
Apache Milagro MPC Cryptographic
Assessment
Qredo
July 16, 2020 – Version 1.3

Prepared for
Samuele Andreoli
Kealan McCusker
Brian Spector

Prepared by
Mason Hemmel
Aleksandar Kircanski

©2020 – NCC Group

Prepared by NCC Group Security Services, Inc. for Qredo. Portions of this document and the templates
used in its production are the property of NCC Group and cannot be copied (in full or in part) without
NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group’s services does not guarantee the security of a
system, or that computer intrusions will not occur.

Executive Summary
Synopsis
During the spring of 2020, Qredo engaged NCC Group
to conduct a security assessment of the Apache Milagro
MPC library. This library implements the primitives
necessary to instantiate the multi-party ECDSA sig-
nature scheme provided in Gennaro and Goldfeder’s
“Fast Multiparty Threshold ECDSA with Fast Trustless
Setup”1 (GG). This assessment occurred over the course
of two calendar weeks and was delivered by three
consultants over ten person-days. NCC Group assessed
commit c5f0733 of the public incubator-milagro-MPC
repository.

Scope
NCC Group evaluated only the code in the incubator-
milagro-MPC repository, and did not stray into the
original cryptographic libraries used in this project. As
a result, the engagement team did not review the
implementation of many of the low-level primitives used
in this project. This includes the following:

• Hash function implementations
• Elliptic curve group and finite field operations (other

than special-case modular multiplication and modular
reductions)

• Bit-and-byte-level operations
• Bignum operations
• Acquisition and manipulation of randomness
• Paillier encryption implementation

The engagement proceeded with the assumption that
all of the above functionality is implemented correctly
and securely. For example, the team assumed that
all serialization into the struct for an elliptic curve
point performs full validation of that point, and that all
randomness is sourced from a cryptographically secure
pseudo-random number generator.

Key Findings
The assessment uncovered a set of common crypto-
graphic flaws. The most notable involved the replaya-
bility of some of the zero-knowledge proofs generated
in the protocol.

NCC Group found that a lack of liveness guarantors in
zero-knowledge proofs render them replayable. This
means an attacker could potentially “forge” proofs in a
given round of multi-party signing by replaying proofs
generated in an earlier round. The implemented
protocol can reveal sensitive information in the case that

malicious participants are involved in a full run of the
protocol, meaning that this can have a practical impact.

These issues have been fixed prior to the publication of
this report.

Strategic Recommendations
• Encapsulate Higher-Level Primitives into Functions

While Milagro MPC offers all the functionality needed
to spin up an implementation of the GG scheme,
many of the larger steps are not implemented as
single functions. This leaves users of the library to
implement these larger steps themselves, which has
historically resulted in insecure implementations. To
avoid this, the library should at least implement all
phases of key and signature generation as single
functions.

• Consider Vetting Novel Sections of milagro-
crypto The milagro-crypto library supplies the
low-level cryptographic implementations of the core
primitives listed in the Scope section. While the
library’s authors note it has largely been imported
from a well-used and well-vetted cryptographic library,
there is still a certain amount of “glue” code and
some novel functionality. Implementing low-level
cryptographic primitives, or even code used to stitch
it together, tends to be extremely challenging. To
ensure the highest level of assurance, the Milagro
team should consider highlighting and further vetting
any novel portions of this library.

• Separate Functions Requiring Random Generation
Many of the Milagro MPC functions include a pattern
in which an RNG struct is optionally passed into a
function that alters its functionality depending on
whether or not it is passed. This leads to bad
functionality in cases where the RNG is meant to be
passed in and has somehow acquired the NULL value,
or vice versa. As a result, these functions should be
separated into two.

• Use Naming Conventions Consistently The Milagro
MPC library tends to use GG’s naming conventions
for its variables. However, this is not applied across
the board, leading to potential confusion for users
attempting to cross-reference functionality.

• Warn Users About Repeated Schnorr Proofs with
Unchanged Randomness The functions used to
generate non-interactive zero knowledge (NIZK) chal-
lenges support user-input randomness. If a Schnorr
NIZK proof is repeated for the same randomness
but different challenge values, an adversary that

1The paper in which this scheme was presented is available at https://eprint.iacr.org/2019/114.pdf.

