
let mut aggregate_proof =
aggregate_proofs: : <Bls12>(&pk, &proofs).expect("failed to aggregate proofs");

// Adding some vector elements
aggregate_proof.tmipp.gipa.comms_c.push(aggregate_proof.tmipp.gipa.comms_c[0]);
aggregate_proof.tmipp.gipa.z_ab.push(aggregate_proof.tmipp.gipa.z_ab[0]);
aggregate_proof.tmipp.gipa.z_c.push(aggregate_proof.tmipp.gipa.z_c[0]);

let result = verify_aggregate_proof(&vk, &pvk, &mut rng, &statements,
- Raggregate_proof)

.expect("these proofs should have been valid");
assert!(result);

Recommendation Consider adding checks surrounding the lengths of the different parameters in the veri fy_
aggregate_proof () for the purpose of defense in depth.

Retest Results Aparsing_check() method was added as part of Pull Request 173 (and also contained in Pull
Request 179) to the AggregateProof structure, which ensures that proofs are well-formed.

This function is now called as a first step during the verification process performed by the
verify_aggregate_proof() function, mitigating this finding.

19 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/pull/173

nccoroup”

Finding

Risk
Identifier
Status
Category
Component

Location

Impact

Description

Discrepancy between Reference and Implementation in KZG Challenge Point Com-
putation

Low Impact: Low, Exploitability: Medium
NCC-E001405-011

Fixed

Cryptography

bellperson

* bellperson/src/groth16/aggregate/prove.rs:124
* bellperson/src/groth16/aggregate/verify.rs:196

Discrepancies between reference and implementation may invalidate security proofs, result-
ing in potential flaws in the protocol.

During the proof aggregation process, commitment to a polynomial using KZG is performed,
which utilizes the output of a random oracle as a challenge point.

The computation of the challenge is performed during the proof aggregation process in pr
ove.rs, on line 123 (see the excerpt below), and in the proof verification process in the file
verify.rs, online 195.

// KZG challenge point
let z = oracle!(
&challenges[0@],
&proof. final_vkey.0Q,
&proof. final_vkey.1,
&proof. final_wkey.0Q,
&proof. final_wkey.1
E

This computation differs from the (internal) reference paper “Proposal: Practical Groth16
Aggregation” in two ways.

First, the paper states that the KZG challenge point is computed with all the challenges x (in
bold, referring to a vector). Namely, towards the end of the MIPP. Prove procedure, at the top
of p. 20, it states:

Draw challenge z = Hasha(x,v1,v2) (from all challenges x and (v1, v2))

However, the implementation uses a single challenge, the first element of the challenge
s vector (as can be seen above), instead of using the vector containing all the challenges
computed. While the element used in the point computation does incorporate all the previous
challenges (since it is iteratively computed as a hash of the previous challenge), this does not
strictly follow the specification.

Second, the computation of the KZG challenge point is performed in two instances in the
paper; once during the TIPP proof and once during the MIPP proof. The inputs to the hash
function differ for these two proofs. Consider the TIPP.Prove procedure, in which the chal-
lenge point is computed as follows (as can be seen on p. 22):

Draw challenge z = Hashs(x,v1,v2, wl, w2)

20 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/prove.rs#L124
https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/verify.rs#L196

nccoroup”

This differs from the computation performed in MIPP . Prove shown above, with the additional
inclusion of the commitment keys w1, w2. However, the implementation uses the same chal-
lenge computation for both proofs, namely the one performed in the TIPP . Prove procedure.
It is unclear whether this has a security impact.

Finally, the NCC Group team noted that the paper uses a number of different notations for
the computation of this challenge point. In addition to the two listed above, the following two
notations appear in the paper.

On p. 260:
1. Reconstruct KZG challenge point: z = H(2j0g(n), v1,v2)

Onp. 22:

1. Reconstruct KZG challenge point: z = H({%}ifo(")v vl 02, W, w)

Recommendation Ensure that the reference paper and the implementation match, and that notation is consis-
tent throughout the paper.

If possible, consider providing an argument (in the implementation or the reference paper)
supporting the use of a single KZG challenge point for both proofs.

