

PegaSys Pantheon
Ethereum Client Security Assessment
December 5th, 2018

Prepared For:
Faisal Khan | ConsenSys
faisal.khan@consensys.net

Meredith Baxter | ConsenSys
meredith.baxter@consensys.net

Prepared By:
Evan Sultanik | Trail of Bits
evan.sultanik@trailofbits.com

Mike Myers | Trail of Bits
mike.myers@trailofbits.com

Paul Kehrer | Trail of Bits
paul.kehrer@trailofbits.com

Changelog:
October 22nd, 2018: Initial report delivered
December 5th, 2018: Updates and fixes

mailto:faisal.khan@consensys.net
mailto:meredith.baxter@consensys.net
mailto:evan.sultanik@trailofbits.com
mailto:mike.myers@trailofbits.com
mailto:paul.kehrer@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals & Coverage

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Invalid entry set in key-value store due to object reuse
2. Multiple remote-code-execution CVEs in JSON deserialization package
3. Multiple CVEs in version of Jenkins server used for Pantheon project
4. Gas overflows can result in null pointer exceptions
5. Unnecessary complexity around setup and use of the CSPRNG
6. Plaintext local storage of node private key risks disclosure
7. <removed after discussion with PegaSys>
8. Unsecured JSON-RPC interface
9. RLP decoding throws on encodings that report a length greater than
Integer.MAX_VALUE
10. Implementation differences between RLP length calculation vs. decoding
11. Pantheon permits RLP encoded ints with leading zeros
12. eth_getTransactionReceipt silently fails for raw transaction
13. Inconsistent milestone defaults can lead to rejected transactions

A. Vulnerability Classifications

B. Code Quality Recommendations

C. Notes on Cryptographic Libraries
JCE providers
Tink
Newer JDK improvements simplify cryptographic operations
urandom permissions issues when reseeding on macOS

D. Additional RLP Unit Tests

E. Using the Java SecurityManager

F. Differential Testing with Etheno
Using Etheno for Differential Testing
Automated Fuzzing with Etheno and Echidna

PegaSys Pantheon Assessment | 1

Executive Summary
From September 24th through October 19th 2018, PegaSys engaged with Trail of Bits to
review the security of their Ethereum client, Pantheon. Trail of Bits conducted this
assessment over the course of eight person-weeks with three engineers working from
commit hash 68164f65cf7b0467cc5accf88c7c3f50cab9f568 [68164f65] from the
Pantheon repository.

In the first week, Trail of Bits reviewed the codebase at a high level, checked for known
vulnerabilities in Pantheon’s dependencies, reviewed the build process and the output of
static analysis tools, and discussed Pantheon’s usage of PRNG APIs, specifically Java’s
SecureRandom.

In the second week, we focused on the overall cryptographic design, the use of
cryptographically secure pseudo-random number generation (CSPRNG), the selection of an
entropy source for the CSPRNG, the local storage of private keys, and the risk from
malformed public keys received from peer nodes. Many of these focal areas arose from
discussions with ConsenSys at the start of the effort.

In week three, we focused on issues related to Pantheon’s implementation of Ethereum’s
DevP2P "wire protocol,” including its implementation of RLP deserialization
(Recursive-Length Prefix encoding format, used by Ethereum network nodes). We also
reviewed the EVM implementation, with a specific focus on potential denial-of-service
attacks (e.g., gas cost manipulation).

We focused week four on an examination of Pantheon’s implementation of the Ethereum
API specification, and its associated JSON-RPC-based interface. This included the integration
of Pantheon with a custom test tool for Ethereum clients, Etheno, that uses differential
analysis to help identify issues with a client’s transaction handling.

Pantheon’s codebase incorporates a robust set of unit tests that prevented many potential
implementation errors. The Pantheon development team had good intuition about
potentially problematic areas of their codebase, and had prepared well for this
assessment.

