

Helm
Security Assessment
August 10, 2020

Prepared For:
Matt Farina | Helm
matt@mattfarina.com

Matt Butcher | Helm
technosophos@gmail.com

Prepared By:
Dominik Czarnota | Trail of Bits
dominik.czarnota@trailofbits.com

Johanna Ratliff | Trail of Bits
johanna.ratliff@trailofbits.com

mailto:matt@mattfarina.com
mailto:technosophos@gmail.com
mailto:dominik.czarnota@trailofbits.com
mailto:johanna.radcliff@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Coverage

Recommendations Summary
Short term
Long term

Findings Summary
1. Helm does not warn the user about important file permissions that are too broad
2. The ValidName Kubernetes resource name regex may lead to denial of service
3. Helm's Mac OS build keeps a file descriptor to /etc/.mdns _debug file open if this file
exists due to bug in mdns/lookup library
4. Lack of name validation in helm create command allows data to be injected into
generated yaml files
5. The helm create command does not overwrite files as stated in its help message
6. The helm create command does not warn that a directory or file already exists
7. Helm executes VCS commands as external programs relying on user configuration
8. Plugins can't be installed from VCS if URL ends with archive extractor’s extension
9. Plugin command name is not validated; can duplicate other plugin commands and
Helm's top-level commands
10. The helm dependency list command won't print correct dependency status for
certain dependency names
11. Path traversal through chart's dependency alias
12. Chart repository index.yaml file allows for duplicate entries
13. Adding helm repository may overwrite another one without warning
14. Directories created via os.MkdirAll are not checked for permissions

A. Vulnerability Classifications

B. Code Quality Recommendations

C. The ValidName Regex Denial-of-Service Timing

D. How to Reproduce Finding 12 (Duplicate Entries in Chart Repository)

E. CNCF Requirements Criteria Review

© 2020 Trail of Bits Helm Assessment | 1

Executive Summary
From July 27 through August 5, 2020, Trail of Bits reviewed the security of Helm. We
conducted this assessment over the course of three person-weeks with two engineers
working from v3.3.0-rc.1 (c2dfaa) from the Helm repository.

In week one, we employed static analysis techniques such as gosec , errcheck , CodeQL ,
semgrep , and the GoLand code inspection feature while gaining a deeper understanding of
the codebase through manual review. This yielded three findings ranging from
informational to low severity. Additionally, we investigated the potential issue of yaml
bombs, which resulted in pull request go-yaml/yaml#637 to the go-yaml library used by
Helm. This fix would address a theoretical scenario where the underlying counters used to
prevent yaml bombs could overflow and lead to a denial of service.

In the final week, we conducted deeper analysis of certain code paths such as Helm's
plugin system, template parsing and rendering, and interactions with Kubernetes clusters.
This resulted in 11 more findings ranging from informational to medium severity. Most
notably, findings TOB-HELM-009 , TOB-HELM-011 , and TOB-HELM-012 detail issues related
to plugin command duplication; a path traversal in a chart configuration file that can lead
to processing of malicious yaml files or information leaks; and a yaml validation deficiency
that allows duplicate entries in chart repository index files.

We also reviewed the CNCF requirements criteria in Appendix E and included code quality
recommendations in Appendix B to help improve and future-proof the Helm codebase.

Our assessment revealed a total of 14 findings ranging from medium to informational
severity. Overall, the Helm codebase maturity could be improved. In some areas, it does
not perform the necessary data validation, and in others the implementation either does
not match the expected functionality or is not fully documented. These gaps can affect the
security posture of the system since Helm users may make incorrect assumptions.

To improve the security posture of Helm, we recommend addressing the findings in this
report, prioritizing short-term recommendations, and integrating long-term
recommendations into future releases. Once fixes are applied, another assessment should
be performed to ensure the fixes are adequate and do not introduce additional security
risks.

© 2020 Trail of Bits Helm Assessment | 2

https://github.com/helm/helm/tree/v3.3.0-rc.1
https://github.com/helm/helm/tree/v3.3.0-rc.1
https://github.com/helm/helm/tree/v3.3.0-rc.1
https://github.com/securego/gosec
https://github.com/kisielk/errcheck
https://github.com/github/codeql-go
https://semgrep.dev/
https://github.com/go-yaml/yaml/pull/637

Project Dashboard
Application Summary

Engagement Summary

Vulnerability Summary

Category Breakdown

Name Helm

Version v3.3.0-rc.1 (c2dfaa)

Type Go

Platforms MacOS, Linux, Windows

Dates July 27, 2020–Aug 5, 2020

Method Whitebox

Consultants Engaged 2

Level of Effort 3 person-weeks

Total High-Severity Issues 0

Total Medium-Severity Issues 3 ◼◼◼

Total Low-Severity Issues 7 ◼◼◼◼◼◼◼

Total Informational-Severity Issues 3 ◼◼◼

Total Undetermined-Severity Issues 0

Total 13

Access Controls 1 ◼

Auditing and Logging 1 ◼

Configuration 1 ◼

Data Validation 9 ◼◼◼◼◼◼◼◼◼

Undefined Behavior 1 ◼

Total 13

© 2020 Trail of Bits Helm Assessment | 3

https://github.com/helm/helm/tree/v3.3.0-rc.1

Engagement Goals
The engagement was scoped to provide a security assessment of Helm 3. Specifically, we
sought to answer the following questions:

● Is the data processed by Helm validated properly?
● Are the filesystem permissions used by Helm secure?
● Does Helm provide the necessary logging for sensitive operations?
● Does Helm properly use basic cryptographic practices, where applicable?
● Are there any correctness issues in error-handling within Helm?
● Is there any evidence of credential issues or exposure?
● Does Helm meet CNCF requirements for secure development?

Coverage
Internal Helm logic and helm CLI. Using automated analysis tools such as gosec ,
ineffassign , errcheck , CodeQL, and go vet , we discovered the best locations to dive
deeper into the code for manual analysis. Ultimately we focused on topics including (but
not limited to) potential cascading errors from rollbacks and user permissiveness.

Helm upgrade and Helm rollback. Since we noticed a potential for cascading errors in a
rollback scenario, we attempted many manual upgrade and rollback processes that were
killed at various times during the process. We attempted to produce a situation in which a
Helm rollback would fail but remain completely hidden from the user. Helm history
successfully communicates the state of various upgrade and rollback scenarios even if the
exact error is not known. This gives the user enough information to remedy the situation
regardless of specifics (in the scenarios tested by Trail of Bits).

Decompression bombs. We assessed this by manually analyzing any places where inputs
were unpacked to confirm that they could not cascade multiple levels deep. Helm could still
be susceptible to an overlapping files compression bomb but the implementation of a
memory limit in places where Helm takes input (such as charts) is not valid due to the
variable nature of Helm releases and Kubernetes deployments.

YAML bombs. We tried different YAML bomb denial-of-service payloads against yaml files
parsed by Helm. The go-yaml library used seems to properly protect against this scenario,
but we sent a go-yaml/yaml#637 pull request to improve this mitigation.

User permissions. When we analyzed permissions provided to users and processes to
assess if overly permissive states could cause potential harm, we discovered that
permissions are not checked for used configuration files (TOB-HELM-001) and the MkdirAll
operation (TOB-HELM-014).

