
NU4 Cryptographic Specification and
Implementation Review

Zcash
September 3, 2020 – Version 2.0

Prepared for
Benjamin Winston

Prepared by
Paul Bottinelli
Marie-Sarah Lacharité
Thomas Pornin

©2020 – NCC Group

Prepared by NCC Group Security Services, Inc. for Zcash. Portions of this document and the templates
used in its production are the property of NCC Group and cannot be copied (in full or in part) without
NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group’s services does not guarantee the security of a
system, or that computer intrusions will not occur.



Executive Summary
Synopsis
In June 2020, the Electric Coin Company engaged NCC
Group to conduct a security review of the six Zcash
Improvement Proposals (ZIPs) that constitute the core
of the upcoming “Canopy” upgrade (also called “NU4”)
to the Zcash network. This upgrade coincides with the
first Zcash halving and will initiate a new development
fund for the next four years. The audit was meant to
identify vulnerabilities that may result from application
of the ZIPs, including consensus breaches induced
by diverging implementations arising from incomplete
or unclear specifications. NCC Group assigned three
consultants to the specification audit for a total of eight
person-days.

In a continuation of this effort, NCC Group was tasked
with reviewing the implementation of the six aforemen-
tioned ZIPs in August 2020. The audit was meant to
assess the consistency of the implementation with the
proposed changes in the protocol specification, identify
vulnerabilities that may have been introduced, as well
as review general programming practices. NCC Group
assigned two consultants to the implementation audit
for a total of eight person-days.

Scope
The audit scope was the six following ZIPs:

• ZIP 214 – Consensus rules for a Zcash Development
Fund: https://zips.z.cash/zip-0214

• ZIP 207 – Funding Streams: https://zips.z.cash/zip-02
07

• ZIP 251 – Deployment of the Canopy Network Up-
grade: https://zips.z.cash/zip-0251

• ZIP 211 – Disabling Addition of New Value to the
Sprout Value Pool: https://zips.z.cash/zip-0211

• ZIP 212 – Allow Recipient to Derive Sapling Ephemeral
Secret from Note Plaintext: https://zips.z.cash/zip-02
12

• ZIP 215 – Explicitly Defining and Modifying Ed25519
Validation Rules: https://zips.z.cash/zip-0215

The ZIPs’ published states as of June 5th, 2020 were
used for the first part of the audit. Their modification
history is available in the GitHub repository at https://gi
thub.com/zcash/zips.

In the second part of the audit, the implementation
review was centered around version 3.1.01 of the Zcash

project, which included the implementation of the ZIPs
described above, in the form of the following Pull
Requests (PRs):

• ZIP 207 and ZIP 214: https://github.com/zcash/zcash
/pull/4560

• ZIP 251: https://github.com/zcash/zcash/pull/4487
• ZIP 211: https://github.com/zcash/zcash/pull/4489
• ZIP 212: https://github.com/zcash/zcash/pull/4578

and https://github.com/zcash/librustzcash/pull/258
• ZIP 215: https://github.com/zcash/zcash/pull/4581
• Changes to the ed25519-zebra library to implement

the validation rules of ZIP 215: https://github.com/Z
cashFoundation/ed25519-zebra/pull/24

Finally, two versions of the Zcash Protocol Specification,
dating from August 3rd, 2020 (version 2020.1.122) and
August 11th, 2020 (version 2020.1.133), which included
modifications introduced by the above ZIPs, were also
used as a references for phase 2.

Appendix A on page 30 summarizes all the relevant
references pertaining to the review.

Limitations
One of the goals of a security review of specification
documents is to identify points that are not covered in
sufficient clarity, and may thus result in incompatibilities
when implemented by separate teams. The notion of
clarity is subjective and relies on assumptions about
the level of understanding and competence of future
implementers. Moreover, in the first phase of the
assessment, which took place in the middle of June
2020, the ZIPs themselves were not the final form of the
proposed changes.

Thus, phase 2 of the audit, which was primarily focused
on the implementation of the proposed changes, also
included some limited review of the updated ZIPs
and protocol specification. These modifications were
introduced between the two phases of the assessment,
partly as part of the standard Zcash development
process, but also to address some of the points raised
during phase 1.

NCC Group tried to err on the side of caution, and many
of the remarks in this report may correspondingly look
like minor quibbles.

1https://github.com/zcash/zcash/tree/v3.1.0
2https://github.com/zcash/zips/blob/fb64b2e4303b332ef8960fc6bbf34b0598596c5d/protocol/protocol.pdf
3https://github.com/zcash/zips/blob/6e5278ed95e334dc861838da26857d1c0dcf638f/protocol/protocol.pdf

2 | Zcash NU4 Cryptographic Specification and Implementation Review NCC Group

https://z.cash/upgrade/canopy/
https://zips.z.cash/zip-0214
https://zips.z.cash/zip-0207
https://zips.z.cash/zip-0207
https://zips.z.cash/zip-0251
https://zips.z.cash/zip-0211
https://zips.z.cash/zip-0212
https://zips.z.cash/zip-0212
https://zips.z.cash/zip-0215
https://github.com/zcash/zips
https://github.com/zcash/zips
https://github.com/zcash/zcash/pull/4560
https://github.com/zcash/zcash/pull/4560
https://github.com/zcash/zcash/pull/4487
https://github.com/zcash/zcash/pull/4489
https://github.com/zcash/zcash/pull/4578
https://github.com/zcash/librustzcash/pull/258
https://github.com/zcash/zcash/pull/4581
https://github.com/ZcashFoundation/ed25519-zebra/pull/24
https://github.com/ZcashFoundation/ed25519-zebra/pull/24
https://github.com/zcash/zcash/tree/v3.1.0
https://github.com/zcash/zips/blob/fb64b2e4303b332ef8960fc6bbf34b0598596c5d/protocol/protocol.pdf
https://github.com/zcash/zips/blob/6e5278ed95e334dc861838da26857d1c0dcf638f/protocol/protocol.pdf


Key Findings
No potentially serious vulnerability was found in the
reviewed ZIPs themselves.

While reviewing ZIP 215, NCC Group noticed that the
current implementation of Ed25519 signature verifica-
tion, used in JoinSplit descriptions, did not faithfully
adhere to the current protocol in some specific edge
cases. Though none of these cases will ever be hit
by non-malicious implementations, they could still be
used to induce a breach of consensus between the
current Zcash implementation and theoretical alternate
implementations that would closely adhere to the
published protocol. Application of ZIP 215 will indirectly
mitigate most of this issue, but an edge case will remain
possible, unless explicitly addressed. This issue is
detailed in finding NCC-ZCHX006-001 on page 23.

This edge case was subsequently addressed in the latest
version of the protocol specification.

Strategic Recommendations
In order to maintain strict consistency in wording and
typography across future ZIPs, an explicit and detailed
style guide should be written and maintained.

The code base could also benefit from more specific
and detailed comments, particularly since the constant
updates to the code in the form of ZIPs add non-trivial
layers of complexity.

3 | Zcash NU4 Cryptographic Specification and Implementation Review NCC Group



Dashboard
Target Metadata Engagement Data
Name Canopy Network Upgrade Type Specification and Implementation

Review
Type Protocol Specification and

Implementation
Method Architectural and Code Review

Platforms Zcash Dates 2020-06-01 to 2020-08-14
Consultants 3
Level of Effort 16 person-days

Targets
ZIP 214 https://zips.z.cash/zip-0214
ZIP 207 https://zips.z.cash/zip-0207
ZIP 251 https://zips.z.cash/zip-0251
ZIP 211 https://zips.z.cash/zip-0211
ZIP 212 https://zips.z.cash/zip-0212
ZIP 215 https://zips.z.cash/zip-0215
Implementation of ZIP 207 and ZIP 214 https://github.com/zcash/zcash/pull/4560
Implementation of ZIP 251 https://github.com/zcash/zcash/pull/4487
Implementation of ZIP 211 https://github.com/zcash/zcash/pull/4489
Implementation of ZIP 212 https://github.com/zcash/zcash/pull/4578
Changes to librustzcash for ZIP 212 https://github.com/zcash/librustzcash/pull/258
Implementation of ZIP 215 https://github.com/zcash/zcash/pull/4581
Changes to ed25519-zebra for ZIP 215 https://github.com/ZcashFoundation/ed25519-zebra/pull/24

Finding Breakdown
Critical issues 0
High issues 0
Medium issues 0

Low issues 2
Informational issues 0
Total issues 2

Category Breakdown
Cryptography 1

Data Validation 1

Component Breakdown
Ed25519 1

Wallet 1

Key
Critical High Medium Low Informational

4 | Zcash NU4 Cryptographic Specification and Implementation Review NCC Group

https://zips.z.cash/zip-0214
https://zips.z.cash/zip-0207
https://zips.z.cash/zip-0251
https://zips.z.cash/zip-0211
https://zips.z.cash/zip-0212
https://zips.z.cash/zip-0215
https://github.com/zcash/zcash/pull/4560
https://github.com/zcash/zcash/pull/4487
https://github.com/zcash/zcash/pull/4489
https://github.com/zcash/zcash/pull/4578
https://github.com/zcash/librustzcash/pull/258
https://github.com/zcash/zcash/pull/4581
https://github.com/ZcashFoundation/ed25519-zebra/pull/24


Audit Notes – Phase 1

Audit Scope
The audit covers the six ZIPs described in the Scope section of the Executive Summary on page 2. Additionally, Ap-
pendix A on page 30 summarizes all the relevant references pertaining to the review.