One high-severity issue was discovered, related to publicly disclosed vulnerabilities in the
version of one of Pantheon’s Java package dependencies. The other findings were medium-
and low-severity, with the typical impact being a potential denial-of-service. In the case of
the unsecured JSON-RPC interface, the risk is partially mitigated by that interface being
off-by-default.

PegaSys should integrate a dependency security-checking solution with the Pantheon build
system. Our recommendations for the use of secure random number generation will
eliminate the difficulties PegaSys has encountered (complexity, prediction resistance, and
reseeding) without reducing security (qq.v. Appendices C and E). Pantheon must implement
the recommended Host header check in its JSON-RPC interface in order to mitigate

PegaSys Pantheon Assessment | 2

browser-based attacks. Incorporating our additional unit tests for RLP and
EVM (q.v. Appendix D), including differential testing (q.v. Appendix F), will further reduce the
likelihood of implementation errors.

PegaSys Pantheon Assessment | 3

Project Dashboard
Application Summary

Name Pantheon

Version 68164f65

Type Ethereum full-node client

Platform Java

Engagement Summary

Dates September 24 to October 19, 2018

Method Whitebox

Consultants Engaged 3

Level of Effort 8 person-weeks

Vulnerability Summary

Total High-Severity Issues 1 ◼

Total Medium-Severity Issues 2 ◼◼

Total Low-Severity Issues 3 ◼◼◼

Total Informational-Severity Issues 5 ◼◼◼◼◼

Total Undetermined-Severity Issues 1 ◼

Total 12

Category Breakdown

Access Controls 1 ◼

Cryptography 1 ◼

Data Exposure 1 ◼

Data Validation 4 ◼◼◼◼

Patching 2 ◼◼

Undefined Behavior 2 ◼◼

Denial of Service 1 ◼

Total 12

PegaSys Pantheon Assessment | 4

Engagement Goals & Coverage
During this assessment, Trail of Bits focused on Pantheon’s use of cryptographic primitives,
the correctness of its EVM implementation, any potential denial-of-service vectors, its
implementation of the DevP2P and RLPx protocols, and its JSON-RPC API.

Crypto

✓ Provide guidance on using SecureRandom correctly
✓ Provide guidance on specifying JCE security providers
✓ Dynamic analysis crypto check with CryptoSense Analyzer
✓ Review public key exchange between nodes
✓ Provide guidance on node private key storage

EVM

✓ Evaluate the correctness of the EVM implementation
✓ Evaluate gas-cost calculations
✓ Identify any denial-of-service cases in the EVM implementation

DevP2P and RLPx

✓ Review DevP2P edge cases
✓ Review type-handling within RLP decoding implementation

JSON-RPC

✓ Review Pantheon’s JSON-RPC method handlers for logic errors
✓ Review Pantheon’s JSON-RPC method handlers for correctness
✓ Review the localhost-only assurance method for the JSON-RPC interface
✓ Investigate RPC edge cases

Misc.

✓ Static analysis check with DevSkim
✓ Enumerate dependencies and review associated codebases for important bugfixes
✓ Examine the use of JNI components RocksDB and Xerial Snappy-Java
✓ Examine the use of a Java Security Manager, if any, as a security sandbox

A future review may wish to examine Pantheon’s implementation of the DevP2P peer
discovery protocol, which is a remaining area to check for exceptional conditions that might
result in a denial-of-service. Likewise, during this assessment we did not examine the use
of the Trie data structure or whether there were any potential abuse cases that could cause
a denial-of-service, because it was considered unlikely and not a current priority.