© 2020 Trail of Bits Helm Assessment | 4

https://github.com/securego/gosec
https://github.com/gordonklaus/ineffassign
https://github.com/kisielk/errcheck
https://www.usenix.org/system/files/woot19-paper_fifield_0.pdf
https://en.wikipedia.org/wiki/Billion_laughs_attack#Variations
https://en.wikipedia.org/wiki/Billion_laughs_attack#Variations
https://github.com/go-yaml/yaml/pull/637

Data validation. Using various inputs, manual analysis, and debugging methods, we
assessed commands and components such as the plugin system, template-rendering code,
chart generation, parsing, and installation for insufficient validation that could lead to
injections, path traversals, denial-of-service scenarios, and other bugs.

© 2020 Trail of Bits Helm Assessment | 5

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short term
� Check the permissions of important files processed by Helm and warn the user if
they are too broad (e.g., readable or writable by others). This will help protect users’
configuration files from being leaked or manipulated by others, and may catch such
vulnerabilities if they occur. TOB-HELM-001

� Merge the validateReleaseName and validateMetadataName functions into one
function; then have this single function 1) check for name length and 2) match the
regular expression. If the metadata name check has different length requirements, keep
the functions separate but add a sane length check. Alternatively, limit the number of
match repetitions in the regular expression itself. This will prevent denial-of-service
scenarios via regular expression processing functions. TOB-HELM-002

� Document that the /etc/.mdns_debug file stays open forever if it exists on Mac OS
builds internally. Documentation may expedite diagnosis of bugs related to this issue.
Note: Trail of Bits will report this issue to Apple. TOB-HELM-003

� Validate the helm create command NAME parameter to prevent keys and values
from being injected into the generated yaml files. TOB-HELM-004

� Make sure the helm create command's documentation matches its
implementation to prevent ambiguous scenarios. TOB-HELM-005

� Change the logged message in the helm create command to indicate when the
chart directory already exists so its content can be overwritten. This will improve user
experience of the Helm command line interface. TOB-HELM-006

� Fix the way Helm interacts with VCS systems so it doesn't depend on the user's VCS
configuration files. Use a VCS library to perform the necessary actions instead of
executing VCS commands via shell. Alternatively, add command line flags to prevent the
user’s configuration files from being employed. This will help prevent unexpected behavior
or failures when using Helm. TOB-HELM-007

� Either change the NewForSource function to allow for plugin names that end with
archive extensions, or document the limitations for plugin URLs. Additionally, extend

© 2020 Trail of Bits Helm Assessment | 6

the error message to include more information about the issue to improve the Helm plugin
installation experience for users. TOB-HELM-008

� Add appropriate validation to the installed or updated Helm plugin's command
name to prevent the duplication of other commands or the injection of unexpected
characters into the plugin name. Additionally, update the "Installing a Plugin"
documentation to describe the plugin command name restrictions. TOB-HELM-009

� Fix the dependencyStatus function used by the helm dependency list command so
it properly fetches the chart's dependencies statuses. Find archives that start with the
dependency name specified in the Chart.yaml file, then check if the remaining name part
is a version string. This will prevent the display of an unexpected "too many matches"
status by the helm dependency list command for a chart's dependency with an "ok"
status. TOB-HELM-010

� Validate that the alias field parsed from the chart's dependency specification is in
an expected format. Such validation should prevent path traversal during template
rendering. For example, it should disallow special characters like newlines that could lead
to keys and value injection in yaml files. TOB-HELM-011

� Validate that the chart repository index.yaml file does not contain duplicate
entries. Use a library routine that allows for strict yaml decoding or verification. This will
prevent security issues as well as bug-prone situations that would permit an entry to be
written into the index twice and allow the last duplicated entry to be used by Helm.
TOB-HELM-012

� Validate that a repository already exists in Helm and error out that the user should
first remove it if they want to overwrite it during the helm repo add command. Also,
consider adding a special command line flag to trigger the overwriting of an existing
repository. TOB-HELM-013

� When using utilities such as os.MkdirAll , check all directories in the path and
validate their owner and permissions before performing operations on them. This will
help prevent sensitive information from being written to a pre-existing attacker-controlled
path. TOB-HELM-014

© 2020 Trail of Bits Helm Assessment | 7

https://helm.sh/docs/topics/plugins/#installing-a-plugin

Long term
� Consider building a full static Helm binary that doesn’t depend on system libraries
to prevent similar issues related to system libraries. TOB-HELM-003

� Add appropriate testing to ensure the helm create command performs the actions
it is intended to do. This will prevent future logic changes from introducing regressions.
TOB-HELM-005

� Add tests to ensure the helm commands that use VCS systems do not rely on users’
configuration files. This will prevent future logic changes from introducing regressions.
TOB-HELM-007

� Add tests to ensure the Helm plugins can be installed from VCS urls ending with
archive extensions. This will prevent future logic changes from introducing regressions.
TOB-HELM-008

� Add tests for plugin installation, and updates to ensure that plugin command
names are validated properly. Plugin command names should be checked against
unexpected values and overwriting of other Helm or plugin command names.
TOB-HELM-009

� Add tests to ensure the helm dependency list command works properly with
dependencies that have specific names as described in the finding. This will prevent
future logic changes from introducing regressions. TOB-HELM-010

� Add more tests to ensure that all chart yaml files and all possible fields are
validated properly against malicious data. This will help prevent various injection issues
from appearing if the code changes. TOB-HELM-011

� Add tests to ensure the helm repo add command errors out when an already
existing repository is added. TOB-HELM-013

� Enumerate files and directories for their expected permissions overall, and build
validation to ensure appropriate permissions are applied before creation and upon
use. Ideally, this validation should be centrally defined and used throughout the
application as a whole. TOB-HELM-014

© 2020 Trail of Bits Helm Assessment | 8

Findings Summary

Title Type Severity

1 Helm does not warn the user about
important file permissions that are too
broad

Auditing and
Logging

Low

2 The ValidName kubernetes resource name
regex may lead to denial of service

Data Validation Low

3 Helm's Mac OS build keeps a file descriptor
to /etc/.mdns_debug file open if this file
exists due to bug in mdns/lookup library

Undefined
Behavior

Informational

4 Lack of name validation in helm create
command allows data to be injected into
generated yaml files

Data Validation Low

5 The helm create command does not
overwrite files as stated in its help message

Data Validation Low

6 The helm create command does not warn
that a directory or file already exists

Auditing and
Logging

Informational

7 Helm plugin executes VCS commands as
external programs relying on user
configuration

Configuration Low

8 Plugins can't be installed from VCS if URL
ends with archive extractor’s extension

Data Validation Informational

9 Plugin command name is not validated; can
duplicate other plugin commands and
Helm's top-level commands

Data Validation Medium

10 The helm dependency list command
won't print correct dependency status for
certain dependency names

Data Validation Informational

11 Path traversal through chart's dependency
alias

Data Validation Medium

12 Chart repository index.yaml file allows for
duplicate entries

Data Validation Medium

13 Adding helm repository may overwrite Data Validation Low

© 2020 Trail of Bits Helm Assessment | 9

another one without warning

14 Directories created via os.MkdirAll are
not checked for permissions

Access Controls Low

© 2020 Trail of Bits Helm Assessment | 10

1. Helm does not warn the user about important file permissions that are
too broad
Severity: Low Difficulty: Medium
Type: Auditing and Logging Finding ID: TOB-HELM-001
Target: various places in Helm codebase

Description
Helm does not check if the permissions of $KUBECONFIG or other configuration files passed
to it are too broad. This may allow user configuration files to be leaked without the user
noticing.