2 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://github.com/apache/incubator-milagro-MPC/tree/c5f0733e3bf918a8e5c411f3c4ead6a12a3a43cf
https://eprint.iacr.org/2019/114.pdf

observes both proof transcripts can directly calculate
the prover’s secret key.2 Users are not likely to be
aware of this, and may misuse the API such that
this vulnerability is triggered. Alternatively, the team
may refactor the functions such that randomness is
guaranteed to be generated by a strong RNG every
time.

2Assume a prover with secret a uses randomness v to commit to V = gv mod p twice and either the verifier replies with two separate challenges
or the hash function in the NIZK variant has two different counter values. The first challenge is r and the second is r′, in response to which the
prover computes c = v − a ∗ c and c′ = v − a ∗ c′. An adversary observing both proofs can calculate r−r′

c′−c
= v−a∗c−v+a∗c′

c′−c
= a.

3 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

Dashboard
Target Metadata Engagement Data
Name Apache Milagro MPC Type Cryptographic Security Assessment
Type Cryptographic Library Method Code-assisted
Platforms C Dates 2020-04-21 to 2020-05-08
Environment Local Instance Consultants 3

Level of Effort 10 person-days

Finding Breakdown
Critical issues 0
High issues 0
Medium issues 0

Low issues 2

Informational issues 1
Total issues 3

Category Breakdown
Cryptography 3

Key
Critical High Medium Low Informational

4 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

Testing Methodology
When examining the Apache Milagro Multiparty Computation (MPC) project, NCC Group focused on ensuring that
the project faithfully implemented its source protocol, avoided common programming issues, and was formulated
such that end users could safely take advantage of the library. This library implements Gennaro and Goldfeder’s “Fast
Multiparty Threshold ECDSA with Fast Trustless Setup” paper3 (GG) through a combination of additively homomorphic
encryption, zero knowledge proofs (ZKP), Shamir’s secret sharing, non-malleable equivocable commitments, Feldman’s
verifiable secret sharing protocol,4 and ECDSA itself. For this project, zero knowledge proofs, commitments, ECDSA,
and the overall structure were in scope. Each of these structures and the methodology used to test it are described
in more detail below.

Homomorphic Encryption
Homomorphic encryption is a special form of encryption that allows for limited computation over encrypted values
without possession of the secret key. GG use an instantiation of homomorphic encryption known as Paillier encryption,
in which an entity possessing ciphertexts c1 = Ek(m1), c2 = Ek(m2), and the public key k under which they were
encrypted can compute c3 = Ek(m1+m2). In order to combine secret shares without revealing them, GG use Paillier’s
instantiation of additively homomorphic encryption. The implementation of the Paillier cryptosystem was not in scope
for this engagement, so NCC Group did not review it.

Zero Knowledge Proofs
At a high level, zero knowledge proofs are a cryptographic technique allowing one entity (the prover) to prove to
another (the verifier) that they know a particular statement is true without revealing anything else. GG leverages
six variants of this technique: range proofs, a proof of modular polynomial relations, Schnorr’s protocol, a proof
of knowledge of integer factorization, and two novel zero knowledge proof protocols devised by GG for use in this
threshold ECDSA instantiation. In this paper’s security model, these proofs work in concert to prevent malicious
protocol participants from causing a failure mode that leaks information about the DSA key as well as the secret nonce
value k. Extraordinarily small leaks of these values have proven practically exploitable.5 All of these proofs were in
scope, and NCC Group examined each of them separately. They are discussed separately below.

Range Proofs
One part of the threshold ECDSA algorithm consists of “share conversion”, in which each pair of signing parties
performs a protocol that alters the mathematical structure of the secret shares they have to make it possible to
construct the signature. This pairwise protocol requires each party to send range proofs to show that the secret
share they are communicating to their partner (remember, this protocol is performed pairwise) is small enough that
a modular reduction will not be necessary to compute over it. This avoids a potential information leak in the final step
of signature verification, where a malicious participant can engineer a verification failure that could leak information
about its peers’ secret shares. (NCC Group notes that they cannot present an attack exploiting this leak, but also cannot
make a proof it does not exist.) The construction used for the range proofs is given in appendix A.1 of GG.