All ZIPs were reviewed in their published state, as of June 5th, 2020. In the following sections, NCC Group first
summarizes each ZIP and offers remarks, most of which are editorial in nature. A later section lists more editorial
remarks that apply to several ZIPs, in particular, wording consistency issues.

In general, no security vulnerability was found in the audited ZIPs. A potential consensus breach issue was detected
in the current implementation during the analysis of ZIP 215; this is not a flaw of ZIP 215 itself, whose application will,
in fact, mitigate most of the issue. This is detailed in the text below, and in finding NCC-ZCHX006-001 on page 23.

Individual ZIP Reviews
This section includes NCC Group’s remarks for each of the six ZIPs that were in scope.

ZIP 214
ZIP 214 describes rule changes interpreting the new Zcash Development Fund structure as proposed in ZIP 1014.4
More specifically, it specifies the introduction of a Development Fund corresponding to 20% of the block subsidy, split
into the following three funding streams:

• FS_ECC: 35% for the Electric Coin Company (corresponding to 7% of the total block subsidy);
• FS_ZF: 25% for Zcash Foundation (5% of the total block subsidy);
• FS_MG: 40% for additional “Major Grants” for large-scale long-term projects (8% of the total block subsidy).

These changes will be activated in Canopy, corresponding to a block height of 1046400.

This ZIP is semantically consistent with the stated goal and the other ZIPs. The following remarks can be made:

• In the Specification section, the activation height of Canopy on Testnet is still undefined, and thus is replaced with
the placeholder string “xxxxxxx”. Other not-yet-defined elements in the ZIPs use the “TODO” placeholder. By using a
non-standard placeholder, this item may evade ulterior checks for consistency and completeness of the information
in the ZIPs.

• The following sentence is not entirely clear:

In this case the total amount of funding streams assigned to direct grantees MUST be subtracted from
the funding stream for the remaining MG slice

Namely, the usage of the word amount when referring to streams is ambiguous. When referring to funding streams,
the word number should be used since in this case stream is a countable noun. However, the intention of using the
word amount might be to refer to the value. But in this case, it is unclear how an amount of funding streams can be
subtracted from the funding stream. In that case, it might be clearer to say something along the lines of subtracted
from the value of the funding stream for the remaining MG slice.

• In this sentence:

For each network upgrade after Canopy requiring modifications to the set of direct grantees, a separate
ZIP would be published specifying those modifications.

The term “would” is not one of the RFC 2119 key words, and it is unclear whether this sentence defines a formal
requirement, or is a vague statement of intent. NCC Group recommends amending this sentence with an explicit
“MUST”, “MAY” or “SHOULD”, depending on the intent.

• In the Specification section, the sentence:
4https://zips.z.cash/zip-1014

5 | Zcash NU4 Cryptographic Specification and Implementation Review NCC Group

https://zips.z.cash/zip-1014


The funding streams are defined for Testnet are identical

contains one “are” too many and should be rephrased.

ZIP 207
ZIP 207 specifies the procedure by which the funding streams are used to implement the Zcash Development Fund.
It describes the precise mechanisms to implement the funding streams as defined in ZIP 214 and motivated by ZIP
1014. As a security measure, each stream specifies a number of different addresses. The recipient address for a given
funding stream is then updated about once per month, resulting in 48 different periods during the total duration of
the Zcash Development Fund lifespan (four years).

Note that parts of ZIP 207 were audited by NCC Group in a previous engagement5; ZIP 207 was initially scheduled for
inclusion in the Blossom network upgrade, but was then delayed and rescheduled.

NCC Group verified that all formulas and rules specified in ZIP 207 are consistent with the stated goals and the other
ZIPs. In particular, given a start height equal to the Canopy update and an end height corresponding to the next
halving (at block height 2726400), all 48 addresses at indices 0...47 are indeed obtained an equal number of times
(namely 35,000) by the AddressIndex(height) function; moreover, the claim that:

all active funding streams change the address they are using on the same block height schedule

was also independently verified and holds within the given start and end heights. Namely, even with funding streams
starting later than the Canopy activation height, address changes are performed on the same block height schedule.

Some extra remarks:

• In the Definitions section, a reference is made to sections 5.3, 7.7, and 7.8 of the Zcash protocol specification for the
definition of some constants and functions; however, the constant PostBlossomHalvingInterval is not defined in any
of these sections (it is defined in section 7.6.3 of the protocol specification).

• In the Funding Streams section, the computation of the Address at a given height is performed by the following
computation:

Address(height) = FundingStream[FUND].Addresses[FundingStream[FUND].AddressIndex(height)]

However, this value is associated with a given FundingStream. Thus, it probably should be described as follows:

FundingStream[FUND].Address(height) =
FundingStream[FUND].Addresses[FundingStream[FUND].AddressIndex(height)]

• The Example implementation is known to be incomplete and not up-to-date; it was agreed that it would not be re-
evaluated during this audit.

ZIP 251
ZIP 251 defines the deployment of the Network Upgrade 4 (NU4), also known as the Canopy network upgrade. Since
all major changes are described in their own ZIPs, ZIP 251 is a straightforward list of references to the relevant ZIPs,
along with exact rules for backward compatibility and handling of existing and new connections during and after the
transition to Canopy.

Reference [5] to ZIP 207 was incorrectly pointing to ZIP 208, but this was independently fixed by Zcash concurrently
with the audit, on June 9th, 2020.
5https://www.nccgroup.com/us/our-research/zcash-blossom-specification-report/

6 | Zcash NU4 Cryptographic Specification and Implementation Review NCC Group

https://www.nccgroup.com/us/our-research/zcash-blossom-specification-report/


ZIP 211
ZIP 211 is a step toward deprecation and ultimately removal of the support for Sprout shielded transactions; it removes
the ability to add new value to the Sprout value pool balance.

The proposed modification is straightforward and does not induce any security issue, since Sapling shielded transac-
tions can handle all the functionalities of Sprout shielded transactions, and a migration tool that can move funds from
Sprout to Sapling is already deployed.

NCC Group offers the following remarks:

• In the Terminology section, “Sapling” is defined (by way of ZIP 205), but not “Sprout”, only “Sprout value pool balance”.

“Sprout value pool balance” is defined by reference to ZIP 209, which says its definition (the sum of all transactions’
vpub_old fields minus the sum of all vpub_new) is implied by section 4.11 of the Zcash protocol specification. The
implication could be made more explicit: (1) the section refers only to the transparent value pool, (2) it considers
pools only at the transaction and block levels, and (3) a pool’s balance is never defined, nor does “balance” appear
anywhere but the section title.

NCC Group recommends to update section 4.11 of the Zcash protocol specification to include an explicit mention
of the Sprout value pool and its balance, whether at the transaction or block level. (The Sprout value pool does not
appear to be explicitly mentioned at all in the protocol specification document.) Consider also mentioning here that
the concept of balance can be extended in the natural way to the block chain level.

• In the Abstract section, the sentence “add new value to the Sprout value pool balance” is arguably redundant and
could be shortened into “increase the Sprout value pool balance” or “add new value to the Sprout value pool”.

• In the Motivation section, the term “Sprout” in the sentence “the use of Sapling shielded transactions will replace the
use of Sprout” may be more precisely written as “Sprout shielded transactions”.

In the sentence “the Zcash specification and implementation incurs complexity”, the verb should be spelled “incur”.

• In the Specification section, there are two MUST-qualified requirements:

– the vpub_old field of each JoinSplit description MUST be 0;
– nodes and wallets MUST disable sending to Sprout addresses.