This issue can be tested by changing permissions of the used files such as ~/.kube/config
or other used files (i.e., additional configuration files specified with helm install -f) to
0777 while using Helm. Helm does not log a warning in those scenarios.

Exploit Scenario
Alice creates a yaml file with permissions that are too broad to override values in later
installed charts. Eve, another user on the same machine, accesses the file and steals
important information from it or tampers with it to set up a backdoor in charts installed by
Alice.

Recommendation
Short term, check the permissions of important files processed by Helm and warn the user
if they are too broad (e.g., readable or writable by others). This will help protect users’
configuration files from being leaked or manipulated by others, and may catch such
vulnerabilities if they occur.

© 2020 Trail of Bits Helm Assessment | 11

2. The ValidName Kubernetes resource name regex may lead to denial of
service
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-HELM-002
Target: helm/pkg/action/action.go and helm/pkg/lint/rules/template.go

Description
The ValidName regular expression (Figures 2.1-2) used for validating Kubernetes resource
names is vulnerable to a regular expression denial of service (ReDoS) .

Appendix C shows a proof of concept of this issue and regex matching timings for payloads
of different length. This regex is used in the validateReleaseName and
validateMetadataName functions (Figures 2.3-4). They are used to validate the Kubernetes
resource names either passed to Helm commands as CLI arguments or present in linted
charts’ yaml files.

Figure 2.1: The ValidName regex. (helm/pkg/action/action.go#L65-L75 also defined in
helm/pkg/lint/rules/template.go#L46)

Figure 2.2: Visualization of the ValidName regex (regexper.com).

The validateReleaseName function also validates the length of the matched string, which
could prevent the ReDoS case. However, this check is performed after matching the regex,
which allows a longer payload to be processed and causes the problem. Additionally, this
function is used with input that comes from command-line arguments. Considering that
operating systems limit the length of CLI arguments, it is unlikely that the
validateReleaseName function can currently be used to trigger the DoS.

var ValidName =
regexp. MustCompile (̀^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$`)

func validateReleaseName (releaseName string) error {
if releaseName == "" {

return errMissingRelease
}

© 2020 Trail of Bits Helm Assessment | 12

https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://github.com/helm/helm/blob/ceff32d5f8aa173549426625b608137a47981447/pkg/action/action.go#L65-L75
https://github.com/helm/helm/blob/e7ab975112c139e54de6055c28c0a0ecb19a4e7d/pkg/lint/rules/template.go#L46
https://regexper.com/#%5E%5Ba-z0-9%5D%28%5B-a-z0-9%5D*%5Ba-z0-9%5D%29%3F%28%5C.%5Ba-z0-9%5D%28%5B-a-z0-9%5D*%5Ba-z0-9%5D%29%3F%29*%24

Figure 2.3: The validateReleaseName function. (helm/pkg/action/upgrade.go#L145-L155)

Figure 2.4: The validateMetadataName function.
(helm/pkg/lint/rules/template.go#L166-L173)

Exploit Scenario
Eve prepares a malicious chart with the following command:

python3 -c 'open("Chart.yaml", "w").write("name: "+"a"*1_100_000_000+".")'

Even then sends this 1GB Chart.yaml file to Alice which lints it via the helm lint command
and causes a denial of service on Alice's machine.

Recommendation
Short term, merge the validateReleaseName and validateMetadataName functions into
one function; then have this single function 1) check for name length and 2) match the
regular expression. If the metadata name check has different length requirements, keep
the functions separate but add a sane length check. Alternatively, limit the number of
match repetitions in the regular expression itself. This will prevent denial-of-service
scenarios via regular expression processing functions.

if ! ValidName. MatchString (releaseName) || (len (releaseName) > releaseNameMaxLen) {
return errInvalidName

}

return nil
}

func validateMetadataName (obj * K8sYamlStruct) error {
// This will return an error if the characters do not abide by the standard OR if the
// name is left empty.
if validName. MatchString (obj. Metadata . Name) {

return nil
}
return fmt. Errorf ("object name does not conform to Kubernetes naming requirements:

%q" , obj. Metadata . Name)
}

© 2020 Trail of Bits Helm Assessment | 13

https://github.com/helm/helm/blob/ceff32d5f8aa173549426625b608137a47981447/pkg/action/upgrade.go#L145-L155
https://github.com/helm/helm/blob/e7ab975112c139e54de6055c28c0a0ecb19a4e7d/pkg/lint/rules/template.go#L166-L173

3. Helm's Mac OS build keeps a file descriptor to /etc/.mdns_debug file
open if this file exists due to bug in mdns/lookup library
Severity: Informational Difficulty: High
Type: Undefined Behavior Finding ID: TOB-HELM-003
Target: Helm Mac OS build

Description
A Mac OS Helm build tries to access a /etc/.mdns_debug file as one of the first files it
opens (Figure 3.1). If this file exists, it is then left open, most likely unnecessarily. This can
lead to unexpected behavior if, for example, Helm is run with limited resources or if it’s
assumed that a certain file descriptor corresponds to a specific resource.

It seems this issue comes from Apple's mdns lookup library, which opens the
/etc/.mdns_debug file during its initialization to check some debug flags and never closes it
(Figure 3.2).

Figure 3.1: Files accessed by Helm on a Mac OS build, inspected with the opensnoop tool.

$ sudo opensnoop -n helm
dtrace: system integrity protection is on, some features will not be available

 UID PID COMM FD PATH
 501 57574 helm 5 .
 501 57574 helm 5 /dev/dtracehelper
 501 57574 helm 5 /dev/urandom
 501 57574 helm 5 /etc/.mdns_debug
 501 57574 helm 6 /Users/dc/tob/helm/bin
 501 57574 helm 6 /Users/dc/tob/helm
 501 57574 helm 6 /Users/dc/tob
 501 57574 helm 6 /Users/dc
 501 57574 helm 6 /Users
 501 57574 helm 6 /Users/dc/tob/helm/bin
 501 57574 helm -1 /Users/dc/tob/helm/bin/Info.plist
 501 57574 helm 8 /Users/dc/.kube/config
 ...

define MDNS_DEBUG_FILE "/etc/.mdns_debug"

// (...)

static void
_mdns_init (void)
{

pthread_atfork (_mdns_atfork_prepare, _mdns_atfork_parent, _mdns_atfork_child);

if (getenv ("RES_DEBUG") != NULL) _mdns_debug |= MDNS_DEBUG_STDOUT;
int fd = open (MDNS_DEBUG_FILE, O_RDONLY, 0);
errno = 0 ;

if (fd >= 0)
{

int i, n;

© 2020 Trail of Bits Helm Assessment | 14

https://osxdaily.com/2010/01/27/track-an-applications-usage-in-mac-os-x/

Figure 3.2: The _mdns_init function that opens the /etc/.mdns_debug file and never closes it.
(opensource.apple.com/source/Libinfo/Libinfo-476/lookup.subproj/mdns_module.c)

Recommendation
Short term, document that the /etc/.mdns_debug file stays open forever if it exists on Mac
OS builds internally. Documentation may expedite diagnosis of bugs related to this issue.
Note: Trail of Bits will report this issue to Apple.