The zero knowledge proof involves random generation of values in a variety of fields as well as comparison, modular
reduction, exponentiation, addition, and inversion of these values in their respective fields. In addition, the values
manipulated as part of this proof are sensitive, and so they need to be securely zeroized. This engagement’s scope
did not include the implementation of any of this field arithmetic or the secure zeroization with the exception of
special cases of big-integer multiplication and modular reduction. NCC Group did ensure that the range proof was
implemented as per its specification, and that a zeroization function was called on the sensitive data structures. The
big-integer multiplication and modular reduction algorithms were implemented in terms of lower-level algorithms
that were not in scope, but the team ensured that the high-level algorithmic structure suggested by the function calls
were valid. Additionally, the team ensured that the implied non-interactive zero knowledge (NIZK) conversion in the
3This paper describes a system which allows for distributed signing among n players such that any subgroup of size t+1 can sign while subgroups

of size equal to or less than t cannot for some t < n. Available at https://eprint.iacr.org/2019/114.pdf.
4The paper presenting this scheme is available at https://www.cs.umd.edu/~gasarch/TOPICS/secretsharing/feldmanVSS.pdf.
5As an example, see https://eprint.iacr.org/2020/615.pdf, which presents an attack recovering an ECDSA key from an information leak so small that

it does not reliably leak even one bit.

5 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://eprint.iacr.org/2019/114.pdf
https://www.cs.umd.edu/~gasarch/TOPICS/secretsharing/feldmanVSS.pdf
https://eprint.iacr.org/2020/615.pdf

challenge function via the Fiat-Shamir transformation used the strong version6 and was valid.

Proof of Modular Polynomial Relations
The share conversion protocol features a number of proofs that achieve zero knowledge by mixing large random
numbers with the special values to which the proof commits. To ensure that the security reduces to a well-known
hard problem (a typical cryptographic goal), GG has these large numbers be the factorization of an RSA modulus. This
allows for a proof sketch in which an attacker must break the Strong RSA Challenge7 in order to violate the soundness
guarantees of the proof. This means that the protocol must also ensure that the participants generate and use this
auxiliary RSA modulus and its components in the proof. GG use a proof of modular polynomial relations8 to allow both
sides of the pairwise protocol to prove to one another that they have indeed generated RSA moduli and are using
them as part of the protocol as per the proof.

This proof is structured around a combination of a protocol and a special bit commitment algorithm. The bit commit-
ment algorithm requires an initial setup. This proceeds by generating two safe primes P and Q, and picking generators
of the primes’ associated multiplicative subgroups, a generator of the multiplicative semigroup associated with the
primes’ product, and two random members of this semigroup. This requires safe prime generation, the Chinese
Remainder Theorem, and reliable algorithms for finding group membership. These are all implemented in Apache
Milagro, although they are implemented in terms of lower-level functions whose implementations were not in scope.
NCC Group ensured that the high-level algorithms were structured correctly assuming correct priors and performed
dynamic tests showing that they functioned as expected by dynamically testing against known-good implementations
of the same algorithms from Sage math.

The bit commitment algorithm itself proceeds by modular exponentiation of the various generators created in the
setup by the desired bits and a random value. While the underlying mathematical implementations were not in scope,
NCC Group ensured that the algorithm was correct assuming equally correct lower-level implementations.

The zero knowledge proof leveraging the prior bit commitments shows that the prover knows a legitimate auxiliary
RSA modulus is, as in other cases, implemented in terms of lower-level functions whose implementations were not
in scope. Nevertheless, NCC Group ensured that the algorithm described matched the description, and that it was
correct as long as the lower-level algorithms were as well.