The first requirement is clear and coincides with the ZIP’s title. The second, however, appears to additionally forbid
fully shielded Sprout transactions that would not change the value pool balance. NCC Group recommends that the
second MUST statement be clarified. If forbidding fully shielded Sprout transactions is not the intended effect, then
the second statement should be augmented with the qualifier “from transparent addresses”. If it is, however, then
consider renaming the ZIP to reflect that it will disable all transfers to Sprout shielded addresses.

• In the Rationale section, it is asserted that “the code changes needed are very small and simple, and their security
is easy to analyse”. This is true in the context of a system (node or client) that already supports Sapling shielded
transactions; but, in all generality, removing support of Sprout shielded transactions requires supporting Sapling
shielded transactions, and Sprout support cannot be removed right away precisely because it cannot be assumed
that all clients have Sapling support. The proposed change is one step in a long-term removal process whose support
is not small and simple.

ZIP 212
ZIP 212 suggests a modification to the contents of encrypted notes so that privacy properties of Sapling shielded
transactions no longer depend on the soundness of the underlying zk-SNARK.

In the current protocol, an encrypted note contains a value called rcm that is generated randomly and uniformly
modulo the prime r, which is the order of the largest sub-group of prime order in the Jubjub curve. The note itself is

7 | Zcash NU4 Cryptographic Specification and Implementation Review NCC Group



symmetrically encrypted using a key derived from an ECDH key exchange over the Jubjub curve; the sender generates
an ephemeral ECDH key pair, the private key esk being chosen randomly and uniformly among the possible private
keys, i.e. non-zero integers modulo r.

The proposed change replaces the generation of rcm and esk with the generation of a single 32-byte random seed
rseed from which rcm and esk are both derived with a deterministic PRF. In the note plaintext format, rseed replaces
rcm.

All previous functionality is maintained, since the receiver can recompute rcm from rseed by using the PRF. The receiver
can additionally verify that the value of the ephemeral ECDH public key used for the encryption corresponds to the value
of esk that can be similarly recomputed from rseed. In a strict sense, the use of the private key esk for ECDH and as part
of the encrypted plaintext might theoretically induce a weakness in the encryption system, but this is very improbable
in practice, since the ECDH key and the note plaintext are “separated” from each other by the key expansion PRF and
the symmetric encryption layer. An unwanted interaction between the value of esk in the plaintext and the ECDH key
exchange would require contrived definitions of both the PRF and the symmetric encryption algorithm. NCC Group
deems such a case implausible in practice.

Some extra remarks:

• In the Terminology section, the ToScalar function is said to be defined in section 4.4.2 of the Zcash protocol specifi-
cation; but there is no such section. ToScalar is defined in the section 4.2.2 (although already named in the section
4.1.2).

• The used PRF (called PRFexpand in the Zcash protocol specification) uses an extra diversifier argument; in the pro-
posed ZIP 212, that argument is a byte of value 4 (for rcm) or 5 (for esk). It is important for the security analysis
that such diversifier bytes are distinct for all different uses of the PRF in the protocol. This is the case here (the
Zcash protocol specification uses only values 0 to 3, and ZIP 326 uses values 16 to 22, and 128). It may be worth
maintaining a formal list of used diversifier values so that unwanted reuse is avoided in future protocol evolutions.

• In the current protocol, esk is chosen uniformly among non-zero integers modulo r. In the proposed change, esk
is the result of a call to ToScalar, which is the reduction of a large integer modulo r; thus, the value esk = 0 now
becomes possible. It is, however, very improbable, since r ≈ 2251.86. Since the PRF is based on the BLAKE2b hash
function, finding an rseed value that yields esk = 0 would require a partial preimage attack on BLAKE2b, and it can
be reasonably postulated that no such attack exists with cost less than 2251.86 operations on average. This cost is
sufficiently high that the possibility can be ignored in practice. Moreover, since operations on Jubjub use complete
formulas, a zero ECDH key would not actually be mathematically incorrect.

ZIP 215
ZIP 215 proposes to remove restrictions on low-order points in Ed25519 public keys and signatures. The current
protocol includes some historical restrictions inherited from an old version of libsodium, which make some points in
signatures and public keys unconditionally rejected.

During the analysis of ZIP 215, it was noticed that the current standard implementation of Zcash7 does not strictly
conform to the Zcash protocol specification: some points that should be rejected as per the protocol are accepted by
the implementation and vice versa. This does not seem to be exploitable for any kind of signature forgery, but it could
lead to consensus breaches between the Zcash implementation and nodes using another implementation that would
faithfully adhere to the protocol. Such an alternate implementation does not currently exist, making the issue purely
theoretical at the moment. This is detailed in finding NCC-ZCHX006-001 on page 23.

Application of ZIP 215 will remove most of these issues, except that it does not address the edge case of an invalidly
encoded point with implied coordinate x = 0 but with an expected least significant bit of value 1. Such nominally invalid
encodings are currently accepted by libsodium and thus the Zcash implementation, but they are explicitly rejected by
6https://zips.z.cash/zip-0032
7https://github.com/zcash/zcash

8 | Zcash NU4 Cryptographic Specification and Implementation Review NCC Group

https://zips.z.cash/zip-0032
https://github.com/zcash/zcash


RFC 8032,8 to which ZIP 215 refers. In order to avoid further potential consensus breaches due to incompatible
handling of such cases, NCC Group recommends that ZIP 215 be amended to explicitly specify the expected imple-
mentation behavior when such a point is encountered as a public key or as part of a signature.

As was noted in ZIP 215, accepting low-order points does not endanger the security properties expected of signatures,
since signatures leveraging such points require invalidly generated public keys.

Editorial and Typography Remarks
This section includes NCC Group’s remarks that apply to all ZIPs, in particular, typographical consistency issues.

Links to the Protocol Specification
The ZIPs refer to various concepts and items defined in the Zcash Protocol Specification; in most cases, a specific
section number is given, and the protocol specification itself is identified by “version 2020.1.1 or later”. Generally
speaking, section numbering may change in future versions of the protocol specification, if sections are added (this
has not yet happened thanks to a conscious effort from the protocol document editors, but it may occur in the future).
Any such renumbering may make references by section numbers incorrect.

This is mitigated in practice by the use of anchored links, in which the HTML link itself contains a symbolic identifier that
points at the specific section within the protocol document. Symbolic anchors are resilient to renumbering. However,
anchorless links are used in the following references:

• In ZIP 214, Terminology section, for the definition of the terms “block subsidy” and “halving” (the text explicitly
mentions sections 3.9 and 7.7).

• In ZIP 251, Backward compatibility section, for the version group ID (the text refers to section 7.1).

• In ZIP 212, Terminology section, for the definition of the function ToScalar (the text wrongly mentions section 4.4.2,
but there is no such section in the protocol specification; the ToScalar function is defined in section 4.2.2 of the
protocol).

• In ZIP 215, Motivation and Specification sections, for the JoinSplitSig validation rules (there is no mention of a section in
the reference from the Motivation section; in the Specification section, the text points to section 5.4.5 of the protocol).

Recommendation: Anchored links should be used systematically in order to resist potential section renumbering in
future versions of the protocol specification. Such links also improve the reading experience, since clicking them brings
the reader to the right section of the protocol.

Standard Key Words for Requirement Levels
All of the ZIPs, in their respective Terminology section, refer to RFC 21199 for the interpretation of some standard key
words such as “MUST” or “SHOULD” that designate requirement levels. The ZIPs, however, differ in their wording:

The key words “MUST”, “SHOULD”, “SHOULD NOT”, and “MAY” in this document are to be interpreted as
described in RFC 2119.

The key words “MUST”, “SHALL”, and “SHOULD” in this document are to be interpreted as described in RFC
2119.

The key words “MUST”, “MUST NOT”, “SHOULD”, and “MAY” in this document are to be interpreted as
described in RFC 2119.

The key words “MUST”, “SHOULD”, and “OPTIONAL” in this document are to be interpreted as described in
RFC 2119.

8https://www.rfc-editor.org/rfc/rfc8032.html
9https://www.rfc-editor.org/rfc/rfc2119.html

9 | Zcash NU4 Cryptographic Specification and Implementation Review NCC Group

https://www.rfc-editor.org/rfc/rfc8032.html
https://www.rfc-editor.org/rfc/rfc2119.html


The key words “MUST” and “MUST NOT” in this document are to be interpreted as described in RFC 2119.

The key words “MUST” and “MUST NOT” in this document is to be interpreted as described in RFC 2119.

Note, in particular, that ZIP 214’s wording does not include the key word “MAY”, which is nonetheless used (in uppercase)
in the text of the ZIP (in the Dev Fund Recipient Addresses).