Long term, consider building a full static Helm binary that doesn’t depend on system
libraries to prevent similar issues related to system libraries.

char c[5];
memset (c, 0 , sizeof (c));
n = read (fd, c, 4);

for (i = 0 ; i < n; i++)
{

if ((c[i] == 'o') || (c[i] == 'O')) _mdns_debug |= MDNS_DEBUG_STDOUT;
if ((c[i] == 'e') || (c[i] == 'E')) _mdns_debug |= MDNS_DEBUG_STDERR;
if ((c[i] == 'a') || (c[i] == 'A')) _mdns_debug |= MDNS_DEBUG_ASL;

}
}

}

© 2020 Trail of Bits Helm Assessment | 15

https://opensource.apple.com/source/Libinfo/Libinfo-476/lookup.subproj/mdns_module.c

4. Lack of name validation in helm create command allows data to be
injected into generated yaml files
Severity: Low Difficulty: Medium
Type: Data Validation Finding ID: TOB-HELM-004
Target: Helm create command

Description
The helm create command, which generates a chart directory and files, doesn't validate
the passed NAME argument. An attacker may include newlines in the NAME argument and
inject keys and values into the generated yaml files. Figure 4.1 shows an example injection:

Figure 4.1: Proof of concept of helm create command NAME parameter injection.

Exploit Scenario
Alice sets up a web application that allows her to create and test charts. Eve uses the form
and injects a malicious payload to the generated yamls through the name parameter.

Recommendation
Short term, validate the helm create command NAME parameter to prevent keys and
values from being injected into the generated yaml files.

$./helm create "$(printf " xxx\ninjected_key: injected_value ")"
Creating xxx
injected_key: injected_value

$ head -n4 xxx$'\n'injected_key:\ injected_value/*.yaml
==> xxx
injected_key: injected_value/Chart.yaml <==
apiVersion: v2
name: xxx
injected_key: injected_value
description: A Helm chart for Kubernetes

==> xxx
injected_key: injected_value /values.yaml <==
Default values for xxx
injected_key: injected_value.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

© 2020 Trail of Bits Helm Assessment | 16

5. The helm create command does not overwrite files as stated in its
help message
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-HELM-005
Target: Helm create command

Description
The helm create command generates a chart directory and files. According to its help
message (Figure 5.1), if the files in the chart directory already exist, the conflicting files will
be overwritten. However, the current implementation does not overwrite any files and just
skips them if they exist (Figure 5.2).

Figure 5.1: The helm create command’s help message (helm create --help).

Figure 5.2: The Create function. (helm/pkg/chartutil/create.go#L601-L609)

Exploit Scenario
Alice uses helm create mychart to create a chart and modifies it. Later, she decides to
recreate the chart and invokes the helm create mychart command, assuming it will
overwrite existing files as stated in the help message. Alice then only modifies some of the
files and is left with an unexpected state.

Recommendation

This command creates a chart directory along with the common files and
directories used in a chart.

// (...)

'helm create' takes a path for an argument. If directories in the given path
do not exist, Helm will attempt to create them as it goes. If the given
destination exists and there are files in that directory, conflicting files
will be overwritten, but other files will be left alone.

func Create (name, dir string) (string, error) {
 // (...)

for _, file := range files {
if _, err := os. Stat (file. path); err == nil {

// File exists and is okay. Skip it.
continue

}
if err := writeFile (file. path , file. content); err != nil {

return cdir, err
}

}
// Need to add the ChartsDir explicitly as it does not contain any file OOTB
if err := os. MkdirAll (filepath. Join (cdir, ChartsDir), 0755); err != nil {

return cdir, err
}
return cdir, nil

}

© 2020 Trail of Bits Helm Assessment | 17

https://github.com/helm/helm/blob/aa033196692ea9c4416fbb3859bebf05aded6bef/pkg/chartutil/create.go#L601-L609

Short term, make sure the helm create command's documentation matches its
implementation to prevent ambiguous scenarios.

Long term, add appropriate testing to ensure the helm create command performs the
actions it is intended to do. This will prevent future logic changes from introducing
regressions.

© 2020 Trail of Bits Helm Assessment | 18

6. The helm create command does not warn that a directory or file
already exists
Severity: Informational Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-HELM-006
Target: Helm create command

Description
If the helm create command generates a chart directory and files even though they
already exist, the command should overwrite them. However, there’s no information that
the chart directory already exists or that conflicting files are being overwritten (Figure 6.1).

The description assumes the issue from Finding TOB-HELM-005 is not present.

Figure 6.1: Executing the helm create command twice on the same chart name.

Recommendation
Short term, change the logged message in the helm create command to indicate when the
chart directory already exists so its content can be overwritten. This will improve user
experience of the Helm command line interface.

$./helm create xxx
Creating xxx
$./helm create xxx
Creating xxx

© 2020 Trail of Bits Helm Assessment | 19

7. Helm executes VCS commands as external programs relying on user
configuration
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-HELM-007
Target: Helm plugin command

Description
The helm plugin command can install or update plugins from version control systems
(VCS) by executing VCS commands as external processes. The executed VCS programs
depend on user configuration files, which may lead to failures or other unexpected
behavior.

Figure 7.1 shows an example git configuration that disables fast-forward merges. When
such a configuration is present and a plugin is installed from git and updated, no further
updates will work due to merge conflicts.

Figure 7.1: An example .gitconfig that breaks consecutive updates of Helm plugins installed
from git repositories.

Recommendation
Short term, fix the way Helm interacts with VCS systems so it doesn't depend on the user's
VCS configuration files. Use a VCS library to perform the necessary actions instead of
executing VCS commands via shell. Alternatively, add command line flags to prevent the
user’s configuration files from being employed. This will help prevent unexpected behavior
or failures when using Helm.

Long term, add tests to ensure the helm commands that use VCS systems do not rely on
users’ configuration files. This will prevent future logic changes from introducing
regressions.

[merge]
 ff = false
[pull]
 ff = false

© 2020 Trail of Bits Helm Assessment | 20

8. Plugins can't be installed from VCS if URL ends with archive extractor’s
extension
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-HELM-008
Target: Helm plugin command

Description
As seen in Figure 8.1, the helm plugin install command installs a Helm plugin from a
given source by checking if it’s:

1. A local reference.
2. A remote http archive.
3. A version control system (VCS) path.

This order and the way the isRemoteHTTPArchive function performs its check (Figure 8.2)
make it impossible to install a plugin from repositories whose URLs end with .tgz or
.tar.gz .

