
Confidential

PENETRATION TEST REPORT

for

Secure Open Source (Mozilla)

V1.0
Amsterdam
November 9th, 2017

1/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Document Properties

Client Secure Open Source (Mozilla)

Title PENETRATION TEST REPORT

Target Graphite font system

Version 1.0

Pentesters Stefan Marsiske, Pierre Pronchery

Authors Stefan Marsiske, Pierre Pronchery, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 October 12th, 2017 Stefan Marsiske Initial draft

0.2 October 20th, 2017 Pierre Pronchery Imported more findings

0.3 November 7th, 2017 Marcus Bointon Review

1.0 November 9th, 2017 Marcus Bointon Final version

Contact
For more information about this Document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

2/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Table of Contents
1 Executive Summary ... 4
1.1 Introduction .. 4
1.2 Scope of work ... 4
1.3 Project objectives .. 4
1.4 Timeline ... 4
1.5 Results In A Nutshell .. 4
1.6 Summary of Findings .. 5
1.6.1 Findings by Threat Level ... 7
1.6.2 Findings by Type .. 7
1.7 Summary of Recommendations .. 7
2 Methodology ... 9
2.1 Planning .. 9
2.2 Risk Classification ... 9
3 Reconnaissance and Fingerprinting .. 10
3.1 Automated Scans .. 10
4 Pentest Technical Summary .. 10
4.1 Findings ... 10
4.1.1 MGR-001 — Potential Integer Overflow in Memory Allocator ... 10
4.1.2 MGR-002 — Graphite Builds With the Stack Protector Disabled .. 11
4.1.3 MGR-003 — Graphite/src/Segment.cpp Constructor Possible Null Pointer Dereference 12
4.1.4 MGR-004 — Graphite/src/Pass.cpp CollisionShift NULL Pointer Dereference & Integer Overflow 13
4.1.5 MGR-005 — Graphite/src/inc/List.h Possible Integer Overflow ... 14
4.1.6 MGR-006 — Graphite/src/inc/Rule.h Slotmap::operator[] Does Not Check Bounds 15
4.1.7 MGR-007 — Graphite/src/Font.cpp Font::Font() Division-related FPE .. 15
4.1.8 MGR-008 — Graphite/src/Font.cpp M_advances NULL Pointer Dereferences 16
4.1.9 MGR-009 — Floating Point Exception in VM .. 17
4.1.10 MGR-010 — Possible NULL Pointer Dereference in ShiftCollider::mergeSlot() 18
4.1.11 MGR-011 — Potential Crash in FileFace::get_table_fn() ... 19
4.1.12 MGR-012 — Potential Use After Free When Logging ... 19
4.1.13 MGR-013 — The LZ4 Parser Does Not Pass the Tests From Liblz4 .. 20
4.1.14 MGR-014 — Incomplete Sanity Check When Looking up Glyphs .. 22
4.1.15 MGR-015 — Graphite/src/inc/Compression.h::overrun_copy Integer Overflow Leads to
Uninitialized Buffer ... 24
4.1.16 MGR-016 — Graphite/src/inc/Compression.h::overrun_copy Possible Buffer Overflow 25
4.1.17 MGR-017 — Graphite/src/Segment.cpp linkClusters Null Pointer Dereference 25
4.1.18 MGR-018 — Graphite/src/inc/Sparse.h Sparse(x,y) Code Smell .. 26
4.1.19 MGR-019 — Graphite/src/inc/FeatureMap.h Possible NULL Pointer Dereference 27
4.1.20 MGR-020 — Graphite/src/Code.cpp Machine::Code::Code() Constructor Possible Memory Leak ... 28
4.1.21 MGR-021 — Graphite/src/inc/List.h Possible Integer/memory Overflow ... 29
5 Future Work ... 30
6 Conclusion .. 31
Appendix 1 Testing team ... 32

3/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

1 Executive Summary

1.1 Introduction

Between August 28, 2017 and October 12, 2017, Radically Open Security B.V. carried out a code audit for
Secure Open Source (Mozilla).

This report contains our findings as well as detailed explanations of exactly how ROS performed the code
audit.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• Graphite font system

Some parts of the source code that are not part of release builds (debugging or tracing code), or are
considered deprecated (ALL_TTFUTILS, GRAPHITE2_NSEGCACHE) were explicitly out of scope.

1.3 Project objectives

The objective of the project was to conduct a thorough code review, with particular focus on identifying issues
that might be difficult to find by fuzzing.

1.4 Timeline

The Security Audit took place between August and October 2017.

1.5 Results In A Nutshell

Of all the issues found and reported during this audit, only one was rated with an elevated severity, MGR-001
(page 10). It could only possibly be exploited in combination with another issue (allowing it to reach this
error condition) but no such issue could be identified.

Further integer overflow conditions were identified in MGR-005 (page 14), MGR-015 (page 24), and
MGR-021 (page 29). This was the most represented class of bugs after NULL pointer dereferencing,

4/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

as in MGR-003 (page 12), MGR-004 (page 13), MGR-008 (page 16), MGR-010 (page 18),
MGR-011 (page 19), MGR-017 (page 25), and MGR-019 (page 27). Then, two possible floating
point exceptions were found in MGR-007 (page 15) and MGR-009 (page 17). There again, the impact is
normally limited to harmless crashes (Denial of Service).

A common security mitigation was found to be explicitly disabled in MGR-002 (page 11). The only other
issue with a moderate impact is MGR-006 (page 15), an out-of-bounds read operation, while the remaining
issues were rated Low.