Recommendation: Harmonize the wording across all ZIPs. RFC 2119 itself suggests an all-purpose wording that
includes all the key words described by RFC 2119:

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “REC-
OMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

Network Naming
The production and test networks are designated by the terms “Mainnet” and “Testnet”, respectively. These terms
appear in ZIPs 207, 214 and 251; in ZIPs 207 and 214, they are capitalized systematically, but in ZIP 251, they start with
a lowercase letter when not used at the start of a sentence. In the Zcash protocol specification, “mainnet” does not
appear, but “testnet” is used, with a lowercase “t”, like in ZIP 251.

It shall also be noted that ZIPs 207, 214 and 251 refer to the test network and production networks “as defined in
the Zcash Protocol Specification”, but the Zcash protocol specification does not actually define these expressions. The
protocol uses the expressions “production network” and “test network” quite liberally, but they don’t seem to be formally
defined anywhere in the document.

Recommendation: The production and test networks should be properly defined and named in the protocol specifi-
cation. Consistent capitalization rules should then be applied to the chosen names.

10 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



Audit Notes – Phase 2

Audit Scope
The scope of the second phase of the audit covers the implementation of the six pertinent ZIPs, which is part of the
v3.1.0 release,10 as well as changes to librustzcash and to the ed25519-zebra library to fix some discrepancies
previously identified.

Appendix A on page 30 summarizes all the relevant references pertaining to the review.

Some specific focus areas were identified by the Zcash team prior to performing the implementation review, including:

• The implementation of the funding streams logic and height computations, as part of the changes introduced by
ZIP 207 and ZIP 214;

• Recent changes to ZIP 212 and its implementation, particularly with the introduction of a grace period to facilitate
the transition to the modifications required by ZIP 212;

• General discrepancies between specification and implementation which might result in consensus breaches.

The remainder of this section is organized in a similar fashion as the Audit Notes of Phase 1, namely some individual
ZIP comments followed by more general considerations applicable to the code base.

Individual ZIP Reviews
In the following subsections, we list considerations pertaining to the changes introduced by the implementation of
the different ZIPs. These observations do not have direct security impacts, but indicate slight differences between
specification and implementation that may be worthwhile to understand and/or resolve.

ZIP 207 and ZIP 214
ZIP 207 and ZIP 214 introduce changes supporting the introduction of the new Zcash Development Fund structure
as proposed in ZIP 1014. When reviewing the changes introduced by these ZIPs, particular care was given to the
mathematical correctness of the functions used to compute the value of funds and the recipient address at a specific
block height. Some specific discussions are provided below.

• Some discrepancies exist between the protocol specification definition of the quantity HeightForHalving, its imple-
mentation in the form of the HalvingHeight() function, and some comments in the code. The protocol specification
defines the HeightForHalving function as the following:

HeightForHalving(halving : N) := min({height : N | Halving(height) = halving})

In comparison, the implementation defines it as:

HalvingHeight(i) := max({height : N | Halving(height) < i})+ 1

More specifically, the file src/consensus/params.cpp states the following:

// HalvingHeight(i) := max({ height : N | Halving(height) < i }) + 1
//
// Halving(h) returns the halving index at the specified height. It is
// defined as floor(f(h)) where f is a strictly increasing rational
// function, so it's sufficient to solve for f(height) = halvingIndex
// in the rationals and then take ceiling(height).

This is correct as long as the Halving() function is monotonically increasing, or a strictly increasing rational function,
as the comment states. This difference does not have an impact and probably never will, since halving is never
expected to be reverted.

10https://github.com/zcash/zcash/tree/v3.1.0

11 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://github.com/zcash/zcash/tree/v3.1.0


However, there is a difference in the domains of these two functions, namely between its formal definition and
implementation.

More specifically, the definition of HeightForHalving in the protocol specification requires a single argument, a
positive integer for which the corresponding halving block height is expected. In comparison, the implementation
requires two signed integer arguments int Params::HalvingHeight(int nHeight, int halvingIndex). This
might lead to potential misuses of this function in the following ways:

1. HalvingHeight() could be called with a negative halvingIndex (or a negative height), resulting in negative
return values.

2. HalvingHeight() returns wrong results when the height passed in as parameter is inconsistent with the halv
ing factor. Namely, the values returned by the Halving() function are increased at heights 1046400, 2726400,
4406400 for halving values of 1, 2, 3 (which was also verified by an independent naive implementation).

As a result, the function HalvingHeight() should return these values when called with a halvingIndex of 1, 2, 3
respectively. This is indeed the case when HalvingHeight() is called with an nHeight argument larger than the
Blossom activation height. However, this is not the case when the height is smaller than the Blossom activation
height. A transcript for the two cases with values of halvingIndex between 1 and 3 is provided below.

HalvingHeight(height, i), height >= blossomActivationHeight, i = [1..3]
---
HalvingIndex: 1, Height: 1046400
HalvingIndex: 2, Height: 2726400
HalvingIndex: 3, Height: 4406400

HalvingHeight(height, i), height < blossomActivationHeight, i = [1..3]
---
HalvingIndex: 1, Height: 850000
HalvingIndex: 2, Height: 1690000
HalvingIndex: 3, Height: 2530000

While this behavior is to be expected to some extent, and abuses of this function seem unlikely given its current use
in the code base, consider more closely following the definition of the protocol specification in order to completely
avoid misuses.

Another impact of this discrepancy affects the value of FoundersRewardLastBlockHeight, which is defined in the
protocol specification as

FoundersRewardLastBlockHeight := max({height : N | Halving(height) < 1})

But is implemented as follows:

int Params::GetLastFoundersRewardBlockHeight(int nHeight) const {
return HalvingHeight(nHeight, 1) - 1;

}

Similar to the previous consideration related to the HalvingHeight, the result is dependent on the height provided
as an argument, and this function will either correctly return 1046399, or 849999 if the height is smaller than the
Blossom activation height.

• In the protocol specification, the value of a Funding Stream is defined as:

12 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



fs.Value(height) :=


0, if height < CanopyActivationHeight
floorBlockSubsidy(height) · fs.Numerator

fs.Denominator , if fs.StartHeight ≤ height and
height < fs.EndHeight

0, otherwise

In comparison, in src/consensus/funding.cpp, the Value computation itself returns a non-zero value, regardless
of the block height.

CAmount FSInfo::Value(CAmount blockSubsidy) const
{

// Integer division is floor division for nonnegative integers in C++
return CAmount((blockSubsidy * valueNumerator) / valueDenominator);

}

In practice, this does not seem to have an impact. Indeed, in both places where it is used, namely in the functions Get
ActiveFundingStreamElements() of the same file and getblocksubsidy() in src/rpc/mining.cpp, appropriate
bound checking is in place. The value is computed only if the Canopy upgrade is active and the current height is
within the Funding Stream start and end heights. The code excerpted below showcases this behavior.

std::set<FundingStreamElement> GetActiveFundingStreamElements(
...
if (fs && nHeight >= fs.get().GetStartHeight() && nHeight < fs.get().GetEndHeight()) {

requiredElements.insert(std::make_pair(
fs.get().RecipientAddress(params, nHeight),
FundingStreamInfo[idx].Value(blockSubsidy)));

}

UniValue getblocksubsidy(const UniValue& params, bool fHelp)
{
...

if (canopyActive) {
UniValue fundingstreams(UniValue::VARR);
auto fsinfos = Consensus::GetActiveFundingStreams(nHeight, consensus);
for (auto fsinfo : fsinfos) {

CAmount nStreamAmount = fsinfo.Value(nBlockSubsidy);
...

However, these checks are performed at varying levels of depth in the codebase. As such, they might be missed by
developers unacquainted with the code.

More specifically, the function getblocksubsidy() first checks that Canopy is active and then obtains the active
Funding Streams with GetActiveFundingStreams() which ensures that the Streams are active at the current
height. It then calls the Value() function.

In comparison, the function GetActiveFundingStreamElements() iterates over the Funding Streams, checks they
are active, and then calls the Value() function. The checks that Canopy is active are performed one level above,
namely in the ContextualCheckTransaction() and SetFoundersRewardAndGetMinerValue() functions, where
calls to GetActiveFundingStreamElements() are properly guarded.

In essence, the core function defined in the protocol documentation does some explicit bound checking, while this
is performed in other functions in the implementation. Consider properly documenting at what level these checks
are performed.

• The protocol specification defines the quantity PostBlossomHalvingInterval as

13 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



PostBlossomHalvingInterval := floor(PreBlossomHalvingInterval · BlossomPoWTargetSpacingRatio)

In the code, more specifically in src/consensus/params.h, this quantity is defined as follows:

#define POST_BLOSSOM_HALVING_INTERVAL(preBlossomInterval) \
(preBlossomInterval * Consensus::BLOSSOM_POW_TARGET_SPACING_RATIO)

Namely, the floor is omitted and the function is defined as a macro with the preBlossomInterval argument. It
seems like this is done in order to better support testing by providing different values for the preBlossomInterval
.