PegaSys Pantheon Assessment | 5

https://cryptosense.com/analyzer/
https://github.com/Microsoft/DevSkim

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑❑ Adopt a dependency-security checking solution and integrate it into Gradle.
Manually checking the security alerts on every dependency in a project is inefficient and
allows a longer window for vulnerabilities to be introduced. Integrating one of the
open-source or commercial solutions for dependency-checking will alert the development
team to dependency-related security issues as soon as is possible. (TOB-CPP-001)

❑❑ Add a Host header check to the JSON-RPC HTTP interface. Any HTTP interface
designed to be localhost-only must check the Host header for requests to verify that they
legitimately originate from localhost. Without this check, DNS rebinding attacks allow
remote attackers to load JavaScript in the user’s browser to query the JSON-RPC interface.
(TOB-CPP-008)

❑❑ Improve unit test coverage for RLP. Consider adopting the additional RLP unit tests
given in Appendix D. Testing for additional edge cases may prevent exceptions during RLP
decoding. (TOB-CPP-009)

❑❑ Fix any latent bugs related to edge cases in transaction handling. See findings
TOB-CPP-012 and TOB-CPP-013. Addressing these bugs will prevent a blockchain fork that
may, in the worst case, result from a specially crafted transaction.

❑❑ For the PRNG, turn on prediction resistance and stop re-seeding the RNG on every
read. The re-seeding behavior prevents correct use of the RNG on at least macOS, and
appears to be related to the entropy-generation performance issues on AWS instances.
(TOB-CPP-005)

❑❑ Require encryption of the node private key on disk. The private key is currently
written to disk unencrypted, and could be easily read by other applications or captured in
backups. Pantheon should require a password to derive a key using a password-based
key-derivation function and use that key material to encrypt and authenticate the private
key. (TOB-CPP-006)

PegaSys Pantheon Assessment | 6

Long Term
❑❑ Switch to using SecureRandom directly. The current CSRPNG implementation is overly
complex and attempts to replicate features that are already available through the
operating system’s CSPRNG. Directly using SecureRandom will greatly simplify the code and
reduce the risk of CSPRNG misuse. (TOB-CPP-005)

❑❑ Improve integration test coverage for the JSON RPC interface. Some edge cases
appear to have been missed. See findings TOB-CPP-012 and TOB-CPP-013.

❑❑ Join the two separate implementations of RLP decoding under one class, to assure
consistency. The RLPInput class hierarchy for performing a complete decoding is not fully
consistent with the subset implementation of RLP in RlpUtils. See finding TOB-CPP-010.

❑❑ Consider adopting differential fuzzing to ensure continued compatibility with
other Ethereum clients. Differential testing can find behavioral differences between
Pantheon and other Ethereum clients, whether or not Pantheon is the more correct
implementation. Unintended differences could cause a blockchain fork. See Appendix F.

❑❑ Consider enabling the Java SecurityManager to minimize Pantheon’s runtime
privileges on the system to the minimum necessary. In Appendix E we describe how to
add the Java SecurityManager to a Java application. Use of the Java Security Manager is an
effective defense-in-depth approach to reducing the impact of language- or logic-level
exploits.

PegaSys Pantheon Assessment | 7

Findings Summary
Title Type Severity

1 Invalid entry set in key-value store due to
object reuse

Undefined
Behavior

Low

2 Multiple remote-code-execution CVEs in
JSON deserialization package

Patching High

3 Multiple CVEs in version of Jenkins server
used for Pantheon project

Patching Informational

4 Gas overflows can result in null pointer
exceptions

Data Validation Informational

5 Unnecessary complexity around setup
and use of the CSPRNG

Cryptography Low

6 Plaintext local storage of node private key
risks disclosure

Data Exposure Low

7 <removed after discussion with PegaSys> n/a n/a

8 Unsecured JSON-RPC interface Access Controls Medium

9 RLP decoding throws on encodings that
report a length greater than
Integer.MAX_VALUE

Data Validation Informational

10 Implementation differences between RLP
length calculation vs. decoding

Denial of
Service

Medium

11 Pantheon permits RLP encoded ints with
leading zeros

Data Validation Informational

12 eth_getTransactionReceipt silently fails for
raw transaction

Undefined
Behavior

Undetermined

13 Inconsistent milestone defaults can lead
to rejected transactions

Data Validation Informational

PegaSys Pantheon Assessment | 8

1. Invalid entry set in key-value store due to object reuse
Severity: Low Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-CPP-001
Target: services/kvstore/src/main/java/net/consensys/pantheon/services/

kvstore/InMemoryKeyValueStorage.java

Description
The entrySet() method of java.util.map is allowed to successively return a single,
mutable Entry object instance, overwriting the object’s contents during each iteration.
Therefore, the HashSet created on line 63 of InMemoryKeyValueStorage.java
(cf. Figure 1.1) can potentially contain multiple copies of the same Entry object with
contents equal to the last entry returned from hashValueStore.entrySet().