Figure 8.1: The NewForSource function.
(helm/pkg/plugin/installer/installer.go#L65-L74)

// NewForSource determines the correct Installer for the given source.
func NewForSource (source, version string) (Installer, error) {

// Check if source is a local directory
if isLocalReference (source) {

return NewLocalInstaller (source)
} else if isRemoteHTTPArchive (source) {

return NewHTTPInstaller (source)
}
return NewVCSInstaller (source, version)

}

// Extractors contains a map of suffixes and matching implementations of extractor to return
var Extractors = map [string]Extractor{

".tar.gz" : & TarGzExtractor{},
".tgz" : & TarGzExtractor{},

}

// isRemoteHTTPArchive checks if the source is a http/https url and is an archive
func isRemoteHTTPArchive (source string) bool {

if strings. HasPrefix (source, "http://") || strings. HasPrefix (source, "https://") {
for suffix := range Extractors {

if strings. HasSuffix (source, suffix) {
return true

}
}

}
return false

}

© 2020 Trail of Bits Helm Assessment | 21

https://github.com/helm/helm/blob/e1aaf995a6c238f04eb8449f67feb5f2cb95028f/pkg/plugin/installer/installer.go#L65-L74

Figure 8.2: The extractor’s extensions and the isRemoteHTTPArchive function.
(helm/pkg/plugin/installer/http_installer.go#L56-L60 and

helm/pkg/plugin/installer/installer.go#L91-L101)

The issue can be reproduced by forking the https://github.com/adamreese/helm-env
repository, renaming it to end with .tgz or .tar.gz , and trying to install the forked Helm
plugin via its https url. Figure 8.3 shows the output of such an install attempt.

Figure 8.3: An attempt to install the Helm plugin from the GitHub repository with its name ending
in " .tgz ."

Recommendation
Short term, either change the NewForSource function to allow for plugin names that end
with archive extensions, or document the limitations for plugin URLs. Additionally, extend
the error message to include more information about the issue to improve the Helm plugin
installation experience for users.

Long term, add tests to ensure Helm plugins can be installed from VCS urls ending with
archive extensions. This will prevent future logic changes from introducing regressions.

$./helm plugin install https://github.com/disconnect3d/helm-env.tgz
Error: extracting files from archive: gzip: invalid header

© 2020 Trail of Bits Helm Assessment | 22

https://github.com/helm/helm/blob/b6bbe4f08bbb98eadd6c9cd726b08a5c639908b3/pkg/plugin/installer/http_installer.go#L56-L60
https://github.com/helm/helm/blob/e1aaf995a6c238f04eb8449f67feb5f2cb95028f/pkg/plugin/installer/installer.go#L91-L101
https://github.com/adamreese/helm-env

9. Plugin command name is not validated; can duplicate other plugin
commands and Helm's top-level commands
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-HELM-009
Target: Helm plugin command

Description
The helm plugin install and update commands do not validate the installed or updated
plugin's command name specified in the plugin's plugin.yaml file's name key. As a result, a
plugin installation or update can result in:

● Duplication of another plugin’s or Helm's top level command name.
● Injection of special characters such as newlines into the plugin command name,

which allows for spoofing the helm --help result display.

This Helm behavior is also contradictory to the restrictions listed in Helm's documentation,
as shown in Figure 9.1.

Figure 9.1: Helm plugin name restrictions from documentation.
(https://helm.sh/docs/topics/plugins/)

Exploit Scenario
Eve releases a new version of her plugin and changes the plugin command. Alice updates
Eve's plugin in her Helm installation, which ends up overlapping another plugin's
command. Alice then executes another plugin whose command was overwritten, which
ends up executing Eve's plugin.

Recommendation
Short term, add appropriate validation to the installed or updated Helm plugin's command
name to prevent the duplication of other commands or the injection of unexpected
characters into the plugin name. Additionally, update the "Installing a Plugin"
documentation to describe the plugin command name restrictions.

Long term, add tests for plugin installation, and updates to ensure that plugin command
names are validated properly. Plugin command names should be checked against
unexpected values and overwriting of other Helm or plugin command names.

Restrictions on name :
● name cannot duplicate one of the existing helm top-level commands.
● name must be restricted to the characters ASCII a-z, A-Z, 0-9, _ and - .

© 2020 Trail of Bits Helm Assessment | 23

https://helm.sh/docs/topics/plugins/
https://helm.sh/docs/topics/plugins/#installing-a-plugin

10. The helm dependency list command won't print correct
dependency status for certain dependency names
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-HELM-010
Target: helm/pkg/action/dependency.go

Description
The helm dependency list command lists dependencies for a given chart. If the chart
consists of two dependencies X and X-Y , for which the " .tgz " archives exist in the chart's
charts/ directory, the dependency status printed for the X chart will incorrectly be " too
many matches. " This might cause issues for users who check chart dependencies through
the helm dependency list command.

This issue exists because the dependencyStatus function fetches the dependency chart
archives with a " <chartpath>/charts/<dependency-name>-*.tgz " filepath glob:

Figure 10.1: The dependencyStatus function. (helm/pkg/action/dependency.go#L64-L65)

Recommendations
Short term, fix the dependencyStatus function used by the helm dependency list
command so it properly fetches the chart's dependencies statuses. Find archives that start
with the dependency name specified in the Chart.yaml file, then check if the remaining
name part is a version string. This will prevent the display of an unexpected "too many
matches" status by the helm dependency list command for a chart's dependency with an
"ok" status.

Long term, add tests to ensure the helm dependency list command works properly with
dependencies that have specific names as described in the finding. This will prevent future
logic changes from introducing regressions.

func (d * Dependency) dependencyStatus (chartpath string, dep * chart.Dependency, parent
* chart.Chart) string {
 filename := fmt. Sprintf ("%s-%s.tgz" , dep. Name , "*")

 // (...)
 switch archives, err := filepath. Glob (filepath. Join (chartpath, "charts" , filename)); {
 case err != nil :
 return "bad pattern"
 case len (archives) > 1 :
 return "too many matches"
 // (...)

© 2020 Trail of Bits Helm Assessment | 24

https://github.com/helm/helm/blob/bd13b80b12c246acf8959f510c1b21f72b2ccebd/pkg/action/dependency.go#L64-L65

11. Path traversal through chart's dependency alias
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-HELM-011
Target: helm template rendering

Description
The chart's dependency specification in the Chart.yaml file allows specification of an alias
key so the dependency can later be referenced through its alias . However, it is possible to
trigger a path traversal during template rendering with the helm template <chart>
command through the alias field.

The path traversal happens in the ChartFullPath function (Figure 11.1), which is used in
the recAllTpls function (Figure 11.2), and further used by the helm template command.
While the ChartFullPath function uses the dependency chart's Name field, Figure 11.3
shows that when the Alias field exists, it overwrites the dependency's Name field so it is
used instead later on.

Trail of Bits hasn't fully confirmed the impact of this vulnerability, but it seems this issue
allows for adding files outside of the specified chart directory tree to be processed during
rendering of a template.

Figure 11.4 shows the necessary steps to reproduce the issue.