Retest Results Pull Request 172 (which is also contained in Pull Request 179) combines a number of changes
aiming to synchronize the implementation with the reference paper.

Instead of addressing the discrepancies listed in this finding, the reference paper'® was up-
dated in the following way.

1. Some arguments supporting the security of the combination of the TIPP and MIPP proofs
and of their respective challenges were included.
2. The challenge KZG point is now computed using the last challenge only.

This addresses the concerns listed in this finding.

"https://eprint.iacr.org/2021/529

21 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/pull/172
https://eprint.iacr.org/2021/529

nccoroup”

Finding Marginally Inconsistent/Outdated Toolchain and Dependencies
Risk Informational Impact: Undetermined, Exploitability: Undetermined
Identifier NCC-E001405-601
Status Not Fixed
Category Patching

Component all

Location ¢ bellperson/rust-toolchain * filecoin-ffi/rust/Cargo.toml
* bellperson/Cargo.toml * rust-fil-proofs/rust-toolchain
e filecoin-ffi/rust/rust-toolchain * rust-fil-proofs/Cargo.toml

Impact Attackers may attempt to identify and utilize publicly known vulnerabilities in outdated depen-
dencies to exploit the functionality of the target code.

Description Incorporating outdated dependencies is one of the most common, serious and exploited
application vulnerabilities. Inconsistent toolchains can also increase the difficulty of build and
debug.

Thebellperson repository contains arust-toolchain file set to stable version 1.46.9, which
is about 6-months out of date."” The filecoin-ffi repository contains a rust-toolchain
file set to nightly-2020-10-5 of similar vintage. Note that the rust-fil-proofs repository
contains a rust-toolchain file set to stable version 1.51.0 which is fully up to date. These
are inconsistent and the former two are outdated.

Each repository includes a Cargo. toml file specifying dependencies. Some dependencies are
marginally out of date, including:

* bellperson
- ff specifies v0.2.9, while the latest f£f version is v@.2.3
- rust-gpu-tools specifies v0.2.9, while the latest version is v0.3.0
- rand_core specifies v@.5, while the latest version is v0.6.2
- byteorder specifies v1, while the latest version is v1.4.3
- rand specifies v0.7, while the latest version is v0.8.3
- rayon specifies v1.3.9, while the latest version is v1.5.0
- itertools specifies v0.9.9, while the latest version is v@.10.0
* filecoin-ffi
- bls-signatures specifies v0.8, while the latest version is v0.9.0
- ff specifies v0.2.1, while the latest f£f isv0.2.3
- rust-gpu-tools specifies v0.2.9, while the latest version is v0.3.0
* rust-fil-proofs
- No significant outdated dependencies

In addition, the Cargo.toml files make use of the [patch.crates-io] directive which fur-
ther increases the challenge of version management, since branches rather than commits,
versions or digests are specified.

Recommendation Update the rust-toolchain files to the (same) latest stable version recommended for pro-
duction deployment, which is currently 1.51.0. If a repository requires the nightly channel,
use a version of the same vintage. Update the Cargo.toml files to include the most recent

" https://github.com/rust-lang/rust/blob/master/RELEASES. md#version-1460-2020-08-27

22 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/rust-toolchain
https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/Cargo.toml
https://github.com/filecoin-project/filecoin-ffi/blob/c5e646e79e9019b0034bbad1b318a20cbfb774e6/rust/rust-toolchain
https://github.com/filecoin-project/filecoin-ffi/blob/c5e646e79e9019b0034bbad1b318a20cbfb774e6/rust/Cargo.toml
https://github.com/filecoin-project/rust-fil-proofs/blob/36b3d91690594a8dfdab44b0d2356a726bb7a380/rust-toolchain
https://github.com/filecoin-project/rust-fil-proofs/blob/36b3d91690594a8dfdab44b0d2356a726bb7a380/Cargo.toml
https://github.com/rust-lang/rust/blob/master/RELEASES.md#version-1460-2020-08-27

nccoroup”

versions of dependencies and minimize the complexity of [patch.crates—io] clauses.

Retest Results A review of Pull Request 179 does not indicate changes relevant to the rust-toolchain or
Cargo.toml files nor the dependency versions. Note that this informational observation does
notindicate an immediate security issue. The developers indicate this will be resolved through
the regular update process. As such, this finding has been marked ‘Not Fixed' at this time.