However, this quantity is constant for a given set of parameters. Defining it as a macro might lead to unexpected
misuses compared to defining a non-variable value for PostBlossomHalvingInterval and a different one to be
used solely for testing purposes.

• In src/main.cpp, an if statement was added on line 4166:

if (consensusParams.NetworkUpgradeActive(nHeight, Consensus::UPGRADE_CANOPY)) {
// Funding streams are checked inside ContextualCheckTransaction.

} else if ...

This reads as if something was missing, and as such it could use a better explanation regarding why no operation is
performed. Alternatively, consider specifying return instead of doing nothing.

• The Funding Stream validation implemented performs less error checking than that of the example implementation.

While it is understood that the example implementation is not exactly a reference, parameter validation is less
stringent in the current implementation. More specifically, the code does not seem to perform the following checks
regarding the values of the numerator and denominator at any point.

assert(valueNumerator < valueDenominator);
assert(valueNumerator < INT64_MAX / MAX_MONEY);

ZIP 251
ZIP 251 defines the deployment of the Network Upgrade 4 (NU4), also known as the Canopy network upgrade.

• The Canopy Testnet activation height in the protocol specification on page 54 is still defined as a TODO:

CanopyActivationHeight : N :=

{
1046400, for Mainnet
TODO :, for Testnet

However, this height has been defined, as can be seen in ZIP 251:

ACTIVATION_HEIGHT (Canopy)
Testnet: 1028500

Mainnet: 1046400

• Since the Canopy activation height has been decided, it is unclear why it is not set in the implementation. For
example, in src/chainparams.cpp, there are several instances of the following piece of code:

14 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://zips.z.cash/zip-0251


consensus.vUpgrades[Consensus::UPGRADE_CANOPY].nActivationHeight =
Consensus::NetworkUpgrade::NO_ACTIVATION_HEIGHT;

Additionally, there exists a TODO related to the Canopy activation height in src/chainparams.cpp on line 153, where
a comment states:

// TODO: This `if` can be removed once canopy activation height is set.

• The link on line 45 of src/consensus/upgrades.cpp does not currently point to any valid webpage.

/*.strInfo =*/ "See https://z.cash/upgrade/canopy/ for details.",

ZIP 211
ZIP 211 aims to deprecate Sprout shielded transactions by removing the ability to add new value to the Sprout value
pool balance.

• In order to prevent performing unauthorized transactions, the function z_mergetoaddress() in src/wallet/rp
cwallet.cpp introduced the variable isFromNonSprout. Initially set to false, this variable is set to true if the
sending address is not a Sprout address, through a series of conditional statements. At the end of the corresponding
function, this variable is checked and if set to true when the destination address is a Sprout address, an exception
will be raised. An example of this behavior is excerpted in the code below.

bool isFromNonSprout = false;
...
if (address == "ANY_TADDR") {

useAnyUTXO = true;
isFromNonSprout = true;

} else if (address == "ANY_SPROUT") {
useAnySprout = true;

} else if (address == "ANY_SAPLING") {
useAnySapling = true;
isFromNonSprout = true;

...
if (canopyActive && isFromNonSprout && isToSproutZaddr) {

// Value can be moved within Sprout, but not into Sprout.
throw JSONRPCError(RPC_VERIFY_REJECTED, "Sprout shielding is not supported after Canopy");

}

While this code currently performs as expected, in the event that some code is added later and the variable isFrom
NonSprout was not set to true, transactions into Sprout would be allowed.

In this case, consider changing the logic such that the default value raises the exception if it goes through.

ZIP 212
ZIP 212 introduces changes to the Note format in order to avoid having to rely on the soundness of the underlying zk-
SNARK to ensure the privacy properties of Sapling shielded transactions. Practically, this change replaces the rcm field
of note plaintext (as defined in section 5.5 Encodings of Note Plaintexts and Memo Fields in the protocol specification)
with a field rseed, from which field elements are derived with a Pseudorandom Function (PRF). This new note format
also updates the leadbyte from 0x01 to 0x02, which will take effect after the introduction of the Canopy upgrade. ZIP
212 also introduces a grace period in order to facilitate the transition to the new note format.

• In practice, the introduced changes require some modifications of the decryption logic, based on the leadbyte and
to accommodate the grace period. More specifically, before the introduction of the Canopy upgrade, all Sapling
notes should have a leadbyte equal to 0x01. Once the upgrade is activated, and before the end of the grace

15 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://zips.z.cash/protocol/canopy.pdf#notept


period, the leadbyte values 0x01 and 0x02 are both accepted, but after the end of the grace period, only 0x02 will
be accepted.

Most of the relevant logic is performed in the plaintext_version_is_valid() in src/zcash/Note.hpp and by
the function of the same name in zcash_primitives/src/note_encryption.rs for librustzcash.

The correct computation of this value was a specific focus area and the table below was a helpful visual representation
during our investigation. The computation performed in the plaintext_version_is_valid() function matches
the requirements of the ZIP and of the protocol specification.

leadbyte < Canopy [Canopy, GracePeriod) ≥ GracePeriod
0x01 Valid Valid Invalid
0x02 Invalid Valid Valid
other Invalid Invalid Invalid

As discussed above, the introduction of ZIP 212 adds complexity and a number of edge cases that now have to be
specifically handled. Throughout the code base, comments have been added to call out specific areas that have
been modified with the implementation of ZIP 212.

Although some effort was put into describing these recent changes, consider providing more explicit comments and
pointers to the ZIP or to the protocol specification. We provide a few examples below.

A first example concerns the following statement taken from ZIP 212:

After the activation of this ZIP, any Sapling output of a coinbase transaction that is decrypted to a note
plaintext as specified in (10), MUST have note plaintext lead byte equal to 0x02.

This applies even during the “grace period”, and also applies to funding stream outputs (9) sent to shielded
payment addresses, if there are any.

These two sentences actually describe a number of different cases. In the implementation, this check is performed
in src/main.cpp, which seems to cover all cases encompassed by the two requirements. The relevant code block
is excerpted below.

// ZIP 212: Check that the note plaintexts use the v2 note plaintext
// version.
// This check compels miners to switch to the new plaintext version
// and overrides the grace period in plaintext_version_is_valid()
if (canopyActive != (encPlaintext->get_leadbyte() == 0x02)) {

return state.DoS(DOS_LEVEL_BLOCK,
error("CheckTransaction(): coinbase output description has invalid note plaintext version"),
REJECT_INVALID, "bad-cb-output-desc-invalid-note-plaintext-version");

}

In that case, consider explicitly calling out the requirements in the ZIP, since they seem more complex than what the
implementation makes them appear.

Another example can be found in src/zcash/Note.cpp, where the consistency of the ephemeral key pair is verified.
The following check is performed in the function plaintext_checks_without_height(), which is called when
decrypting a note:

// Check that epk is consistent with esk
...
if (expected_epk != epk) {

return boost::none;

16 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://zips.z.cash/zip-0212
https://zips.z.cash/zip-0213
https://zips.z.cash/zip-0207


}

It may be valuable to add that this check is a requirement in the ZIP, namely:

the recipient MUST compute esk as ToScalar(PRFexpand
rseed ([5])) and check that epk = [esk]gd and fail de-

cryption if this check is not satisfied.

This also applies to librustzcash, where for example, a similar consistency check of the ephemeral public key is
performed in zcash_primitives/src/note_encryption.rs.

if let Some(derived_esk) = note.derive_esk() {
if note.g_d.mul(derived_esk, &JUBJUB) != *epk {

return None;
}

}

A final example is the following comment in rpcwallet.cpp, in the function z_viewtransaction():

// We don't need to check the leadbyte here: if wtx exists in
// the wallet, it must have already passed the leadbyte check

It appears that the following requirement in ZIP 212 refers to this particular case:

If the plaintext lead byte is not accepted, then the note MUST be discarded. However, if an implementation
decrypted the note from a mempool transaction and it was accepted at that time, but it is later mined in
a block after the end of the grace period, then it MAY be retained.

Again, consider being slightly more explicit.