Generally it can be said that the code seems quite robust. The extensive fuzzing conducted previously
certainly helped improve the overall level of security.

1.6 Summary of Findings

ID Type Description Threat level

MGR-001 Integer overflow A generic memory allocation routine, gralloc(), wraps the
malloc() heap allocator from libc, but with the extra ability to
allocate arrays of the type desired. This multiplication is not
checked for overflows, thereby possibly allocating less memory
than actually intended and without reporting errors. This may
result in memory corruption.

Elevated

MGR-002 Security mitigation Stack Smashing Protection (SSP) is a technology initially
developed by IBM (originally called "ProPolice"), and included
in the GCC compiler since 2006. It mitigates a number of Buffer
Overflow conditions by modifying the layout of variables on the
stack and checking canary values when returning from function
calls. Although now in use by most software distributions,
support for SSP was found to be explicitly disabled in Graphite.

Moderate

MGR-003 NULL Pointer Dereference Segment::newSlot() has multiple branches which return NULL,
this can be passed directly to Segment::freeSlot() which is not
prepared to handle such pointers.

Moderate

MGR-004 NULL Pointer Dereference In Pass::collisionShift() the check for start being non-NULL is
confusing, as the loop around it makes sure start is not NULL.
However, the variable c might be NULL, as seg->collisionInfo()
could return NULL.

Moderate

MGR-005 Integer overflow The implementation of the List class uses a distance() function,
which returns a signed integer. This value is then passed to
memory handling functions which expect an unsigned integer;
this can lead to various problems.

Moderate

MGR-006 Out-of-bounds Read Despite being aware of bounds (via m_size), the operator
implementation does not check for them.

Moderate

MGR-007 Floating Point Exception The constructor of the Font class calculates a division with
input supplied by the user, which may trigger a floating point
exception.

Moderate

MGR-008 NULL Pointer Dereference The constructor of Font initializes a pointer which might be NULL
that is later dereferenced without checking.

Moderate

5/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

MGR-009 Floating Point Exception It is possible to trigger a floating point exception (FPE) with user-
supplied input in a Fonts action or constraint code.

Moderate

MGR-010 NULL Pointer Dereference A NULL pointer might be dereferenced in
ShiftCollider::mergeSlot().

Moderate

MGR-011 NULL Pointer Dereference There is no error check when allocating memory temporarily
on the heap in FileFace::get_table_fn(), just before reading
data from a file. This may result in an uncontrolled crash in
circumstances where the program is unable to allocate more
memory.

Low

MGR-012 Use after free Some code related to logging does not adequately clear a
pointer after freeing it. As a result, if this code is called again,
an invalid pointer will be dereferenced, possibly allowing code
execution.

Low

MGR-013 Failing tests The LZ4 decompression routine from Graphite was tested with
the test suite from the original liblz4 library. The routine did not
pass the "fuzzer" test from liblz4, with a number of different
errors.

Low

MGR-014 Incomplete error checking The return value for a "loca table" lookup function is negative
on error, whereas the underlying type is size_t (unsigned).
Consumers of this function claim to check for errors but may fail
to do so in some cases.

Low

MGR-015 Integer overflow An integer overflow can be found in overrun_copy() of the LZ4
implementation.

Low

MGR-016 Buffer overflow The overrun_copy function can write out-of-bounds, by at most
word-size-1 bytes.

Low

MGR-017 NULL Pointer Dereference Segment::linkClusters() contains a possible NULL pointer
dereference.

Low

MGR-018 Unneeded code free() is called on a pointer if the pointer is NULL. This is more of
a code smell than a vulnerability, however it might hint at deeper
issues.

Low

MGR-019 NULL Pointer Dereference A NULL pointer dereference issue might be found in the
constructor of NameAndFeatureRef, although difficult to trigger.

Low

MGR-020 Memory Leak A memory leak condition occurs when realloc() fails; some
memory resources are wasted.

Low

MGR-021 Integer overflow The list implementation does not handle integer overflows when
calling realloc(). This is probably not a problem in the current
implementation of Graphite, but it would be safer to check.

Low

6/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

1.6.1 Findings by Threat Level

52.4% 42.9%

4.8%

Elevated (1)

Moderate (9)

Low (11)

1.6.2 Findings by Type
4.8%

4.8%

4.8%

4.8%

4.8%

4.8%

4.8%

4.8%

9.5% 19.0%

33.3%

Null pointer dereference (7)

Integer overflow (4)

Floating point exception (2)

Security mitigation (1)

Out-of-bounds read (1)

Use after free (1)

Failing tests (1)

Incomplete error checking (1)

Buffer overflow (1)

Unneeded code (1)

Memory leak (1)

1.7 Summary of Recommendations

ID Type Recommendation

MGR-001 Integer overflow Check the multiplication for possible overflows.

7/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

MGR-002 Security mitigation Enable Stack Smashing Protection (SSP) again.

MGR-003 NULL Pointer Dereference Add appropriate error handling for the pointer returned being NULL.

MGR-004 NULL Pointer Dereference Handle NULL pointers and integer overflows.

MGR-005 Integer overflow Handle overflows and negative values before passing the distance to the memory
handling functions.

MGR-006 Out-of-bounds Read Check bounds and handle erroneous indexes accordingly.

MGR-007 Floating Point Exception Handle also parameters INT_MIN/-1 and divisor being 0.

MGR-008 NULL Pointer Dereference Handle failure of memory allocation.

MGR-009 Floating Point Exception Handle also INT_MIN/-1 case in the VM.