23 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/pull/179

nccoroup”

Finding Missing Domain Separation Parameter in Oracle Calls
Risk Informational Impact: Undetermined, Exploitability: Low
Identifier NCC-E001405-010
Status Fixed
Category Cryptography
Component bellperson

Location ¢ bellperson/src/grothi6/aggregate/prove.rs:124
* bellperson/src/groth16/aggregate/verify.rs:196
* bellperson/src/groth16/aggregate/prove.rs:233
* bellperson/src/groth16/aggregate/verify.rs:318

Impact Calls to different random oracles may result in the same output, contradicting the random
oracle model on which the security proofs are built.

Description When implementing cryptography protocols that were proven in the Random Oracle Model, it
is common practice to instantiate random oracles using hash functions. Generally, when using
a single hash function to model multiple random oracles, the hash functions are instantiated
using different domain separators. This ensures that calls to different oracles with the same
inputs will result in different outputs, so as not to invalidate the assumptions made in the
security proof.

The (internal) reference paper “Proposal: Practical Groth16 Aggregation” describes two differ-
ent hash functions used in the course of the proof aggregation and verification, Hashy and
Hashs, which are used to derive challenges for the proof commitments.

In the implementation, both hash functions are implemented by the oracle macro, inbellp
erson/src/groth16/aggregate/macros.rs, which hashes all its inputs using SHA256.

The NCC Group team noticed that no domain separator was passed in the oracle calls. As
such, the two hash functions upon which the proofs are built are effectively the same, possibly
invalidating the security proof. An example present in the verify.rs file is excerpted below.

let ¢ = oracle!(
&challenges. first().unwrap(),
&fvkey .0,
&fvkey.1,
&fwkey .0,
&fwkey .1
);

Recommendation Consider adding a domain separator tag to the oracle calls, different for the Hash; and
Hashs calls.

Retest Results As part of Pull Request 172 (and also contained in Pull Request 179), two different domain
separation tags ("randomr" and "randomgipa", respectively) were added to the oracle calls,
addressing this finding.

24 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/prove.rs#L124
https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/verify.rs#L196
https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/prove.rs#L233
https://github.com/filecoin-project/bellperson/blob/feat-ipp2/src/groth16/aggregate/verify.rs#L318
https://github.com/filecoin-project/bellperson/pull/172

Appendix A: Finding Field Definitions nccoroup”

The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale

NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk

Overall risk reflects NCC Group's estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could Iater lead to an exploitable finding.

Impact

Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability

Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

25 | Filecoin: Groth16 Proof Aggregation NCC Group

nccoroup”

Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.
Access Controls Related to authorization of users, and assessment of rights.
Auditing and Logging Related to auditing of actions, or logging of problems.
Authentication Related to the identification of users.
Configuration Related to security configurations of servers, devices, or software.
Cryptography Related to mathematical protections for data.
Data Exposure Related to unintended exposure of sensitive information.
Data Validation Related to improper reliance on the structure or values of data.
Denial of Service Related to causing system failure.
Error Reporting Related to the reporting of error conditions in a secure fashion.
Patching Related to keeping software up to date.
Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

26 | Filecoin: Groth16 Proof Aggregation NCC Group

Appendix B: Engagement Notes and Observations ﬂCCQ(OUpe

This informational section highlights selected portions of the engagement methodology used, some of the priority
concerns investigated, and observations that do not warrant security-related findings on their own. The primary
strategy for this project relied heavily on manual source code inspection, supported by some execution of the included
test cases and light fuzzing of some of the parsing functions. Priority was given to the correctness of cryptographic
algorithms and implementation, the specific focus areas highlighted in the executive summary, data validation, control
flow and general secure coding practices that could potentially impact legitimate operation.

Build Environment

The team evaluated the build environment (which resulted in finding NCC-E601405-001 on page 22) and ran the tool
cargo audit on the three repositories under review. Two vulnerabilities were discovered: one crate used by the
three repositories (fil-ocl) was found to be vulnerable, while another crate (raw-cpuid) used by rust-fil-proo
fs was also vulnerable. In addition, the cargo audit tool highlighted several other deprecated crates in the three
repositories. The latter item shown below is addressed as part of the noted finding's recommendation.