• In function plaintext_checks_without_height() in src/zcash/Note.cpp, the following check is performed at
the very end of the function. It may be advisable to move it to the beginning of the function, closer to the other
consistency checks, and thus to fail prior to computing the commitment.

if (plaintext.get_leadbyte() != 0x01) {
// ZIP 212: Additionally check that the esk provided to this function
// is consistent with the esk we can derive
if (esk != plaintext.generate_or_derive_esk()) {

return boost::none;
}

}

Update: this item was discussed with the Zcash team. The position of this check follows the protocol specification and is
thus correct as is.

• To generate the ephemeral secret key esk and the rcm element, the value rseed is used as input to a PRF. Good
cryptographic practices are followed, since distinct diversifiers (namely 4 and 5) are used for the two values, as can
be seen in the code excerpted below:

uint256 PRF_rcm(const uint256& rseed)
{

uint256 rcm;
auto tmp = PRF_expand(rseed, 4);
librustzcash_to_scalar(tmp.data(), rcm.begin());
return rcm;

}

17 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



uint256 PRF_esk(const uint256& rseed)
{

uint256 esk;
auto tmp = PRF_expand(rseed, 5);
librustzcash_to_scalar(tmp.data(), esk.begin());
return esk;

}

However, it would be good practice to specify these diversifiers in the src/zcash/prf.h, thereby also reducing code
duplication.

• With the introduction of ZIP 212, a few instances of the following pattern can be observed throughout the code base:

if (leadbyte != 0x01)
// post ZIP 212 operation

else
// pre ZIP 212 operation

This specific pattern might be dangerous when introducing new upgrades conflicting with operations introduced
with ZIP 212.

This has also been noted by developers. For example, several comments asking about the safety of this practice
were raised in the corresponding Pull Request, for instance in src/zcash/Note.cpp:

uint256 SaplingNotePlaintext::generate_or_derive_esk() const {
if (leadbyte != 0x01) {

return PRF_esk(rseed);
} else {

uint256 esk;
// Pick random esk
librustzcash_sapling_generate_r(esk.begin());
return esk;

}
}

Consider following a more future-proof approach, by following the example of the SerializationOp function in
src/zcash/Note.hpp:

if (leadbyte != 0x01 && leadbyte != 0x02) {
throw std::ios_base::failure("lead byte of SaplingNotePlaintext is not recognized");

}

• In librustzcash, there seems to be mixed type definitions of the block height, sometimes as a signed or unsigned
integer.

For example, in the function scan_block in zcash_client_backend/src/welding_rig.rs, the scan_output func-
tion is called by casting the height to an unsigned value.

if let Some(output) = scan_output::<P>(
block.height as u32,
to_scan,

In comparison, a few other places define heights as signed integers, for example in zcash_client_sqlite/src/l
ib.rs:

18 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://github.com/zcash/zcash/pull/4578


#[cfg(feature = "mainnet")]
const SAPLING_ACTIVATION_HEIGHT: i32 = 419_200;

or in the function validate_combined_chain() in zcash_client_sqlite/src/chain.rs, which returns:

(block.height as i32, block.prev_hash())

Note that in the zcash project, the height seems to be more consistently defined as a signed integer. For example,
in zcash/src/chain.h, the height is defined as follows:

//! height of the entry in the chain. The genesis block has height 0
int nHeight;

However, in src/wallet/rpcwallet.cpp, a transaction’s expiry height is cast to an int64_t, even thought the
quantity nExpiryHeight is defined as a const uint32_t nExpiryHeight in src/primitives/transaction.h.

entry.pushKV("expiryheight", (int64_t)wtx.nExpiryHeight);

Given the reasonable values the height variable can take, it does not seem that this could result in an issue.

ZIP 215
ZIP 215 introduces clear and consistent validity criteria for the decoding of Ed25519 curve points. It also updates
the verification equation for JoinSplitSig, and relaxes some constraints about the canonical encoding of points. This
change affects the zcash project and the underlying ed25519-zebra library, which is used post Canopy to perform
relevant cryptographic operations.

• In order to ensure the correctness of the underlying verification function, a comprehensive set of test vectors (168
public key/signature pairs in total) has been defined in src/gtest/test_consensus.cpp. These test vectors contain
encoded curve points that either trigger an error when decoded with libsodium and succeed with the ed25519-ze
bra library, or that pass both decoding functions.

Interestingly, one of the invalid points identified in finding NCC-ZCHX006-001 on page 23, namely the point with a y

coordinate equal to 1 and x = 0 with a non-zero expected least significant bit, is not contained within the set of test
vectors. For reference, this point is encoded as follows:

0100000000000000000000000000000000000000000000000000000000000080

Though missing, this point is correctly accepted by ed25519-zebra.

NCC Group also noticed that ed25519-zebra defines a test (conformance in tests/small_order.rs) which seems
to be used to generate and display all the test vectors used in test_consensus.cpp. This test generates 196
different test vectors, but test_consensus.cpp only has 168 of these test cases, which means that 28 are missing.
It would be recommended to address this discrepancy, or at least to add test vectors containing the above invalid
encoded point.

• In src/crypto/common.h, the function init_and_check_sodium() initializes and checks that the version of lib-
sodium is the correct one.

// What follows is a runtime test that ensures the version of libsodium
// we're linked against checks that signatures are canonical (s < L).

This might have to be revisited with the introduction of ZIP 215 and the change to the ed25519-zebra library.

19 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



Additionally, there are still a few instances in the code base where direct calls to the libsodium verification function
crypto_sign_verify_detached are performed, for example in src/transaction_builder.cpp:

// Sanity check Sprout joinSplitSig
if (crypto_sign_verify_detached(

mtx.joinSplitSig.data(),
dataToBeSigned.begin(), 32,
mtx.joinSplitPubKey.begin()) != 0)

{
return TransactionBuilderResult("Sprout joinSplitSig sanity check failed");

}

Since the function librustzcash_zebra_crypto_sign_verify_detached is more permissive than the libsodium
function, it is unclear why these function calls have not been replaced by calls to the ed25519-zebra library, provided
that Canopy is active.

Finally, the comment on line 1049 of src/main.cpp will be outdated with the introduction of the Canopy upgrade:

// We rely on libsodium to check that the signature is canonical.
// https://github.com/jedisct1/libsodium/commit/62911edb7ff2275cccd74bf1c8aefcc4d76924e0
if (ed25519_verifier(&tx.joinSplitSig[0],

dataToBeSigned.begin(), 32,
tx.joinSplitPubKey.begin()
) != 0) {

General Observations
In this section we present general observations related to the code base and programming practices.

• In miner.cpp, the function SetFoundersRewardAndGetMinerValue() computes the reward for the miner. It is
unclear whether it is intentional, but miner_reward + nFees will be returned even if height <= 0:

if (nHeight > 0) {
if (chainparams.GetConsensus().NetworkUpgradeActive(nHeight, Consensus::UPGRADE_CANOPY)) {

...
} else if (nHeight <= chainparams.GetConsensus().GetLastFoundersRewardBlockHeight(nHeight)) {

...
} else {

// Founders reward ends without replacement if Canopy is not activated by the
// last Founders' Reward block height + 1.

}
}

return miner_reward + nFees;

• In the protocol specification, under the References section, Henry de Valence’s name is spelled Henry de Valance in
reference [ZIP-215].

• There are a couple of useless semicolons, more frequently after function definitions, for example in src/consensus
/funding.cpp and a few unused functions, such as RecoverSaplingNote() in src/wallet/wallet.cpp. Both of
these have been spotted by the developers.

• There are a few instances of obscure variable naming, for example in src/main.cpp, on line 1052, where the
message to be verified is called dataToBeSigned:

20 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



if (ed25519_verifier(&tx.joinSplitSig[0],
dataToBeSigned.begin(), 32,
tx.joinSplitPubKey.begin()
) != 0) {

Another example can be found in src/wallet/wallet.cpp, in the DecryptSaplingNote() function where the
variables could use some more descriptive names.

auto output = this->vShieldedOutput[op.n];
auto nd = this->mapSaplingNoteData.at(op);
...
assert(maybe_pt != boost::none);
auto notePt = maybe_pt.get();

auto maybe_pa = nd.ivk.address(notePt.d);
assert(maybe_pa != boost::none);
auto pa = maybe_pa.get();

return std::make_pair(notePt, pa);

21 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix B on page 31.

 

Title Status ID Risk
Implementation of Ed25519 Signature Verification Does Not Match Protocol Fixed 001 Low

Missing Braces after if Statement Fixed 002 Low

22 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



Finding Details
Finding Implementation of Ed25519 Signature Verification Does Not Match Protocol

Risk Low Impact: None, Exploitability: Low

Identifier NCC-ZCHX006-001

Status Fixed

Category Cryptography

Component Ed25519

Location Protocol section 5.4.5, and zcash/depends/patches/libsodium/

Impact The mismatch between implementation and protocol can be used to break consensus be-
tween different implementations.