MGR-010 NULL Pointer Dereference Check if exclSlot is NULL, and abort the operation if it is.

MGR-011 NULL Pointer Dereference Handle failure of memory allocation.

MGR-012 Use after free • Clear the global variable after freeing it.

• Check for the variable to be valid before using it.

MGR-013 Failing tests Investigate the failure cases.

MGR-014 Incomplete error checking • Improve the internal API when checking for errors.

• Review these sanity checks.

MGR-015 Integer overflow Check for integer overflow and report errors.

MGR-016 Buffer overflow Possibly ignore, as the LZ4 decompressor prohibits exploitable conditions to trigger.

MGR-017 NULL Pointer Dereference Introduce a check for NULL and handle accordingly.

MGR-018 Unneeded code Review and refactor this code.

MGR-019 NULL Pointer Dereference Review the handling of NULL pointers.

MGR-020 Memory Leak realloc() into a temporary variable, and free the former variable if realloc() fails to
allocate memory.

MGR-021 Integer overflow Handle overflows.

8/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

2 Methodology

2.1 Planning

Our general approach during this code audit was as follows:

1. Historical Vulnerabilities
We looked at previously identified security vulnerabilities to identify possible areas of interest.

2. Grepping
We attempted to identify areas of interest by grepping for memory operations: new, malloc, calloc,
realloc, gralloc, free.

3. Static checks
We also used two automated tools, flawfinder and cppcheck, to look for issues. Besides lots of
false positives we caught one memory leak.

4. Concolic analysis
Using the Angr framework we isolated and ran a concolic analysis on the LZ4 decompressor,
unfortunately the Z3 solver was overwhelmed when confronted with inputs of about 128 MB,
which is the upper limit for the decompressor when invoked from Graphite. Smaller input variables
provided no exploitable results.

5. Ignored sources
We ignored two conditional compilation directives: GRAPHITE2_NSEGCACHE and
ALL_TTFUTILS, as we were told these are being deprecated.

2.2 Risk Classification

Throughout the document, each vulnerability or risk identified has been labeled and categorized as:

• Extreme
Extreme risk of security controls being compromised with the possibility of catastrophic financial/
reputational losses occurring as a result.

• High
High risk of security controls being compromised with the potential for significant financial/
reputational losses occurring as a result.

• Elevated
Elevated risk of security controls being compromised with the potential for material financial/
reputational losses occurring as a result.

• Moderate
Moderate risk of security controls being compromised with the potential for limited financial/
reputational losses occurring as a result.

• Low

9/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Low risk of security controls being compromised with measurable negative impacts as a result.

Please note that this risk rating system was taken from the Penetration Testing Execution Standard (PTES).
For more information, see: http://www.pentest-standard.org/index.php/Reporting.

3 Reconnaissance and Fingerprinting

Through automated scans we were able to find some useful information about the software. We generated
many false-positives, mostly because some functions were mistaken for POSIX functions, however we found
one memory leak using these tools.

3.1 Automated Scans

As part of our code audit we used the following automated scans:

• flawfinder – https://www.dwheeler.com/flawfinder/

• cppcheck – http://cppcheck.sourceforge.net/

4 Pentest Technical Summary

4.1 Findings

We identified the following issues:

4.1.1 MGR-001 — Potential Integer Overflow in Memory Allocator

Vulnerability ID: MGR-001

Vulnerability type: Integer overflow

Threat level: Elevated

10/32 Radically Open Security B.V. - Chamber of Commerce 60628081

https://www.dwheeler.com/flawfinder/
http://cppcheck.sourceforge.net/

Confidential

Description:
A generic memory allocation routine, gralloc(), wraps the malloc() heap allocator from libc, but with
the extra ability to allocate arrays of the type desired. This multiplication is not checked for overflows, thereby
possibly allocating less memory than actually intended and without reporting errors. This may result in memory
corruption.

Technical description:
In file src/inc/Main.h, template gralloc(), line 83:

83 template <typename T> T * gralloc(size_t n)
84 {
85 #ifdef GRAPHITE2_TELEMETRY
86 telemetry::count_bytes(sizeof(T) * n);
87 #endif
88 return static_cast<T*>(malloc(sizeof(T) * n));
89 }

The multiplication line 88 can overflow for high values of n. The value of sizeof(T) is unlikely to be big
enough to cause overflows on its own.

The grzeroalloc() routine in the same file is not subject to this issue, as it uses calloc() instead of
malloc(), which normally implements a check for overflows.

See also https://www.fefe.de/intof.html and http://undeadly.org/cgi?action=article&sid=20060330071917.

Impact:
Elevated (Some issues can become exploitable when combined with this one)

Recommendation:
Check the multiplication for possible overflows.

4.1.2 MGR-002 — Graphite Builds With the Stack Protector Disabled

Vulnerability ID: MGR-002

Vulnerability type: Security mitigation

Threat level: Moderate

Description:
Stack Smashing Protection (SSP) is a technology initially developed by IBM (originally called "ProPolice"), and
included in the GCC compiler since 2006. It mitigates a number of Buffer Overflow conditions by modifying the

11/32 Radically Open Security B.V. - Chamber of Commerce 60628081

https://www.fefe.de/intof.html
http://undeadly.org/cgi?action=article&sid=20060330071917

Confidential

layout of variables on the stack and checking canary values when returning from function calls. Although now
in use by most software distributions, support for SSP was found to be explicitly disabled in Graphite.

Technical description:
On both Linux and Mac OS X, the build system disables SSP explicitly.