Schnorr’s Protocol
Schnorr’s protocol is a well-known zero knowledge proof that one party knows the value of a particular discrete
logarithm. GG use both the classical version as well as a slight variant that proves the knowledge of two different
discrete logarithms simultaneously. Apache Milagro includes tools that support the interactive and non-interactive
versions of both protocols. The prover proceeds in the interactive and non-interactive cases by supplying a group
generator raised to the power of the discrete logarithm, then solves a randomly generated challenge (sent by the
verifier) that requires knowledge of the discrete logarithm to which they committed in the first step. The non-interactive
variants replace the verifier’s challenge generation with a cryptographic hash function; in the random oracle model,9
a challenge generated by the hash of the information that they would have sent the verifier is equivalent to a random
value generated by a counterparty. This technique is known as the Fiat-Shamir transformation.

NCC Group checked that the implementation as a whole was implemented correctly at a high level, since the lower-
level calculations were not in scope, and also verified that the Fiat-Shamir transformation was applied correctly and
its soundness property was maintained. Additionally, NCC Group ensured that the proofs themselves had liveness
6The “weak” and “strong” forms of the Fiat-Shamir transformation differ in that the weak form hashes only the commitment to form the challenge,

which does not bind it to a particular proof statement. This is discussed in more detail in https://eprint.iacr.org/2016/771.pdf.
7This challenge is that, given an RSA modulus N and a ciphertext c, the adversary must find a message and public exponent e such that the message

encrypted under the public exponent with respect to the modulus returns the chosen ciphertext. This is believed to be infeasible.
8The full scheme is presented in “Statistical Zero Knowledge Protocols to Prove Modular Polynomial Relations”, available at https://www.research

gate.net/publication/221355462_Statistical_Zero_Knowledge_Protocols_to_Prove_Modular_Polynomial_Relations.
9See the series beginning at https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3/ for more informa-

tion on the random oracle model.

6 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://eprint.iacr.org/2016/771.pdf
https://www.researchgate.net/publication/221355462_Statistical_Zero_Knowledge_Protocols_to_Prove_Modular_Polynomial_Relations
https://www.researchgate.net/publication/221355462_Statistical_Zero_Knowledge_Protocols_to_Prove_Modular_Polynomial_Relations
https://blog.cryptographyengineering.com/2011/09/29/what-is-random-oracle-model-and-why-3/

guarantees10 and could not be arbitrarily replayed.

Proof of Integer Factorization
During key generation, each participant in the protocol creates an RSA modulus and proves that it is legitimately theirs
via a proof showing that they know the factorization of their modulus. This Milagro implementation chose the proof
method created by Poupard and Stern in “Short proofs of knowledge for factoring”11 (PS).

The PS method uses the Fiat-Shamir transformation of an interactive statistical zero knowledge proof protocol. This
protocol is structured as a series of rounds of the following sub-protocol:

1. Prover commits to several randomly chosen numbers between zero and the number whose factorization they claim
to know

2. Verifier replies with a random challenge
3. Prover proves the knowledge of a small discrete log for the randomly chosen numbers in the context of the chal-

lenge.

A complete proof includes many runs of this round. PS optimize the sub-protocol via hashing the commitments into a
single value and render it non-interactive by replacing the verifier’s challenge with a hash of both the proof statement
and the commitments. The proof is parametrized by values A and B, which largely exist to provide an upper limit on
the size of the proofs to ease the proof that the scheme is in fact zero knowledge.12

NCC Group checked the high-level implementation of this scheme for fidelity to the original algorithm description. The
team also ensured that the relevant checks were made on all inputs, and that the proof was not replayable. As before,
the implementation of the underlying mathematical operations was not in scope.

MtA Respondent Proofs
The “share conversion” protocol discussed above, is called the Multiplicative-to-Additive (or MtA) protocol equivalently
in GG and all references above to share conversion refer to this protocol. There are two possible methodologies
offered in GG for a run of this protocol: one that is “checked” and one that is not. Apache Milagro implements both
the checked and unchecked version, which are discussed separately below.

Unchecked
In the unchecked version, the respondent in the share conversion protocol must prove to the initiator that they are
in possession of correctly-formed secret shares and have correctly calculated the response to the initiator. NCC
Group checked that the proof was implemented as specified in appendix A.3 of GG, and additionally ensured that
the implicit conversion to the NIZK version via the Fiat-Shamir transformation included the proof statement as well as
all commitments and public strings.