Description The JoinSplitSig signature scheme is a derivative of Ed25519; it is used in Zcash to sign trans-
actions that contain at least one JoinSplit description. For Ed25519 signature verification, the
main implementation11 uses libsodium12 in its version 1.0.18, with two extra patches13 that
more closely emulate the behavior of version 1.0.15 of libsodium, which the Zcash implemen-
tation initially used. The Zcash protocol14 (section 5.4.5) includes provisions that describe the
exact behavior that is expected from implementations; all implementations should accept or
reject given signatures and public keys identically, since this is part of the consensus rules. Any
public key or signature treated differently by distinct implementations may lead to a breach
of consensus and an unwanted fork.

Notations: below is a list of the notations used in the description that follows:

• Ed25519 uses curve Edwards25519, where points have coordinates (x, y), with x and y

being elements of the field Zp of integers modulo the prime p = 2255 − 19.

• The curve has order 8ℓ, with ℓ being a known prime slightly greater than 2252. That curve
contains a subgroup of order ℓ; one element of that subgroup, called B, is a fixed conven-
tional generator for that subgroup.

• The curve also contains a cyclic subgroup of order 8. If we conventionally name T one
generator of that group, then the contents of the subgroup are exactly:

– 0T = (0, 1), of order 1 (this is the neutral element of the addition law on curve points);

– 4T = (0, p− 1), of order 2;

– 2T and 6T , of order 4;

– T , 3T , 5T and 7T , of order 8.

• Any point P on the curve can be uniquely decomposed into the sum of a point in the
subgroup of order ℓ, and a point in the subgroup of order 8. The latter is called the low-order
component of the point P . Points in the subgroup generated by B are exactly the points
whose low-order component is the neutral element (0, 1).

• A secret key is a non-zero integer a modulo ℓ (i.e. 0 < a < ℓ). The corresponding public key
11https://github.com/zcash/zcash
12https://github.com/jedisct1/libsodium
13https://github.com/zcash/zcash/tree/552482a404c1de2912db4273898ce2c2d8990ad7/depends/patches/libsodi
um
14https://github.com/zcash/zips/blob/564d7f630ec156847aa6ee08e8e630f98fde5e8f/protocol/protocol.pdf

23 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://github.com/zcash/zcash/tree/0cca79a2d873fc6c99dc4cb639748ec0b9197f6a/depends/patches/libsodium
https://github.com/zcash/zcash
https://github.com/jedisct1/libsodium
https://github.com/zcash/zcash/tree/552482a404c1de2912db4273898ce2c2d8990ad7/depends/patches/libsodium
https://github.com/zcash/zcash/tree/552482a404c1de2912db4273898ce2c2d8990ad7/depends/patches/libsodium
https://github.com/zcash/zips/blob/564d7f630ec156847aa6ee08e8e630f98fde5e8f/protocol/protocol.pdf


is point A = aB.

• A signature on a message m is a pair (R, s) where R is a curve point, and s an integer
modulo ℓ, that fulfills the verification equation sB = R+ kA, where k is the SHA-512 hash
(reduced modulo ℓ) of a string that includes R, A, and the signed message m.

Encodings: curve points are encoded over strings of exactly 32 bytes, such that:

• The first 255 bits are the little-endian encoding of the y coordinate of the point (nominally
in the 0...p− 1 range).

• The 256-th bit (which is the most significant bit of the last byte of the string) is a copy of the
least significant bit of the x coordinate.

This is known as a compressed format, since it does not include the full encodings of both
coordinates x and y. Using the curve equation, the square x2 of the x coordinate can be
recomputed from the y coordinate, and the provided least significant bit of x can be used to
determine which of the two square roots of x2 is the actual x coordinate. This format is used
both for public keys (A) and for the first half of each signature (R).

Zcash protocol rules: section 5.4.5 of the Zcash protocol states that, for purposes of decod-
ing points (A and R) the specifications in the original Ed25519 article15 are followed, with two
extra rules:

• Strings that are part of a specific list of eleven excluded 32-byte strings (called “ExcludedPo
intEncodings” in the protocol) are rejected.

• The y coordinate, nominally in the 0...p − 1 range, is allowed to be greater, and will be
reduced modulo p automatically (since y is encoded over 255 bits, and p = 2255 − 19, this
means that the nineteen values from 2255 − 19 to 2255 − 1 are acceptable). Encodings of y
with integers equal to or greater than p are said to be non-canonical.

The list of excluded strings is meant to be the list of low-order points; it has more than eight
entries because of possible non-canonical encodings. However, this is not exactly the case:
the list contains some points that are not of low order, and conversely does not contain
some encodings that lead to points of low order. There appears to be a historical confusion,
inherited from earlier versions of libsodium, between 256-bit encodings of points, and 256-
bit encodings of integers. Indeed, the list in the Zcash protocol seems to consider the whole
sequence of 256 bits to be an integer in the 0..2256 − 1 range, thus potentially up to 2p+ 37.
However, the actual encoding uses only 255 bits for y, not 256. The consequence is that the
list contains four sequences that are not, in fact, encodings of low-order points:

13e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc85
daffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
b4176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa
d9ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

The first two of these strings are valid encodings of points which happen to be of order
8ℓ (thus, these points cannot appear as part of non-maliciously generated public keys and
signatures, and it is not “wrong” to reject them). The other two are not decodable as points,
and would have been rejected anyway by libsodium.

Conversely, the following low-order points are not rejected by the implementation:
15https://ed25519.cr.yp.to/ed25519-20110926.pdf

24 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://ed25519.cr.yp.to/ed25519-20110926.pdf


0000000000000000000000000000000000000000000000000000000000000080
26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc85
c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa
edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
0100000000000000000000000000000000000000000000000000000000000080
ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
eeffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

In practice, accepting or rejecting low-order points does not induce vulnerabilities with regard
to the signature functionality: the signature incarnates consent of the signer, a non-malicious
signer will not generate a low-order public key, and use of low-order R points does not give
any advantage for signature forgeries. The existence of low-order points not covered by the
exclusion list is alluded to in the non-normative note at the end of section 5.4.5 of the protocol;
however, there is an additional issue here. Consider the last three of the points above: they
encode a y coordinate equal to 1 or p−1modulo p (the last point encodes p+1, which is a non-
canonical encoding of 1), leading to x2 = 0, and thus x = 0 (unique possible square root of
zero); but these encodings also specify that the least significant bit of x should be 1. There is,
nominally, no possible solution. These points are still accepted by the Zcash implementation;
indeed, in the final steps of point decompression, the value of x is adjusted as follows (in
function ge25519_frombytes_negate_vartime()):

if (fe25519_isnegative(h->X) == (s[31] >> 7)) {
fe25519_neg(h->X, h->X);

}

This means that the recomputed x is negated if its least significant bit does not match the
expected value, but nothing checks that the least significant bit of −x is correct. When x = 0,
the least significant bit of x is 0, and so is the least significant bit of −x = 0.

The Zcash protocol relies on the original Ed25519 article, but that article does not, actu-
ally, specify exact encoding rules. In particular, it says nothing about what to do when the
recomputed x2 is equal to 0, but the expected least significant bit of x is 1. The original
“ref10” implementation from the article authors accepts the flawed encoding; this behavior
was inherited by libsodium and thus by the Zcash implementation. Another, more precise
source for Ed25519 is RFC 8032,16 and it explicitly rejects these encodings (in section 5.1.3,
clause 4).

The lack of specification of how that specific situation (x = 0 but lsb of x is 1) should be
handled can arguably be called a defect in the protocol document. In particular, the mathe-
matically correct behavior (rejecting the point, since there is no solution matching the received
encoding) is not the one followed by the implementation, but is mandated by RFC 8032.

The Zcash implementation deviates from the above description in two situations:

• The list of excluded points in the Zcash implementation has twelve entries, not eleven. The
twelfth entry (point dbffff...ff) is rejected by the implementation, but is not in the list
specified in the protocol. In practice, this string is the canonical encoding of a valid point U
of order 4ℓ. Since that point has order greater than ℓ, it is not in the subgroup generated
by B, and it cannot appear in a non-maliciously generated public key or signature.

Moreover, the discrete logarithm in base B of the component of order ℓ of U is not known
and should be computationally infeasible to recover; without that discrete logarithm, it

16https://tools.ietf.org/html/rfc8032

25 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://tools.ietf.org/html/rfc8032


does not seem to be possible to craft a public key and a signature that would match the
verification equation sB = R+kAwith pointR = U . Therefore, while there mathematically
exist values A, s and m such that (U, s) would embody the discrepancy between protocol
rules and implementation ((U, s) is an acceptable signature on m as per the protocol rules,
but the implementation would reject it), there is no known way to practically compute such
values A, s and m.