In sources/graphite/src/CMakeLists.txt:

113 if (${CMAKE_SYSTEM_NAME} STREQUAL "Linux") 114 set_target_properties(graphite2 PROPERTIES
 115 COMPILE_FLAGS "-Wall -Wextra -Wno-unknown-pragmas -Wendif-labels -Wshadow -Wctor-
dtor-privacy -Wnon-virtual-dtor -fno-rtti -fno-exceptions -fvisibility=hidden -fvisibility-inlines-
hidden -fno-stack-protector"

145 if (${CMAKE_SYSTEM_NAME} STREQUAL "Darwin") 146 set_target_properties(graphite2 PROPERTIES
147 COMPILE_FLAGS "-Wall -Wextra -Wno-unknown-pragmas -Wimplicit-fallthrough -
Wendif-labels -Wshadow -Wno-ctor-dtor-privacy -Wno-non-virtual-dtor -fno-rtti -fno-exceptions -
fvisibility=hidden -fvisibility-inlines-hidden -fno-stack-protector -mfpmath=sse -msse2"

Martin Hosken, from the Graphite project, explained the rationale:

"The -fno-stack-protector went in because it was causing problems (or performance issues)"

Impact:
Moderate (A common mitigation technique is not applied)

Recommendation:
Enable Stack Smashing Protection (SSP) again.

4.1.3 MGR-003 — Graphite/src/Segment.cpp Constructor Possible Null Pointer
Dereference

Vulnerability ID: MGR-003

Vulnerability type: NULL Pointer Dereference

Threat level: Moderate

Description:
Segment::newSlot() has multiple branches which return NULL, this can be passed directly to
Segment::freeSlot() which is not prepared to handle such pointers.

Technical description:
The constructor of the Segment class contains the following snippet:

12/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Segment::Segment(unsigned int numchars, const Face* face, uint32 script, int textDir)
...
{
 freeSlot(newSlot());

newSlot() can return NULL, but freeSlot does not handle this.

Impact:
Moderate (Availability can be restricted due to Denial of Service attacks)

Recommendation:
Add appropriate error handling for the pointer returned being NULL.

4.1.4 MGR-004 — Graphite/src/Pass.cpp CollisionShift NULL Pointer Dereference &
Integer Overflow

Vulnerability ID: MGR-004

Vulnerability type: NULL Pointer Dereference

Threat level: Moderate

Description:
In Pass::collisionShift() the check for start being non-NULL is confusing, as the loop around it
makes sure start is not NULL. However, the variable c might be NULL, as seg->collisionInfo()
could return NULL.

Technical description:

const SlotCollision * c = seg->collisionInfo(s);
if (start && (c->flags() & (SlotCollision::COLL_FIX | SlotCollision::COLL_KERN)) ==
 SlotCollision::COLL_FIX

start is always non-NULL here, and seg->collisionInfo(s) could return NULL:

SlotCollision *collisionInfo(const Slot *s) const { return m_collisions ? m_collisions + s-
>index() : 0; }

This code can lead to a possible NULL pointer dereference. Also, there might be an integer overflow on 32-bit
systems, as s->index() returns a uint32.

The Segment class member-variable m_collisions gets initialized from Face::runGraphite() using
seg->initCollisions(), which properly reports if m_collisions has been allocated correctly. So
it should not be NULL, however TOCTOU possibilities arise if this pointer can be zeroed somehow.

13/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Furthermore it might also be interesting to check Pass::collisionKern(), where seg-
>collisionInfo(s) is also invoked and can return NULL, but is not checked for this possibility.

Impact:
Moderate

Recommendation:
Handle NULL pointers and integer overflows.

4.1.5 MGR-005 — Graphite/src/inc/List.h Possible Integer Overflow

Vulnerability ID: MGR-005

Vulnerability type: Integer overflow

Threat level: Moderate

Description:
The implementation of the List class uses a distance() function, which returns a signed integer. This
value is then passed to memory handling functions which expect an unsigned integer; this can lead to various
problems.

Technical description:
distance() returns a signed integer, which is then passed as a parameter to various functions
where a negative value might be dangerous. These issues are probably very difficult to trigger within the
current implementation of Graphite, but it would make sense to add checks for overflows after the use of
distance() to be sure. One example is listed below; more can be found in the same file.

typename Vector<T>::iterator Vector<T>::_insert_default(iterator p, size_t n) {
 // Move tail if there is one
 if (p != end()) memmove(p + n, p, distance(p,end())*sizeof(T));

Impact:
Moderate

14/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Recommendation:
Handle overflows and negative values before passing the distance to the memory handling functions.

4.1.6 MGR-006 — Graphite/src/inc/Rule.h Slotmap::operator[] Does Not Check Bounds

Vulnerability ID: MGR-006

Vulnerability type: Out-of-bounds Read

Threat level: Moderate

Description:
Despite being aware of bounds (via m_size), the operator implementation does not check for them.

Technical description:
Though this issue does not seem to be exploitable at first glance, further TOCTOU issues (Time Of Check,
Time Of Use) could make it actually dangerous.

Impact:
Moderate

Recommendation:
Check bounds and handle erroneous indexes accordingly.

4.1.7 MGR-007 — Graphite/src/Font.cpp Font::Font() Division-related FPE

Vulnerability ID: MGR-007

Vulnerability type: Floating Point Exception

Threat level: Moderate

Description:
The constructor of the Font class calculates a division with input supplied by the user, which may trigger a
floating point exception.