Figure 11.1: The ChartFullPath function. (helm/pkg/chart/chart.go#L111-L117) The
ch.Name() implementation is in the same file. (helm/pkg/chart/chart.go#L70-L76)

// ChartFullPath returns the full path to this chart.
func (ch * Chart) ChartFullPath () string {

if ! ch. IsRoot () {
return ch. Parent (). ChartFullPath () + "/charts/" + ch. Name ()

}
return ch. Name ()

}

func recAllTpls (c * chart.Chart, templates map [string]renderable, vals chartutil.Values) {
// (...)
for _, child := range c. Dependencies () {

recAllTpls (child, templates, next)
}

newParentID := c. ChartFullPath ()
for _, t := range c. Templates {

if ! isTemplateValid (c, t. Name) {
continue

}
templates[path. Join (newParentID, t. Name)] = renderable{

tpl : string (t. Data),
vals : next,
basePath : path. Join (newParentID, "templates"),

}

© 2020 Trail of Bits Helm Assessment | 25

https://helm.sh/docs/topics/charts/#alias-field-in-dependencies
https://github.com/helm/helm/blob/ed80cf4548712cb779bd1607f98dff21d905d346/pkg/chart/chart.go#L111-L117
https://github.com/helm/helm/blob/ed80cf4548712cb779bd1607f98dff21d905d346/pkg/chart/chart.go#L70-L76

Figure 11.2: The recAllTpls function. (helm/pkg/engine/engine.go#L333-L369)

Figure 11.3: The metadata's Name field is overwritten by the Alias field in the
getAliasDependency function. (helm/pkg/chartutil/dependencies.go#L109-L111) Similar

code exists in the processDependencyEnabled function.
(helm/pkg/chartutil/dependencies.go#L143-L145)

Figure 11.4: Steps to reproduce the path traversal. The " heredoc " is the prompt sign from
multi-line input that ends with EOF . The red highlight shows that the engine tried to use the

non-existent path.

Exploit Scenario
Eve, who can only manipulate a chart's dependency alias, sets it so it traverses to another
directory. Alice then renders the chart's templates and gets hit by Eve's attack.

Eve can use this bug to either include her own values into the rendered templates by
preparing her own yaml files, or to leak data by traversing to another directory only
readable by Alice. However, the latter scenario is unlikely, as it would require the data to be
structured in such a way that the template render would not fail.

Recommendation
Short term, validate that the alias field parsed from the chart's dependency specification
is in an expected format. Such validation should prevent path traversal during template
rendering. For example, it should disallow special characters like newlines that could lead
to keys and value injection in yaml files.

}
}

if dep. Alias != "" {
md. Name = dep. Alias

}

$./helm create a
Creating a

$./helm pull stable/mariadb -d ./a/charts/
$ cat <<EOF >>a/Chart.yaml
heredoc> dependencies:
heredoc> - name: mariadb
heredoc> version: 7.3.14
heredoc> alias: ../../traverse
heredoc> EOF

$./helm template a
Error: template: traverse/templates/tests.yaml :1:14: executing
"traverse/templates/tests.yaml" at <.Values.tests.enabled>: nil pointer evaluating interface
{}.enabled

Use --debug flag to render out invalid YAML

© 2020 Trail of Bits Helm Assessment | 26

https://github.com/helm/helm/blob/dbd001e5326561076e17a62b41ea3a9aa18e069d/pkg/engine/engine.go#L333-L369
https://github.com/helm/helm/blob/9d7907342da3b51f0dcb9a539da1e1e57368f641/pkg/chartutil/dependencies.go#L109-L111
https://github.com/helm/helm/blob/9d7907342da3b51f0dcb9a539da1e1e57368f641/pkg/chartutil/dependencies.go#L143-L145

Long term, add more tests to ensure that all chart yaml files and all possible fields are
validated properly against malicious data. This will help prevent various injection issues
from appearing if the code changes.

© 2020 Trail of Bits Helm Assessment | 27

12. Chart repository index.yaml file allows for duplicate entries
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-HELM-012
Target: chart repository index validation

Description
The chart repository index.yaml file consists of entries parsed by the loadIndex function
into a mapping (Figures 12.1-2), which can't contain duplicate keys. However, when the
index file contains duplicate entries, the last entry is parsed. This is contrary to the yaml 1.2
specification, which states that the mapping keys must be unique and duplicates should be
treated as errors (Figure 12.3).

Figure 12.1: The loadIndex function. (helm/pkg/repo/index.go#L279-L292)

Figure 12.2: The IndexFile structure. (helm/pkg/repo/index.go#L78-L84)

func loadIndex (data []byte) (* IndexFile, error) {
i := & IndexFile{}
if err := yaml. Unmarshal (data, i) ; err != nil {

return i, err
}
i. SortEntries ()
if i. APIVersion == "" {

return i, ErrNoAPIVersion
}
return i, nil

}

// IndexFile represents the index file in a chart repository
type IndexFile struct {

APIVersion string ̀json:"apiVersion"`
Generated time.Time ̀json:"generated"`
Entries map [string]ChartVersions ̀json:"entries"`
PublicKeys []string ̀json:"publicKeys,omitempty"`

}

1.3. Relation to JSON
JSON's RFC4627 requires that mappings keys merely “SHOULD” be unique , while YAML insists
they “MUST” be. Technically, YAML therefore complies with the JSON spec, choosing to treat
duplicates as an error. In practice, since JSON is silent on the semantics of such
duplicates, the only portable JSON files are those with unique keys, which are therefore
valid YAML files.

3.2.1. Representation Graph
(...) YAML supports two kinds of collection nodes : sequences and mappings . Mapping nodes are
somewhat tricky because their keys are unordered and must be unique .

3.2.1.3. Node Comparison
Since YAML mappings require key uniqueness , representations must include a mechanism for
testing the equality of nodes. This is non-trivial since YAML allows various ways to format
scalar content. For example, the integer eleven can be written as “0o13” (octal) or “0xB”
(hexadecimal). If both notations are used as keys in the same mapping, only a YAML processor

© 2020 Trail of Bits Helm Assessment | 28

https://github.com/helm/helm/blob/984d2ac7676874ae78a7617f7417513a7a9b5ef2/pkg/repo/index.go#L279-L292
https://github.com/helm/helm/blob/984d2ac7676874ae78a7617f7417513a7a9b5ef2/pkg/repo/index.go#L78-L84
https://yaml.org/spec/1.2/spec.html#id2759572
http://www.ietf.org/rfc/rfc4627.txt
https://yaml.org/spec/1.2/spec.html#mapping//
https://yaml.org/spec/1.2/spec.html#key//
https://yaml.org/spec/1.2/spec.html#equality//
https://yaml.org/spec/1.2/spec.html#id2763754
https://yaml.org/spec/1.2/spec.html#kind//
https://yaml.org/spec/1.2/spec.html#collection//
https://yaml.org/spec/1.2/spec.html#sequence//
https://yaml.org/spec/1.2/spec.html#mapping//
https://yaml.org/spec/1.2/spec.html#mapping//
https://yaml.org/spec/1.2/spec.html#key//
https://yaml.org/spec/1.2/spec.html#equality//
https://yaml.org/spec/1.2/spec.html#id2764652

Figure 12.3: Excerpts from yaml 1.2 specification. (https://yaml.org/spec/1.2/spec.html)

Such activity can lead to unexpected behavior when entries are mistakenly duplicated, or to
security issues if an attacker is able to inject special characters into a generated index file.
Appendix D shows how to reproduce this issue.

Exploit Scenario
Alice hosts a chart repository server and generates the repository index file based on the
uploaded data. Eve finds a bug in Alice's server that allows her to inject newlines into the
generated index files, and she uses it to overwrite all other existing chart specifications to
return a backdoored version of them.

Recommendation
Short term, validate that the chart repository index.yaml file does not contain duplicate
entries. Use a library routine that allows for strict yaml decoding or verification. This will
prevent security issues as well as bug-prone situations that would permit an entry to be
written into the index twice and allow the last duplicated entry to be used by Helm.

which recognizes integer formats would correctly flag the duplicate key as an error.