• While the 12-entry list of excluded strings is applied by the Zcash implementation for de-
coding points R in signatures, it is not applied for public keys. Instead, a simple test is
performed to reject the all-zeros sequence:

unsigned char d = 0;
for (int i = 0; i < 32; ++i) {

d |= pk[i];
}
if (d == 0) {

return -1;
}

This means that any public key whose encoding is part of the 11-entry excluded point list in the
Zcash protocol section 5.4.5, but is not the all-zeros string, will be deemed acceptable by the
Zcash implementation. In particular, the encoding of the curve neutral element (0100...00)
allows making signatures (R, s) where R = sB that will be accepted as valid for any message
m.

Summary: three specific flaws have been described here:

• The protocol specification does not cover the case of x = 0 with a non-zero expected
least significant bit. The current Zcash implementation accepts this case, but it is explicitly
rejected by RFC 8032.

• The Zcash implementation rejects a specific point R in signatures, that should be deemed
acceptable as per the protocol (such signatures mathematically exist, but won’t be gener-
ated by non-malicious actors, and seem infeasible to generate in practice).

• The Zcash implementation accepts signatures and public keys that the protocol rejects as
invalid.

The third flaw is most likely to lead to consensus breaches, since it can be easily exercised.
However, it should be fixed by the application of ZIP 215, which will make all points, including
low-order points, acceptable as public keys or signatures. On the other hand, the first flaw
(lack of specification for the invalid x = 0, lsb(x) = 1 situation) will not be fixed by ZIP 215 as
currently worded.

Recommendation Since the protocol is supposed to match the implementation, and the implementation cannot
be retroactively fixed, the protocol will have to be amended in order to match the reality of
the situation:

• All sequences of bits that can be decoded as points, except the all-zeros strings, are accept-
able as public keys.

• The missing twelfth string should be added to the ExcludedPointEncodings list.

• If, during point decompression, the recomputed x coordinate is zero, then the specified
least significant bit value is ignored.

26 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



When NU4 is activated, as part of the new rules described by ZIP 215, most of these issues
disappear, since all low-order points become acceptable, both as public keys and in signa-
tures. The situation about x = 0 must still be documented, though, since that specific point
decoding issue remains relevant post-NU4.

27 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



Finding Missing Braces after if Statement

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-ZCHX006-002

Status Fixed

Category Data Validation

Component Wallet

Location src/wallet/rpcwallet.cpp

Impact A statement expected to be reached under specific conditions is now unconditionally per-
formed, resulting in potentially unexpected behavior.

Description The upcoming deployment of the “Canopy” upgrade to the Zcash network resulted in the
introduction of a number of changes to the implementation of the Zcash protocol. Since the
project is being actively used while the update has not been deployed yet, the code frequently
follows the following pattern in order to seamlessly transition to the updated specifications
once “Canopy” is in effect.

if (canopyActive) {
// perform canopy-specific action

}

There is an instance in the function zc_raw_joinsplit() in src/wallet/rpcwallet.cpp
where this canopyActive check was added after a single statement if block, without subse-
quently surrounding it by curly braces, as can be seen in the following code excerpt.

3044 if (params[3].get_real() != 0.0)
3045 if (canopyActive) {
3046 throw JSONRPCError(RPC_VERIFY_REJECTED,

"Sprout shielding is not supported after Canopy");
3047 }
3048 vpub_old = AmountFromValue(params[3]);

Thus, the statement vpub_old = AmountFromValue(params[3]) was effectively kicked out
of the conditional test and is now reached unconditionally.

The function zc_raw_joinsplit() is invoked through the Zcash RPC client zcash-cli, via
the zcrawjoinsplitoption. It is used to create new raw JoinSplit transactions and is now dep-
recated in favor of z_sendmany. The vpub_old variable is populated by one of the command-
line arguments and represents an amount to be moved into the confidential value store.

In practice, this oversight does not seem to have any consequence. Prior to this modification,
the variable was only set when the command-line argument was non-zero. The change in the
logic now sets vpub_old regardless. However, since the variable vpub_old is initialized to 0
earlier in the function, the ramifications seem non-existent (at least as long as the get_real
and AmountFromValue functions perform correctly).

Recommendation Add curly braces after the first if statement, as in the example below.

if (params[3].get_real() != 0.0) {
if (canopyActive) {

28 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



throw JSONRPCError(RPC_VERIFY_REJECTED,
"Sprout shielding is not supported after Canopy");

}
vpub_old = AmountFromValue(params[3]);

}

29 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



Appendix A: ZIP Reference Details
This audit covered the specification (Phase 1) and implementation (Phase 2) of the following six ZIPs:

Title Specification Implementation

ZIP 214 – Consensus rules for a Zcash
Development Fund

https://zips.z.cash/zip-0214 https://github.com/zcash/zcash/pull/4560

ZIP 207 – Funding Streams https://zips.z.cash/zip-0207 https://github.com/zcash/zcash/pull/4560
ZIP 251 – Deployment of the Canopy
Network Upgrade

https://zips.z.cash/zip-0251 https://github.com/zcash/zcash/pull/4487

ZIP 211 – Disabling Addition of New Value
to the Sprout Value Pool

https://zips.z.cash/zip-0211 https://github.com/zcash/zcash/pull/4489

ZIP 212 – Allow Recipient to Derive Sapling
Ephemeral Secret from Note Plaintext

https://zips.z.cash/zip-0212 https://github.com/zcash/zcash/pull/4578,
https://github.com/zcash/librustzcash/pull
/258

ZIP 215 – Explicitly Defining and Modifying
Ed25519 Validation Rules

https://zips.z.cash/zip-0215 https://github.com/zcash/zcash/pull/4581,
https://github.com/ZcashFoundation/ed2
5519-zebra/pull/24

The pull requests identified in the Implementation column above are part of the v3.1.0 release of Zcash (https://gith
ub.com/zcash/zcash/tree/v3.1.0). The implementation review also included changes to the ed25519-zebra library to
implement the validation rules of ZIP 215.

Two versions of the Zcash Protocol Specification, dating from August 3rd, 2020 (version 2020.1.12, https://github.com
/zcash/zips/blob/fb64b2e4303b332ef8960fc6bbf34b0598596c5d/protocol/protocol.pdf) and August 11th, 2020 (ver-
sion 2020.1.13, https://github.com/zcash/zips/blob/6e5278ed95e334dc861838da26857d1c0dcf638f/protocol/protoco
l.pdf), which included modifications introduced by the above ZIPs, were also used as a references for phase 2.

30 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group

https://zips.z.cash/zip-0214
https://github.com/zcash/zcash/pull/4560
https://zips.z.cash/zip-0207
https://github.com/zcash/zcash/pull/4560
https://zips.z.cash/zip-0251
https://github.com/zcash/zcash/pull/4487
https://zips.z.cash/zip-0211
https://github.com/zcash/zcash/pull/4489
https://zips.z.cash/zip-0212
https://github.com/zcash/zcash/pull/4578
https://github.com/zcash/librustzcash/pull/258
https://github.com/zcash/librustzcash/pull/258
https://zips.z.cash/zip-0215
https://github.com/zcash/zcash/pull/4581
https://github.com/ZcashFoundation/ed25519-zebra/pull/24
https://github.com/ZcashFoundation/ed25519-zebra/pull/24
https://github.com/zcash/zcash/tree/v3.1.0
https://github.com/zcash/zcash/tree/v3.1.0
https://github.com/zcash/zips/blob/fb64b2e4303b332ef8960fc6bbf34b0598596c5d/protocol/protocol.pdf
https://github.com/zcash/zips/blob/fb64b2e4303b332ef8960fc6bbf34b0598596c5d/protocol/protocol.pdf
https://github.com/zcash/zips/blob/6e5278ed95e334dc861838da26857d1c0dcf638f/protocol/protocol.pdf
https://github.com/zcash/zips/blob/6e5278ed95e334dc861838da26857d1c0dcf638f/protocol/protocol.pdf


Appendix B: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

31 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group



Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

32 | Zcash NU4 Cryptographic Specification and Implementation
Review

NCC Group


	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Audit Notes – Phase 1
	Audit Scope
	Individual ZIP Reviews
	Editorial and Typography Remarks

	Audit Notes – Phase 2
	Audit Scope
	Individual ZIP Reviews
	General Observations

	Table of Findings
	Finding Details
	ZIP Reference Details
	Finding Field Definitions