15/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Technical description:

Font::Font(float ppm, const Face & f, const void * appFontHandle, const gr_font_ops * ops)
: m_appFontHandle(appFontHandle ? appFontHandle : this),
 m_face(f),
 m_scale(ppm / f.glyphs().unitsPerEm()),

f.glyphs().unitsPerEm() can be 0 (or -1 and ppm INT_MIN). glyps().unitsPerEM() might be
0, as it comes from the user supplied font constructor in glyphcache.cpp:

_glyphs ? _glyph_loader->units_per_em() : 0

and further down the call-graph ttfutil.cpp in DesignUnits:

const Sfnt::FontHeader * pTable = reinterpret_cast<const Sfnt::FontHeader *>(pHead);
return be::swap(pTable->units_per_em);

But later in the call-graph load_face (from gr_make_face_with_ops) calls Face::readGlyphs()
which verifies if units_per_em > 0, this happens earlier than the font instantiation and is a precondition
for it:

gr_face *face = gr_make_file_face(argv[1], 0); /*<1>*/
if (!face) return 1;
font = gr_make_font(pointsize * dpi / 72.0f, face); /*<2>*/

So triggering this FPE is very difficult, but could be prone to TOCTOU problems. To reduce these chances
it would make sense to include checks for the divisor!=0 and also the division not being of the
(INT_MIN/-1) kind.

Impact:
Moderate (Availability can be restricted due to Denial of Service attacks)

Recommendation:
Handle also parameters INT_MIN/-1 and divisor being 0.

4.1.8 MGR-008 — Graphite/src/Font.cpp M_advances NULL Pointer Dereferences

Vulnerability ID: MGR-008

Vulnerability type: NULL Pointer Dereference

Threat level: Moderate

16/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Description:
The constructor of Font initializes a pointer which might be NULL that is later dereferenced without checking.

Technical description:

Font::Font(float ppm, const Face & f, const void * appFontHandle, const gr_font_ops * ops) {
 ...
 m_advances = gralloc<float>(nGlyphs);
 if (m_advances)
 {
 for (float *advp = m_advances; nGlyphs; --nGlyphs, ++advp)
 *advp = INVALID_ADVANCE;
 }
}

The member variable of the Font class m_advances is dereferenced from Slot::finalize() and
gr_slot_advance_X().

Impact:
Moderate

Recommendation:
Handle failure of memory allocation.

4.1.9 MGR-009 — Floating Point Exception in VM

Vulnerability ID: MGR-009

Vulnerability type: Floating Point Exception

Threat level: Moderate

Description:
It is possible to trigger a floating point exception (FPE) with user-supplied input in a Fonts action or constraint
code.

Technical description:
By compiling a custom SILF action using ttx (from fonttools>=3.16.0) it is possible to generate a
floating point exception. To reproduce insert the following snippet into the ttx generated from tests/
fonts/MagyarLinLibertineG.ttf into the beginning of action rule rule index="39"
precontext="1" sortkey="2"

PUSH_LONG(2147483648)
PUSH_LONG(4294967295)

17/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

DIV

Also replace the ret_zero with a pop_ret at the end of this action, then compile it back into a ttf, and
invoke ./tests/examples/simpletests/fonts/MagyarLinLibertineG\#1.ttf 'ŰÁ' to
trigger a FPE.

This is because if the dividend is INT_MIN (0x80000000) and the divisor is -1, then the result of the division is
undefined behaviour in C/C++.

Impact:
Moderate (Availability can be restricted due to Denial of Service attacks)

Recommendation:
Handle also INT_MIN/-1 case in the VM.

4.1.10 MGR-010 — Possible NULL Pointer Dereference in ShiftCollider::mergeSlot()

Vulnerability ID: MGR-010

Vulnerability type: NULL Pointer Dereference

Threat level: Moderate

Description:
A NULL pointer might be dereferenced in ShiftCollider::mergeSlot().

Technical description:
In ShiftCollider::mergeSlot() the following snippet:

...
if (cslot->exclGlyph() > 0 && gc.check(cslot->exclGlyph()) && !isExclusion)
{
 // Set up the bogus slot representing the exclusion glyph.
 Slot *exclSlot = seg->newSlot();
 exclSlot->setGlyph(seg, cslot->exclGlyph());

seg->newSlot() could return a NULL pointer, but this is not checked.

Impact:
Moderate (Availability can be restricted due to Denial of Service attacks)

18/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Recommendation:
Check if exclSlot is NULL, and abort the operation if it is.

4.1.11 MGR-011 — Potential Crash in FileFace::get_table_fn()

Vulnerability ID: MGR-011

Vulnerability type: NULL Pointer Dereference

Threat level: Low

Description:
There is no error check when allocating memory temporarily on the heap in
FileFace::get_table_fn(), just before reading data from a file. This may result in an uncontrolled
crash in circumstances where the program is unable to allocate more memory.

Technical description:
In file src/FileFace.cpp, method FileFace::get_table_fn(), line 95:

80 const void *FileFace::get_table_fn(const void* appFaceHandle, unsigned int name, size_t *len)
81 { [...]
94 tbl = malloc(tbl_len);
95 if (fread(tbl, 1, tbl_len, file_face._file) != tbl_len)
96 {
97 free(tbl);
98 return 0;
99 }

The tbl variable may be NULL if malloc() fails to allocate memory, in which case fread() will likely try
to write data at this address. This will typically result in a crash.

Impact:
Low (Availability can be restricted due to Denial of Service attacks)

Recommendation:
Handle failure of memory allocation.