© 2020 Trail of Bits Helm Assessment | 29

https://yaml.org/spec/1.2/spec.html

13. Adding helm repository may overwrite another one without warning
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-HELM-013
Target: helm repo add command

Description
When the helm repo add command is executed with an already existing repository name,
the command overwrites the existing repository without an error (Figure 13.1). This can
lead to unexpected behavior or chart versioning issues if a user overwrites one repository
with another that contains the same chart name.

Figure 13.1: Overwriting one existing repository with another.

Exploit Scenario
Alice, who has a "release" and "staging" repository added to Helm, updates the "staging"
repository url by using the helm repo add command and mistakenly names it "release."
Alice then installs charts from the staging and release repository, not noticing that the
installed charts are not the intended ones. The installation of the untested version causes
problems in Alice's production environment.

Recommendation
Short term, validate that a repository already exists in Helm and error out that the user
should first remove it if they want to overwrite it during the helm repo add command.
Also, consider adding a special command line flag to trigger the overwriting of an existing
repository.

Long term, add tests to ensure the helm repo add command errors out when an already
existing repository is added.

$./helm repo add my http://localhost:5000/
"my" has been added to your repositories

$./helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com/
my http://localhost:5000/

$./helm repo add my http://localhost:8000/
"my" has been added to your repositories

$./helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com/
my http://localhost:8000/

© 2020 Trail of Bits Helm Assessment | 30

14. Directories created via os.MkdirAll are not checked for permissions
Severity: Low Difficulty: High
Type: Access Controls Finding ID: TOB-HELM-014
Target: multiple locations

Description
Helm uses the os.MkdirAll function to create certain directory paths with specific access
permissions (0755). This function does not perform any permission checks when a given
directory path already exists. This allows an attacker to create a directory with broad
permissions that Helm will use later, thus allowing the attacker to tamper with the files
used by Helm.

Exploit Scenario
Eve has unprivileged access to the machine where Alice uses Helm. Eve watches the
commands executed by Alice and introduces new directories/paths with 0777 permissions
before Helm does so. Eve can then delete and forge files in that directory to change the
result of further commands executed by Alice.

Recommendation
Short term, when using utilities such as os.MkdirAll , check all directories in the path and
validate their owner and permissions before performing operations on them. This will help
prevent sensitive information from being written to a pre-existing attacker-controlled path.

Long term, enumerate files and directories for their expected permissions overall, and
build validation to ensure appropriate permissions are applied before creation and upon
use. Ideally, this validation should be centrally defined and used throughout the application
as a whole.

© 2020 Trail of Bits Helm Assessment | 31

A. Vulnerability Classifications

Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or
software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking, or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for

© 2020 Trail of Bits Helm Assessment | 32

client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details, or must discover
other weaknesses in order to exploit this issue

© 2020 Trail of Bits Helm Assessment | 33

B. Code Quality Recommendations
The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability or user experience and may prevent the introduction of
vulnerabilities in the future.

● internal/monocular/search.go#L132-L134 : Return and check the error result
from JSON decoding. This ensures that a failure to search due to invalid JSON is
propagated up to the user for easier debugging.

● cmd/helm/list.go#L94-L99 : Instead of returning nil , return the error from
EncodeJSON and EncodeYAML .

● pkg/storage/driver/util.go#L41-L48 : defer w.Close() after creation of the
writer in case an error causes a return before the writer is closed in a linear fashion.

● Document the "memory" storage backend in the "Storage backends"
documentation page .

● pkg/kube/wait.go#L191-L192 : Either simplify the expression to if
s.Spec.ClusterIP == "" or, if both conditions are intended, change the && to || .

© 2020 Trail of Bits Helm Assessment | 34

https://github.com/helm/helm/blob/4f72dfcffed082ad8c9039d8bc76638613902a97/internal/monocular/search.go#L132-L134
https://github.com/helm/helm/blob/4f72dfcffed082ad8c9039d8bc76638613902a97/cmd/helm/list.go#L94-L99
https://github.com/helm/helm/blob/2a69fb75668941d79b70f98c0ab4ce3c73e0f239/pkg/storage/driver/util.go#L41-L48
https://github.com/helm/helm/blob/ceff32d5f8aa173549426625b608137a47981447/pkg/action/action.go#L388-L425
https://helm.sh/docs/topics/advanced/#storage-backends
https://helm.sh/docs/topics/advanced/#storage-backends
https://github.com/helm/helm/blob/c2da4fd53dc57189a46797a87b6b30dcd8d44879/pkg/kube/wait.go#L191-L192

C. The ValidName Regex Denial-of-Service Timing
This appendix shows the timing of the regular expression denial-of-service vulnerability
described in TOB-HELM-002 . Figure C.1 shows the timing code, and Figure C.2 shows the
output of running it.

Figure C.1: Code used to confirm the regular expression denial-of-service issue with the
ValidName regex.

Figure C.2: Output of the code from Figure C.1 tested on Go 1.13.9 darwin/amd64 build.
Reformatted for easier readability (removed the timing fraction part and added alignment).

package main

import (
 "time"
 "log"
 "regexp"
 "strings"
)

var ValidName =
regexp. MustCompile (̀^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$`)

func measure (input string) {
 start := time. Now ()
 result := ValidName. MatchString (input)
 elapsed := time. Since (start)
 log. Printf ("Match took %s for length %d, matched: %v" , elapsed, len (input), result)
}

func main () {
 for i := 1 ; i <=1000000000 ; i *= 10 {
 a := strings. Repeat ("a" , i) + "."
 measure (a)
 }
}

$ go run main.go
2020/07/30 13:23:57 Match took 16µs for length 2, matched: false
2020/07/30 13:23:57 Match took 2µs for length 11, matched: false
2020/07/30 13:23:57 Match took 8µs for length 101, matched: false
2020/07/30 13:23:57 Match took 98µs for length 1001, matched: false
2020/07/30 13:23:57 Match took 1ms for length 10001, matched: false
2020/07/30 13:23:57 Match took 9ms for length 100001, matched: false
2020/07/30 13:23:58 Match took 86ms for length 1000001, matched: false
2020/07/30 13:23:58 Match took 816ms for length 10000001, matched: false
2020/07/30 13:24:07 Match took 8.1s for length 100000001, matched: false
2020/07/30 13:25:32 Match took 1m26s for length 1000000001, matched: false

© 2020 Trail of Bits Helm Assessment | 35

https://docs.google.com/document/d/1RnDzIH6pF1FsZWswnupcYZsDwGLU1qETlI612dn_i74/edit#heading=h.hwqqkoocetwt

D. How to Reproduce Finding 12 (Duplicate Entries in Chart
Repository)
To reproduce Finding TOB-HELM-012 :

1. Create the index.yaml file from Figure E.1 and update the urls and digest (if

needed).
2. In the same directory, host a simple http server, e.g., with the python3 -m

http.server command.
3. In another console, add the hosted server as a chart repository, update the cache,

and install the " my/mytest " chart, as shown in Figure E.2.

The installation will install the last duplicated entry, which in this case is a mariadb chart.

Figure E.1: Example chart repository index.yaml file.