ID: RUSTSEC-2021-0011

Crate: fil-ocl

Version: 0.19.6

Date: 2021-01-04

URL : https://rustsec.org/advisories/RUSTSEC-2021-0011

Title: EventList's From<EventList> conversions can double drop on panic.

Solution: No safe upgrade is available!
Dependency tree:

fil-ocl ©.19.6

— rust-gpu-tools 0.3.0

L— rust-gpu-tools 0.2.2

ID: RUSTSEC-2021-0013

Crate: raw-cpuid

Version: 8.1.2

Date: 2021-01-20

URL : https://rustsec.org/advisories/RUSTSEC-2021-0013
Title: Soundness issues in “raw-cpuid®

Solution: upgrade to >= 9.0.0
Dependency tree:

raw-cpuid 8.1.2

L— fil-proofs-tooling 5.5.0

Fuzzing

The project supports two different backends for field, curve and pairing operations, namely the blst and paired
crates. The integration with external dependencies introduces the potential for serialization/deserialization bugs. NCC
Group built and ran custom fuzzers on the following blocks for both backends:

* crate::bellperson: :groth16: :aggregate: : AggregateProof: : <B1s12>: :read() 12
. crate::bellperson::groth'16::aggregate::GipaProof::<Bls'12>::read()13

* crate: :bellperson: :groth16: :aggregate: :TippMippProof: : <Bls12>: :read()

One finding arose from this effort (see finding NCC-EQ01405-609 on page 13), while a second finding (see finding NCC-
E001405-005 on page 7) was stimulated by the fuzzing development process.

Comparison between Reference Paper and Implementation

The two technical references were used as a support to assess the implementation. Some discrepancies with limited
impact were identified and are discussed in more details in finding NCC-E001405-003 on page 5 and finding NCC-

12https:/github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd 19ac5e12d206a7ccffbb7a/src/groth16/aggregate/proof.rs# 82
3https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/proof.rs#L.233
"https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/proof.rs#L.355

27 | Filecoin: Groth16 Proof Aggregation NCC Group

https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/proof.rs#L233
https://github.com/filecoin-project/bellperson/blob/d4120782d27e2971bd19ac5e12d206a7ccffbb7a/src/groth16/aggregate/proof.rs#L355

810

811

812

813

726

727

728

nccoroup”

E001405-011 on page 20.

The team paid particular attention to the good generation and use of randomness, which is especially important to
ensure the security of the aggregate proof verification. Indeed, the aggregate proof verification process checks a
single randomized equation, which, if it were not random, might be exploited by an attacker.

The generation of a Structured Reference String (SRS) is typically a very sensitive operation; in other protocols such as
the ZCash powers of tau ceremony, extensive care' was taken to erase the toxic waste. Since the proof aggregation
and verification make use of two existing SRSs, the need for memory zeroization in that regard is not necessary.

Input Validation

Input validation was inspected manually, by debugger-introduced variations, and by modified test cases where possi-
ble. Initial focus was placed on field range and curve subgroup validation, such as the deserialization and appropriate
range check of Fq, or the correct subgroup check on G1Projective during deserialization.

The team noted a number of instances that could benefit from better input validation, as evidenced by findings
such as finding NCC-E001405-006 on page 9 and finding NCC-EQ01405-004 on page 16. In addition, in the spirit of
defense in depth, it might be beneficial to include such checks throughout the code, even if the functions do not seem
susceptible to be used externally. For example, inbellperson/src/grothi6/aggregate/mod.rs, in the compress()
function (provided below for reference), if the value of split were larger than the length of the vector, the assertion
insplit_at_mut() would fail.

fn compress<C: CurveAffine>(vec: &mut Vec<C>, split: usize, scaler: &C::Scalar) {
let (left, right) = vec.split_at_mut(split);
/)

pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
assert!(mid <= self.len());
VI

A second example from the rust-fil-proofs repository source file seal .rs:801 is excerpted below. The function
verify_aggregate_seal_commit_proofs() performs an unchecked division via the remainder operator % on an
unvalidated caller-provided function parameter. If aggregated_proofs_len is zero, this will result in a panic.

ensure! (
commit_inputs.len() % aggregated_proofs_len == 0,
"invalid number of inputs provided"

)

Rust Programming Practices

The team noted a few instances of potentially unsafe Rust programming practices, for example in the use of unwrap()
(such as in finding NCC-EQ01405-002 on page 14). Generally speaking, explicit error handling should be preferred
instead of calling functions that might result in panics, such as unwrap() or expect(). The Secure Rust Guidelines
provide some helpful pointers to that effect.