Checked
The checked version adds an additional component to the proof showing that the respondent’s share is small enough
to avoid modular reduction and the attendant information leak as described above. The engagement team checked
that the proof was implemented as specified in appendix A.2 of GG, and additionally ensured that the implicit conver-
sion to the NIZK version via the Fiat-Shamir transformation included the proof statement as well as all commitments
and public strings.

Shamir’s Secret Sharing
The implementation of Shamir’s secret sharing was not in scope for this engagement, so NCC Group did not review
this component.
10For more detail on this, see the suggestions presented by NCC Group to finding NCC-QRED001-002 on page 10 and finding NCC-QRED001-003
on page 12.
11Available at https://www.di.ens.fr/~stern/data/St84.pdf.
12The original paper proves the zero knowledge property in a proof by contradiction. The contradiction arises from the runtime of an algorithm
to factor the number in question, which is given in terms of A and B. As a result, if these values are allowed to be arbitrarily large the attacker’s
algorithm could conceivably be non-polynomial, meaning that the contradiction is no longer found.

7 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://www.di.ens.fr/~stern/data/St84.pdf

Non-Malleable Equivocable Commitments (NMEC)
In general, cryptographic commitment schemes allow an entity (the sender) to commit to a particular value at a point
in time (without revealing that value) such that they can “open” the commitment later and reveal the value to which
they committed. An NMEC scheme is also “equivocable”, meaning that an entity in possession of a particular secret
can open the commitment to any value instead of only the one to which the sender originally committed. Additionally,
the scheme is non-malleable, meaning that an adversary that observes an opening from a commitment C to value m

cannot construct a commitment C ′ that opens to a value m′ bearing a known relationship to m.

GG suggests that this can be easily implemented in the random oracle model by using a hash function. In particular,
one can make an NMEC to a value x as Com = Hash(x||r) where r is a fixed-length random bitstring. The Milagro
MPC project uses this formulation. NCC Group ensured that the high-level construction of this level matched this
algorithm. The hash function implementation, random number generation logic, and bit comparison logic used to
interact with NMECs were out of scope.

Feldman’s VSS
The implementation of VSS was not in scope for this implementation, so the engagement team did not review this
component.

ECDSA
After the secret has been recovered, it is necessary to finally sign the desired message. In support of this Apache
Milagro includes an ECDSA implementation. Again, the underlying mathematical implementations were not in scope,
so did not see review. NCC Group did review the high-level algorithm, ensuring that all aspects of the algorithm
appeared to be securely implemented. Additionally, the team ensured that the verification algorithm was designed for
“full verification” as per NIST Special Publication 800-56A revision 3.13

13See section 5.6.2.3.3.

8 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 14.

Title Status ID Risk
Schnorr Proofs Are Replayable Fixed 002 Low
Proofs of Knowledge of Integer Factorization Can Be Replayed Fixed 003 Low
Integer Factorization Proof Components Are Not Bounds-Checked Fixed 004 Informational

9 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

Finding Details
Finding Schnorr Proofs Are Replayable

Risk Low Impact: High, Exploitability: Low

Identifier NCC-QRED001-002

Status Fixed

Category Cryptography

Location src/schnorr.c: 78 @ commit c5f0733

Impact An attacker can forge a proof of knowledge of a discrete logarithm by replaying a prior valid
one, potentially leading to a leak of the threshold ECDSA secret.

Description Schnorr proofs do not include their own source of cryptographic “liveness”, which means
that they can be replayed unless they are implemented with safeguards. As Apache Milagro
uses Schnorr proofs without any liveness safeguards, attackers can replay any Schnorr proof
without detection.

Recall that Schnorr proofs use a cryptographic hash to simulate the random challenge that
the verifier would typically issue in an interactive proof of knowledge.14 This hash function
acts as a random oracle to both deliver an unpredictable challenge and bind the prover to the
hashed values. Note, however, that the resulting proof tuple is permanently valid as a proof
of knowledge for these bound values. Since Apache Milagro does not include anything other
than the base relative to which the prover knows the discrete logarithm, and the prover’s
public key and a random value, anyone observing the original proof could re-submit it to
effectively spoof their knowledge of the same value as the original prover.