4.1.12 MGR-012 — Potential Use After Free When Logging

Vulnerability ID: MGR-012

19/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Vulnerability type: Use after free

Threat level: Low

Description:
Some code related to logging does not adequately clear a pointer after freeing it. As a result, if this code is
called again, an invalid pointer will be dereferenced, possibly allowing code execution.

Technical description:
In file src/gr_logging.cpp, function gr_stop_logging(), line 110:

110 void gr_stop_logging(GR_MAYBE_UNUSED gr_face * face)
111 {
112 #if !defined GRAPHITE2_NTRACING
113 if (face && face->logger())
114 {
115 FILE * log = face->logger()->stream();
116 face->setLogger(0);
117 fclose(log);
118 }
119 else if (!face && global_log)
120 {
121 FILE * log = global_log->stream();
122 delete global_log;
123 fclose(log);
124 }
125 #endif
126 }

If this code is compiled in and gr_stop_logging() is called twice (with face set to NULL), then
global_log will be used (line 121) after being free'd (line 122), as it is not cleared as it should be. An
attacker able to reach this condition and able to control the memory pointed at by global_log will be able
to execute code.

Impact:
Low (Apparently not used in release builds)

Recommendation:
• Clear the global variable after freeing it.

• Check for the variable to be valid before using it.

4.1.13 MGR-013 — The LZ4 Parser Does Not Pass the Tests From Liblz4

Vulnerability ID: MGR-013

20/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Vulnerability type: Failing tests

Threat level: Low

Description:
The LZ4 decompression routine from Graphite was tested with the test suite from the original liblz4 library. The
routine did not pass the "fuzzer" test from liblz4, with a number of different errors.

Technical description:
The following is sample output from the wrapper written for liblz4's fuzzer test:

Test 17 : LZ4_decompress_safe should have failed, due to input size being too large (seed 3183,
 cycle 0)
Test 2 : LZ4_decompress_safe() failed on data compressed by LZ4_compress_destSize (seed 3183, cycle
 26)
Test 4 : LZ4_decompress_safe() failed on data compressed by LZ4_compressHC_destSize (seed 3183,
 cycle 26)
Test 12 : LZ4_decompress_safe failed despite sufficient space (seed 3183, cycle 26)
Test 13 : LZ4_decompress_safe failed despite amply sufficient space (seed 3183, cycle 26)
Test 2 : LZ4_decompress_safe() corrupted decoded data (seed 3183, cycle 189)
Test 2 : LZ4_decompress_safe() failed : did not fully decompressed data (seed 3183, cycle 211)
Test 13 : LZ4_decompress_safe did not regenerate original data (seed 3183, cycle 214)

This LZ4 code is used in src/Face.cpp, method Face::Table::decompress(), line 313:

313 Error Face::Table::decompress()
314 {
315 Error e;
316 if (e.test(_sz < 5 * sizeof(uint32), E_BADSIZE))
317 return e;
318 byte * uncompressed_table = 0;
319 size_t uncompressed_size = 0;
320
321 const byte * p = _p;
322 const uint32 version = be::read<uint32>(p); // Table version number.
323
324 // The scheme is in the top 5 bits of the 1st uint32.
325 const uint32 hdr = be::read<uint32>(p);
326 switch(compression(hdr >> 27))
327 {
328 case NONE: return e;
329
330 case LZ4:
331 {
332 uncompressed_size = hdr & 0x07ffffff;
333 uncompressed_table = gralloc<byte>(uncompressed_size);
334 if (!e.test(!uncompressed_table || uncompressed_size < 4, E_OUTOFMEM))
335 {
336 memset(uncompressed_table, 0, 4); // make sure version number is initialised
337 // coverity[forward_null : FALSE] - uncompressed_table has been checked so can't be
 null
338 // coverity[checked_return : FALSE] - we test e later
339 e.test(lz4::decompress(p, _sz - 2*sizeof(uint32), uncompressed_table,
 uncompressed_size) != signed(uncompressed_size), E_SHRINKERFAILED);
340 }
341 break;
342 }

21/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Impact:
Low (Some valid fonts may fail to decompress)

Recommendation:
Investigate the failure cases.

4.1.14 MGR-014 — Incomplete Sanity Check When Looking up Glyphs

Vulnerability ID: MGR-014

Vulnerability type: Incomplete error checking

Threat level: Low

Description:
The return value for a "loca table" lookup function is negative on error, whereas the underlying type is size_t
(unsigned). Consumers of this function claim to check for errors but may fail to do so in some cases.

Technical description:
In file src/TtfUtil.cpp, function LocaLookup(), line :

1202 /*---
1203 Return the offset stored in the loca table for the given Glyph ID.
1204 (This offset is into the glyf table.)
1205 Return -1 if the lookup failed.
1206 Technically this method should return an unsigned long but it is unlikely the offset will
1207 exceed 2^31.
1208 --*/
1209 size_t LocaLookup(gid16 nGlyphId,
1210 const void * pLoca, size_t lLocaSize,
1211 const void * pHead) // throw (std::out_of_range)
1212 {
1213 const Sfnt::FontHeader * pTable = reinterpret_cast<const Sfnt::FontHeader *>(pHead);
1214 size_t res = -2; [...]
1222 res = be::peek<uint16>(pShortTable + nGlyphId) << 1;
1223 if (res == static_cast<size_t>(be::peek<uint16>(pShortTable + nGlyphId + 1) << 1))
1224 return -1; [...]
1232 res = be::peek<uint32>(pLongTable + nGlyphId);
1233 if (res == static_cast<size_t>(be::peek<uint32>(pLongTable + nGlyphId + 1)))
1234 return -1; [...]
1238 // only get here if glyph id was bad
1239 return res;

As a result, it seems that this function may:

• return -1 if the lookup failed;

• return -2 if nothing was recognized;

• or return any value for res according to what was read.