58 @Override

59 public Stream<Entry> entries() {

60 Lock lock = rwLock.readLock();

61 try {

62 lock.lock();

63 return new HashSet<>(hashValueStore.entrySet())

64 .stream()

65 .map(e -> Entry.create(e.getKey(), e.getValue()));

66 } finally {

67 lock.unlock();

68 }

69 }

Figure 1.1: Object reuse bug in the use of Map.entrySet().

This behavior is prohibited according to the Java Set interface API:

Note: Great care must be exercised if mutable objects are used as set elements.
The behavior of a set is not specified if the value of an object is changed in a
manner that affects equals comparisons while the object is an element in the set.
A special case of this prohibition is that it is not permissible for a set to contain
itself as an element.

The severity of this finding is classified as Low because this bug is dependent on the JVM's
implementation of the underlying Map type and may not be a vulnerability in all deployment
scenarios. Moreover, the code currently only appears to be used within tests.

PegaSys Pantheon Assessment | 9

https://docs.oracle.com/javase/8/docs/api/java/util/Set.html
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html

Exploit Scenario
A unit test silently fails to exercise the desired case because the InMemoryKeyValueStorage
instance discards all but the last entry added.

Recommendation
It appears as if the “new HashSet” is superfluous and can simply be removed to resolve this
issue, since the elements of hashValueStore are cloned in the map. In the short term,
confirm whether this fix is sufficient.

In the long term, add source code comments to avoid this issue in other areas of the code.

PegaSys Pantheon Assessment | 10

2. Multiple remote-code-execution CVEs in JSON deserialization package
Severity: High Difficulty: Low
Type: Patching Finding ID: TOB-CPP-002
Target: ethereum/jsonrpc/src/main/java/net/consensys/pantheon/ethereum/jsonrpc

/internal/parameters/JsonRpcParameter.java
(which is, in turn, used from multiple other locations)

Description
There are multiple arbitrary code execution vulnerabilities in the version of the JSON
deserialization component used by Pantheon. FasterXML jackson-databind before 2.8.11.1
and 2.9.x before 2.9.5 allows unauthenticated remote code execution because of an
incomplete fix for the CVE-2017-7525 deserialization flaw. Pantheon uses jackson-databind
2.9.0. The associated utility class in Pantheon that uses the vulnerable dependency may be
exposed to exploitation via multiple vectors: DevP2P, RLPx, or local JSON-RPC interfaces.

Dependency Referenced In Vulnerabilities

jackson-databind-2.9.0.jar pantheon:default
pantheon:runtime
pantheon:compile
pantheon:runtimeClasspath

CVE-2017-15095
CVE-2018-5968
CVE-2018-7489

Exploit Scenario
The above-mentioned JSON deserialization vulnerabilities could be exploited by an attacker
able to send JSON input data to the readValue method of the ObjectMapper, as abstracted
by the Pantheon class
net.consensys.pantheon.ethereum.jsonrpc.internal.parameters.JsonRpcParameter.
A successful exploitation would result in arbitrary code execution on the host running
Pantheon, allowing an attacker to read Pantheon’s stored private keys and/or issue
transactions that steal funds.

Recommendation
To protect against these publicly known vulnerabilities, immediately transition to the
current version of the Java package com.fasterxml.jackson.databind: 2.9.7 at the time of
this writing.