The MPC protocol implemented in Milagro uses these proofs to ensure all protocol partici-
pants were issued key shares. This is important, as this protocol leaks information when an
adversary is able to create a full run of the protocol, which they may be able to do in the case
that they can forge this proof. Since this proof is used to prove the correct formation of the
range proof, it’s possible that an attacker that can forge this proof would be able to convince
a counterparty to perform the MtA protocol15 with a value large enough that it would require
modular reduction. The presence or absence of a modular reduction in the case of a crafted
large value would leak information about both the threshold ECDSA secret and the secret
nonce, potentially allowing the attacker to recover them and forge signatures.

Recommendation The MPC protocol should hand out unique identifiers to each potential signatory while hand-
ing out key shares. Each Schnorr proof should then include this unique identifier as well
as an ongoing proof of liveness in each proof. Liveness can be proven in many ways, but
each requires some shared state between all participants in the protocol. Note that these
techniques also serve to protect against replays across runs of the same protocol. Some
exemplar liveness mechanisms are as follows:

• Each user maintains a strictly increasing counter. This counter’s value is included in every
Schnorr proof and is incremented every time the user proves something.

• Each round of proofs is securely associated with a particular nonce. This nonce is included
in every Schnorr proof.

• Each participant of the protocol issues their own nonce each round; every participant cre-
14This technique is commonly known as the Fiat-Shamir heuristic, from their introduction of the concept in How to
Prove Yourself. Prominent cryptographers have mentioned that this technique was introduced by Blum in an earlier
paper but this is disputed.
15This is a protocol used to convert the multiplicative Schnorr shares into additive shares that can be combined into
the threshold ECDSA key and nonce. See Testing Methodology on page 5 or GG for more information on this protocol.

10 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://github.com/apache/incubator-milagro-MPC/blob/c5f0733e3bf918a8e5c411f3c4ead6a12a3a43cf/src/schnorr.c#L78
https://link.springer.com/content/pdf/10.1007%2F3-540-47721-7_12.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-47721-7_12.pdf

ates a Schnorr proof per-user that includes that user’s nonce.

Retest Results Fixed as per NCC Group recommendations in commit 9fbae7b.

11 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://github.com/apache/incubator-milagro-MPC/pull/38/commits/9fbae7bf555a7569903cbf0bf088607885ca37e5

Finding Proofs of Knowledge of Integer Factorization Can Be Replayed

Risk Low Impact: High, Exploitability: Low

Identifier NCC-QRED001-003

Status Fixed

Category Cryptography

Location src/factoring_zk.c: 96 @ commit c5f0733

Impact An attacker can forge a proof of knowledge of an integer’s factoring by replaying a prior valid
one, potentially leading to attacker recovery of a threshold signature participant’s private key.

Description As in finding NCC-QRED001-002 on page 10, the proof of knowledge of integer factoriza-
tion used in Milagro16 uses the Fiat-Shamir heuristic to convert a Sigma protocol to a non-
interactive zero knowledge proof (NIZK). Recall that the proof is only bound to the values
used in the hash to simulate the random challenge. In this case, the proof is only bound to
the number whose factorization the prover knows, random numbers, and the commitments
to those random numbers. As before, this means that anyone who observes this proof can
replay it to falsely prove their own knowledge of the same integer factorization.

The Milagro protocol uses these proofs of knowledge of integer factorization to prove that
participants in the protocol are aware of the RSA modulus used to instantiate the Paillier
cryptosystem. As before, since the protocol leaks information in the case that an adversary
is able to cause a full run of the protocol, the attacker’s ability to successfully forge such a
proof may result in leaking of information, including the nonce used to sign the threshold
nonce. Leaks of the nonce equivalent to a byte or less of information per run of protocol have
historically proven sufficient to reveal the ECDSA secret.