Figure E.2: Adding the local chart repository to Helm and installing a chart from it.

apiVersion: v1
entries:
 mytest:
 - apiVersion: v1
 appVersion: 1.1.1
 created: "2020-08-09T19:25:06.92284+02:00"
 digest: 666967b217ed498eadb4b025e3bfe382a12ae2ff9c442e8abc11d8f27b78194c
 name: mytest
 urls:
 - https://kubernetes-charts.storage.googleapis.com/mysql-1.6.6.tgz
 version: 1.1.1
 mytest:
 - apiVersion: v1
 appVersion: 1.1.0
 created: "2020-11-03T19:25:06.92284+02:00"
 digest: 8f91980656568074178e2c02ad808b1db124f244ceb19d3850776c7feac80184
 name: mytest
 urls:
 - https://kubernetes-charts.storage.googleapis.com/mariadb-7.3.14.tgz
 version: 1.1.0
generated: "2020-08-09T19:25:06.916876+02:00"

$./helm repo add my http://localhost:8000/
$./helm repo update
$./helm install --generate-name my/mytest

© 2020 Trail of Bits Helm Assessment | 36

E. CNCF Requirements Criteria Review
This appendix lists general improvements based upon best practices for Free/Libre and
Open Source Software (FLOSS) projects that could be applied to the Helm project.
Introducing these changes will help accommodate the CNCF project graduation criteria.

Detail the contribution process in the repository's README. While there is a
"Community, discussion, contribution, and support" section , it doesn’t link to the
CONTRIBUTING file or to the helm/community repository that details the contribution
process.

Consider updating the GitHub issues and pull request templates to the new flow . This
will make it easier to keep a consistent format for submitted issues, feature requests, and
pull requests.

Link the "Helm Security Process and Policy" document in the CONTRIBUTING
document. This document is currently only referenced in the SECURITY file, and the
CONTRIBUTING document does not describe the whole process, e.g., that the report can be
encrypted.

Force the use of TLS and check the downloaded chart's digests. As pointed out during
Helm threat modeling, Helm does not enforce TLS connections or check the downloaded
charts hashes, especially when they are downloaded through an insecure HTTP connection.
The project should enforce TLS and check the downloaded archive's hash to prevent
man-in-the-middle (MITM) attacks. Another flag can be added so users can work with an
insecure connection if needed.

Add more tests and track test coverage in pull requests. Increase project test coverage
(Figure F.1) and introduce a component to the project’s CI system to track changes in code
coverage as the project matures.

$ GO111MODULE=on go test -run . ./... -coverprofile cover.out
ok helm.sh/helm/v3/cmd/helm 9.090s coverage: 66.7% of statements
ok helm.sh/helm/v3/cmd/helm/require 0.335s coverage: 100.0% of statements
ok helm.sh/helm/v3/cmd/helm/search 0.566s coverage: 96.1% of statements
ok helm.sh/helm/v3/internal/experimental/registry 2.654s coverage: 80.1% of statements
ok helm.sh/helm/v3/internal/fileutil 0.494s coverage: 58.3% of statements
ok helm.sh/helm/v3/internal/ignore 0.348s coverage: 86.1% of statements
ok helm.sh/helm/v3/internal/monocular 0.603s coverage: 74.1% of statements
ok helm.sh/helm/v3/internal/resolver 1.139s coverage: 81.2% of statements
ok helm.sh/helm/v3/internal/sympath 0.619s coverage: 71.1% of statements
? helm.sh/helm/v3/internal/test [no test files]
? helm.sh/helm/v3/internal/test/ensure [no test files]
ok helm.sh/helm/v3/internal/third_party/dep/fs 0.645s coverage: 45.1% of statements
? helm.sh/helm/v3/internal/third_party/k8s.io/kubernetes/deployment/util [no test files]
ok helm.sh/helm/v3/internal/tlsutil 0.459s coverage: 74.3% of statements

© 2020 Trail of Bits Helm Assessment | 37

https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/criteria.md
https://github.com/helm/helm#community-discussion-contribution-and-support
https://github.com/helm/helm/blob/master/CONTRIBUTING.md
https://github.com/helm/community
https://docs.github.com/en/github/building-a-strong-community/about-issue-and-pull-request-templates
https://github.com/helm/community/blob/master/SECURITY.md
https://github.com/helm/helm/blob/master/CONTRIBUTING.md
https://github.com/helm/helm/blob/master/SECURITY.md

Figure F.1: Helm's test coverage.

ok helm.sh/helm/v3/internal/urlutil 0.299s coverage: 91.7% of statements
? helm.sh/helm/v3/internal/version [no test files]
ok helm.sh/helm/v3/pkg/action 1.398s coverage: 52.4% of statements
ok helm.sh/helm/v3/pkg/chart 0.223s coverage: 78.6% of statements
ok helm.sh/helm/v3/pkg/chart/loader 0.269s coverage: 81.5% of statements
ok helm.sh/helm/v3/pkg/chartutil 0.768s coverage: 80.3% of statements
ok helm.sh/helm/v3/pkg/cli 0.584s coverage: 83.3% of statements
? helm.sh/helm/v3/pkg/cli/output [no test files]
ok helm.sh/helm/v3/pkg/cli/values 0.941s coverage: 17.1% of statements
ok helm.sh/helm/v3/pkg/downloader 1.004s coverage: 68.6% of statements
ok helm.sh/helm/v3/pkg/engine 1.002s coverage: 69.5% of statements
ok helm.sh/helm/v3/pkg/gates 1.063s coverage: 100.0% of statements
ok helm.sh/helm/v3/pkg/getter 1.457s coverage: 87.8% of statements
ok helm.sh/helm/v3/pkg/helmpath 0.223s coverage: 68.2% of statements
? helm.sh/helm/v3/pkg/helmpath/xdg [no test files]
ok helm.sh/helm/v3/pkg/kube 1.407s coverage: 28.4% of statements
? helm.sh/helm/v3/pkg/kube/fake [no test files]
ok helm.sh/helm/v3/pkg/lint 1.212s coverage: 100.0% of statements
ok helm.sh/helm/v3/pkg/lint/rules 1.318s coverage: 85.0% of statements
ok helm.sh/helm/v3/pkg/lint/support 0.699s coverage: 100.0% of statements
ok helm.sh/helm/v3/pkg/plugin 1.343s coverage: 87.5% of statements
? helm.sh/helm/v3/pkg/plugin/cache [no test files]
ok helm.sh/helm/v3/pkg/plugin/installer 8.803s coverage: 80.6% of statements
ok helm.sh/helm/v3/pkg/postrender 2.125s coverage: 82.6% of statements
ok helm.sh/helm/v3/pkg/provenance 1.472s coverage: 71.7% of statements
? helm.sh/helm/v3/pkg/release [no test files]
ok helm.sh/helm/v3/pkg/releaseutil 0.932s coverage: 93.1% of statements
ok helm.sh/helm/v3/pkg/repo 0.627s coverage: 82.1% of statements
ok helm.sh/helm/v3/pkg/repo/repotest 0.413s coverage: 52.8% of statements
ok helm.sh/helm/v3/pkg/storage 0.389s coverage: 80.5% of statements
ok helm.sh/helm/v3/pkg/storage/driver 0.489s coverage: 75.5% of statements
ok helm.sh/helm/v3/pkg/strvals 0.208s coverage: 92.3% of statements
ok helm.sh/helm/v3/pkg/time 0.210s coverage: 38.5% of statements

© 2020 Trail of Bits Helm Assessment | 38