As an example, the function aggregate_seal_commit_proofs() contains two instances of .expect() shown below,
which will cause a panic if triggered. The same function (and others in this file) use the preferred ensure! () macroin
other places to pass error messages rather than panic.

let mut proofs: Vec<_> = commit_outputs
Jiter()
.fold(Vec: :new(), Imut acc, commit_output| {

Shttps://z.cash/technology/paramgen/

28 | Filecoin: Groth16 Proof Aggregation NCC Group

https://anssi-fr.github.io/rust-guide/01_introduction.html
https://z.cash/technology/paramgen/

729

730

731

732

733

734

735

736

737

738

739

740

760

761

762

763

764

765

nccoroup”

acc.extend(
MultiProof: :new_from_reader
Some(partitions),
&commit_output.proof[..],
&verifying_key,
)
.expect("failed to construct multi proof from bytes")
.circuit_proofs,

Dé
acc

1)

proofs.push(

proofs
.last()
.expect("failed to access last proof for duplication")
.clone(),

)

Adapting the above logic to utilize the preferred ensure! () macro will increase the ability for callers to gracefully
handle errors.

Separately, another particular item of note is the use of the zip() operator to iterate through multiple vectors at
the same time. Together with the lack of confirmation of equal-length lists prior to zip-ing them, this has shown to
be a potential vector of issues (see finding NCC-E001405-606 on page 9 and finding NCC-EQ01405-008 on page 18)
that could be avoided by adding an inexpensive check that will prevent an “orphan” from being ignored (and potentially
enabling an escape). There are many instances where this operator is used. For example (as also noted in finding NCC-
E001405-005 on page 7), the following computation in bellperson/src/groth16/aggregate/inner_product.rs
might return incorrect results in non-debug builds.

pub fn pairing_miller_affine<E: Engine>(left: &[E::G1Affine], right: &[E::G2Affine]) -> E::Fqgk {
debug_assert_eq! (left.len(), right.len());
let pairs = left
.par_iter()
.map(lel e.prepare())
.zip(right.par_iter().map(lel e.prepare()))
.collect::«Vec<_>>();
let pairs_ref: Vec<_ > = pairs.iter().map(l(a, b)| (a, b)).collect();

E::miller_loop(pairs_ref.iter())

Optimization Potential

Generally, the cost of performing a field inversion is significantly larger than the cost of computing a field multiplication.
In bellperson/src/groth16/aggregate/prove.rs, the inverses of the powers of r are computed, as can be seen
in the code excerpt below.

// r, r2, r"3, r"4 ...
let r_vec = structured_scalar_power(proofs.len(), &r);
// -1, r°-2, r*-3
let r_inv = r_vec
.par_iter()
.map(|lri| ri.inverse().unwrap())
.collect::<Vec< >>();

29 | Filecoin: Groth16 Proof Aggregation NCC Group

nccoroup”

Thus, for an array of length n, the code above computes n modular inversions. A possible optimization to this
piece of code might be to compute =™ (only one inversion) and then successively multiply it by r, thus obtaining

r7”+1,.. r=2 1

*)

Additionally, there are instances of iteratively building long vectors where the length is known in advance. Declaring

new vectors with Vec: :with_capacity '® may significantly reduce the otherwise repeated memory allocation over-
head.

"6https://doc.rust-lang.org/std/vec/struct.Vec.html#capacity-and-reallocation

30 | Filecoin: Groth16 Proof Aggregation NCC Group

https://doc.rust-lang.org/std/vec/struct.Vec.html#capacity-and-reallocation

	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions
	Engagement Notes and Observations