Recommendation As before, the MPC protocol should hand out unique identifiers to each potential signatory
while handing out key shares. Each Schnorr proof should then include this unique identifier
as well as an ongoing proof of liveness in each proof. Liveness can be proven in many ways,
but each requires some shared state between all participants in the protocol. Some exemplar
liveness mechanisms are as follows:

• Each user maintains a strictly increasing counter. This counter’s value is included in every
Schnorr proof and is incremented every time the user proves something.

• Each round of proofs is securely associated with a particular nonce. This nonce is included
in every Schnorr proof.

• Each participant of the protocol issues their own nonce each round; every participant cre-
ates a Schnorr proof per-user that includes that user’s nonce.

Retest Results Fixed as per NCC Group suggestion in commit 9fbae7b.

16The paper introducing this proof can be found at https://www.researchgate.net/publication/2450244_Short_Proof
s_of_Knowledge_for_Factoring

12 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://github.com/apache/incubator-milagro-MPC/blob/c5f0733e3bf918a8e5c411f3c4ead6a12a3a43cf/src/factoring_zk.c#L96
https://github.com/apache/incubator-milagro-MPC/pull/38/commits/9fbae7bf555a7569903cbf0bf088607885ca37e5
https://www.researchgate.net/publication/2450244_Short_Proofs_of_Knowledge_for_Factoring
https://www.researchgate.net/publication/2450244_Short_Proofs_of_Knowledge_for_Factoring

Finding Integer Factorization Proof Components Are Not Bounds-Checked

Risk Informational Impact: High, Exploitability: Undetermined

Identifier NCC-QRED001-004

Status Fixed

Category Cryptography

Location src/factoring_zk.c: 225 @ commit c5f0733

Impact An attacker that can supply an extremely large proof could be able to commit a forgery with
it.

Description The NIZK proof of knowledge of factorization used by Apache Milagro17 requires that 0 ≤ y <

A and 0 ≤ e < B where e is the verifier’s challenge (either the output of the hash function
in the NIZK context or the verifier’s challenge in the Sigma protocol), y is the zero knowledge
proof itself, and A and B are security parameters of the protocol. However, the Milagro library
does not perform either of these checks.

The NIZK proof uses these assumptions to argue for its soundness. Particularly, binding the
size of e and y allows for an argument that an adversary using them to forge a proof can
also directly find the factoring of the number under study in the proof protocol. As a result,
not performing these checks allows for the possibility of un-sound execution. However, the
likelihood of a practical attack arising from this is low, particularly because the size of these
values is bound by the size of the data types used to transmit them. Nevertheless, it is best
practice to ensure that the implementation matches the overall protocol. As in finding NCC-
QRED001-003 on the previous page, this proof is a crucial piece of the range proof, and so
successful exploitation of this issue to forge an integer factorization proof could result in a
range proof forgery, leading to potential information leak and compromise of the threshold
ECDSA secret.

Recommendation Ensure that the protocol includes the relevant checks on the value of e and y.

Retest Results Range checks added as per NCC’s suggested remediation in commit c6d3d5a.

17The paper introducing this proof can be found at https://www.researchgate.net/publication/2450244_Short_Proof
s_of_Knowledge_for_Factoring.

13 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

https://github.com/apache/incubator-milagro-MPC/blob/c5f0733e3bf918a8e5c411f3c4ead6a12a3a43cf/src/factoring_zk.c#L225
https://github.com/apache/incubator-milagro-MPC/pull/38/commits/c6d3d5ab373b2fd18681be2b13217326c5b5102b
https://www.researchgate.net/publication/2450244_Short_Proofs_of_Knowledge_for_Factoring
https://www.researchgate.net/publication/2450244_Short_Proofs_of_Knowledge_for_Factoring

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

14 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

15 | Qredo Apache Milagro MPC Cryptographic Assessment NCC Group

	Executive Summary
	Synopsis
	Scope
	Key Findings
	Strategic Recommendations

	Dashboard
	Testing Methodology
	Homomorphic Encryption
	Zero Knowledge Proofs
	Shamir's Secret Sharing
	Non-Malleable Equivocable Commitments (NMEC)
	Feldman's VSS
	ECDSA

	Table of Findings
	Finding Details
	Finding Field Definitions