22/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

On 32-bit platforms (or anywhere where size_t is the same size as uint32) the value read into res may
also be -1, even on error, as it will be cast to a signed value later. This confuses consumers of this function.

Moreover, some consumers may be confused by further corner-cases, such as in GlyfLookup():

1637 /*--
1638 Return a pointer into the glyf table based on the given tables and Glyph ID
1639 Since this method doesn't check for spaces, it is good to call IsSpace before using it.
1640 Return NULL on error.
1641 --*/
1642 void * GlyfLookup(gid16 nGlyphId, const void * pGlyf, const void * pLoca,
1643 size_t lGlyfSize, size_t lLocaSize, const void * pHead)
1644 { [...]
1668 long lGlyfOffset = LocaLookup(nGlyphId, pLoca, lLocaSize, pHead);
1669 void * pSimpleGlyf = GlyfLookup(pGlyf, lGlyfOffset, lGlyfSize); // invalid loca offset
 returns null
1670 return pSimpleGlyf;
1671 }

According to the comment on line 1669, invalid offsets should be caught by GlyfLookup(), in which case
it is expected to return NULL. This may not be the case:

1243 /*--
1244 Return a pointer into the glyf table based on the given offset (from LocaLookup).
1245 Return NULL on error.
1246 --*/
1247 void * GlyfLookup(const void * pGlyf, size_t nGlyfOffset, size_t nTableLen)
1248 {
1249 const uint8 * pByte = reinterpret_cast<const uint8 *>(pGlyf);
1250 if (nGlyfOffset + pByte < pByte || nGlyfOffset + sizeof(Sfnt::Glyph) >= nTableLen)
1251 return NULL;
1252 return const_cast<uint8 *>(pByte + nGlyfOffset);
1253 }

This function performs two checks:

• nGlyfOffset + pByte < pByte will always fail if pByte (so really pGlyf) is NULL, or if
nGlyfOffset represents success as -1;

• nGlyfOffset + sizeof(Sfnt::Glyph) >= nTableLen will wrap around for
any negative value close to 0 (e.g. -1 or -2) and therefore almost always be smaller than
nTableLen.

In the unlikely case that the address for pByte is situated lower than sizeof(Sfnt::Glyph)
(about 10 to 20 depending on alignment), a value of nGlyfOffset between -pByte and -
sizeof(Sfnt::Glyph) will therefore bypass this test on 32-bit platforms.

Impact:
Low (Some sanity checks may be bypassed in unlikely conditions)

Recommendation:
• Improve the internal API when checking for errors.

23/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

• Review these sanity checks.

4.1.15 MGR-015 — Graphite/src/inc/Compression.h::overrun_copy Integer Overflow
Leads to Uninitialized Buffer

Vulnerability ID: MGR-015

Vulnerability type: Integer overflow

Threat level: Low

Description:
An integer overflow can be found in overrun_copy() of the LZ4 implementation.

Technical description:

u8 * overrun_copy(u8 * d, u8 const * s, size_t n) {
 size_t const WS = sizeof(unsigned long);
 u8 const * e = s + n;
 do
 {
 unaligned_copy<WS>(d, s);
 d += WS;
 s += WS;
 }
 while (s < e);
 d-=(s-e);

 return d;
}

If e is overflowed, then only one word will be copied, but d will be updated as if all n bytes were copied.

Impact:
Low

Recommendation:
Check for integer overflow and report errors.

24/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

4.1.16 MGR-016 — Graphite/src/inc/Compression.h::overrun_copy Possible Buffer
Overflow

Vulnerability ID: MGR-016

Vulnerability type: Buffer overflow

Threat level: Low

Description:
The overrun_copy function can write out-of-bounds, by at most word-size-1 bytes.

Technical description:
The following snippet shows the relevant code:

u8 * overrun_copy(u8 * d, u8 const * s, size_t n) {
 size_t const WS = sizeof(unsigned long);
 u8 const * e = s + n;
 do
 {
 unaligned_copy<WS>(d, s);
 d += WS;
 s += WS;
 }
 while (s < e);
 d-=(s-e);

 return d;
}

Since overrun_copy only copies word-sized chunks and n % wordsize != 0, there is a chance for
a write operation outside of the corresponding buffer. It seems the two invocations of this function in src/
Decompressor.cpp do make sure there is always more than wordsize bytes at the end of the buffer. This
makes this issue only potential, in the case of another TOCTOU issue.

Impact:
Low

Recommendation:
Possibly ignore, as the LZ4 decompressor prohibits exploitable conditions to trigger.

4.1.17 MGR-017 — Graphite/src/Segment.cpp linkClusters Null Pointer Dereference

Vulnerability ID: MGR-017

25/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Vulnerability type: NULL Pointer Dereference

Threat level: Low

Description:
Segment::linkClusters() contains a possible NULL pointer dereference.

Technical description:
The following snippet shows the function of interest:

void Segment::linkClusters(Slot *s, Slot * end)
{
 end = end->next();

 for (; s != end && !s->isBase(); s = s->next());
 Slot * ls = s;

This function is only called from Segment::finalise(), which guards the s parameter against being
NULL. The end parameter is not guarded however. Although it seems natural that if there is is a start slot,
there must also be a last slot, this is not clear immediately from the code.

Impact:
Low (Availability can be restricted due to Denial of Service attacks)

Recommendation:
Introduce a check for NULL and handle accordingly.

4.1.18 MGR-018 — Graphite/src/inc/Sparse.h Sparse(x,y) Code Smell

Vulnerability ID: MGR-018

Vulnerability type: Unneeded code

Threat level: Low

Description:
free() is called on a pointer if the pointer is NULL. This is more of a code smell than a vulnerability, however
it might hint at deeper issues.

26/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Technical description:
In the constructor of the Sparse class:

 m_array.values = grzeroalloc<mapped_type>((m_nchunks*sizeof(chunk) + sizeof(mapped_type)-1)
 / sizeof(mapped_type)
 + n_values);

 if (m_array.values == 0)
 {
 free(m_array.values); m_array.map=0;
 return;
 }

It is unclear why free() is called here. It is probably not a security bug, but it would be interesting to check
the developer's intent here.

Impact:
Low

Recommendation:
Review and refactor this code.

4.1.19 MGR-019 — Graphite/src/inc/FeatureMap.h Possible NULL Pointer Dereference

Vulnerability ID: MGR-019

Vulnerability type: NULL Pointer Dereference

Threat level: Low

Description:
A NULL pointer dereference issue might be found in the constructor of NameAndFeatureRef, although
difficult to trigger.

Technical description:

NameAndFeatureRef(const FeatureRef* p/*not NULL*/) : m_name(p->getId()), m_pFRef(p) {}

A possible NULL pointer dereference, maybe impossible to reach with a NULL in the current implementation.
TOCTOU style abuse might make this exploitable though.

27/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Impact:
Low

Recommendation:
Review the handling of NULL pointers.

4.1.20 MGR-020 — Graphite/src/Code.cpp Machine::Code::Code() Constructor Possible
Memory Leak

Vulnerability ID: MGR-020

Vulnerability type: Memory Leak

Threat level: Low

Description:
A memory leak condition occurs when realloc() fails; some memory resources are wasted.

Technical description:
realloc() returns NULL in case of error, but does not free the original segment. This leads to a memory
leak in the following code:

 else
 _code = static_cast<instr *>(realloc(_code, total_sz));
 _data = reinterpret_cast<byte *>(_code + (_instr_count+1));

 if (!_code)
 {
 failure(alloc_failed);
 return;
 }

The memory leak itself is quite benign, but it should be fixed nonetheless.

Impact:
Low

Recommendation:
realloc() into a temporary variable, and free the former variable if realloc() fails to allocate memory.

28/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

4.1.21 MGR-021 — Graphite/src/inc/List.h Possible Integer/memory Overflow

Vulnerability ID: MGR-021

Vulnerability type: Integer overflow

Threat level: Low

Description:
The list implementation does not handle integer overflows when calling realloc(). This is probably not a
problem in the current implementation of Graphite, but it would be safer to check.

Technical description:
With carefully crafted input it might be possible to cause an overflow in the List implementation:

void Vector<T>::reserve(size_t n) {
...
m_first = static_cast<T*>(realloc(m_first, n*sizeof(T)));

Impact:
Low

Recommendation:
Handle overflows.

29/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

5 Future Work

• Additional fuzzing on the VM
Given the considerable amount of effort put into fuzzing before this project, we were specifically
tasked to look for flaws typically not covered by fuzzers. It still seems possible to find more
complicated issues by fuzzing though. To that effect, a specific setup could be created, fuzzing
only a particular action or constraint in the Silf table. The surrounding sanity checks, addresses
and checksums could then be left untouched in the fuzzed font, without affecting the results of the
fuzzer.

• Deeper focus on the state engine
We did not look for logic errors in the state engine. We suspect a Denial of Service condition could
be reached, where the state engine would be tricked to loop infinitely. A path to this situation could
also be found while fuzzing the Silf table, as suggested above.

30/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

6 Conclusion

Two particular classes of bugs were uncovered during the audit: integer overflows and NULL pointer
dereferences. While the former may be exploitable in some conditions, no real danger was identified. Most of
the remaining issues should only trigger controlled, harmless crashes in normal conditions.

As a consequence the code looks generally robust, even though some TOCTOU conditions might still be
lurking. It is however apparent that there has been effort put into fuzzing and hardening Graphite over the past
year.

Finally we want to emphasize that security is a continuous process; this penetration test is just a one-time
snapshot. Security posture must be continuously evaluated and improved. Regular audits and ongoing
improvements are essential in order to maintain control of your corporate information security. We hope that
this pentest report (and the detailed explanations of our findings) will contribute meaningfully towards that end.
Do not hesitate to let us know if you have any further questions or need further clarification of anything in this
report.

31/32 Radically Open Security B.V. - Chamber of Commerce 60628081

Confidential

Appendix 1 Testing team

Stefan Marsiske Stefan runs workshops on radare2, embedded hardware, lock-picking, soldering,
gnuradio/SDR, reverse-engineering, and crypto topics. In 2015 he scored in the
top 10 of the Conference on Cryptographic Hardware and Embedded Systems
Challenge. He has run training courses on OPSEC for journalists and NGOs.

Pierre Pronchery Pierre Pronchery is a Senior IT-Security Consultant and an accomplished
developer. Freelancing for about a decade now, he could be found auditing
major companies in the Telecommunications and Finance sectors, or supporting
the Open Source Software and Hardware movements. He is a developer for
the NetBSD Foundation since 2012, and more recently, a co-founder of Defora
Networks GbR in Germany.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is
also the co-founder/CEO of Radically Open Security.

32/32 Radically Open Security B.V. - Chamber of Commerce 60628081