Afterward, adopt a dependency-checking solution to automate the monitoring and alerting
of dependencies for upstream security issues. One solution is to add the
DependencyCheck plugin for Gradle, and run it via:

./gradlew dependencyCheckAnalyze

Then, check for its report in:

pantheon/build/reports/dependency-check-report.html

PegaSys Pantheon Assessment | 11

https://nvd.nist.gov/vuln/detail/CVE-2017-7525
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2017-15095
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2018-5968
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2018-7489
https://jeremylong.github.io/DependencyCheck/dependency-check-gradle/index.html

An alternative solution for automating dependency risk-checking is using OWASP
Dependency Check (available as a Jenkins plugin) or Snyk for Java, each of which can
automatically identify open-source dependencies and determine if there are any known
(publicly disclosed) vulnerabilities.

References

● FasterXML/jackson-databind Home Page (FasterXML)
● GitHub issue discussing the CVE-2018-7489 problem and the fix

PegaSys Pantheon Assessment | 12

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://plugins.jenkins.io/dependency-check-jenkins-plugin
https://snyk.io/docs/snyk-for-java
https://github.com/FasterXML/jackson-databind
https://github.com/FasterXML/jackson-databind/issues/1931

3. Multiple CVEs in version of Jenkins server used for Pantheon project
Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-CPP-003
Target: Jenkins CI server at http://forge-jenkins.kellstrand.com:8080/

Description
There are multiple CVEs in Jenkins 2.137, 2.132 and earlier. PegaSys Pantheon is using a
privately hosted Jenkins CI server that uses version 2.107.3.

This finding is listed as Informational severity because it is an incidental finding outside
the scope of the Pantheon codebase assessment.

Exploit Scenario
There are quite a few vulnerabilities, the worst of which is that an unauthenticated user
providing malicious login credentials could grant themselves administrator access to the
Jenkins server. The impact to Pantheon should be limited: the integrity of the codebase on
GitHub should be unaffected, and the Pantheon source code is already planned for an
open-source release. An attacker might employ a denial-of-service of the project’s CI
testing, or attempt to move laterally with their access (e.g., by attacking visitors to the
Jenkins server or attempting credential re-use).

Recommendation
Update the version of Jenkins CI from version 2.107.3 to version 2.121.3 (released August
15th, 2018).

Then, subscribe to the jenkinsci-advisories Google Group or RSS feed to receive timely
notifications on security updates.

References

● CVE-2018-1999001, CVE-2018-1999002, CVE-2018-1999003, CVE-2018-1999004,
CVE-2018-1999005, CVE-2018-1999006, and CVE-2018-1999007:
https://jenkins.io/security/advisory/2018-07-18/

● CVE-2018-1999042, CVE-2018-1999043, CVE-2018-1999044, CVE-2018-1999045,
CVE-2018-1999046, CVE-2018-1999047:
https://jenkins.io/security/advisory/2018-08-15/

PegaSys Pantheon Assessment | 13

https://jenkins.io/security/advisory/2018-07-18/
https://groups.google.com/forum/#!forum/jenkinsci-advisories
https://feeds.feedburner.com/jenkins-security-advisories
https://jenkins.io/security/advisory/2018-07-18/
https://jenkins.io/security/advisory/2018-08-15/

4. Gas overflows can result in null pointer exceptions
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-CPP-004
Target: ethereum/code/src/main/java/net/consensys/pantheon/ethereum/vm/

EVM.java

Description
The function for calculating gas cost returns null if the gas calculation overflows.

private Gas calculateGasCost(MessageFrame frame) {

 // Calculate the cost if, and only if, we are not halting as a result of a stack

underflow, as

 // the operation may need all its stack items to calculate gas.

 // This is how existing EVM implementations behave.

 if (!frame.getExceptionalHaltReasons().contains(INSUFFICIENT_STACK_ITEMS)) {

 try {

 return frame.getCurrentOperation().cost(frame);

 } catch (IllegalArgumentException e) {

 // TODO: Figure out a better way to handle gas overflows.

 }

 }

 return null;

}

Figure 4.1: Gas cost calculation returns null on overflow.

This is fine from an EVM compatibility perspective, because other implementations do not
raise an exception on gas overflow and rather silently fail. However, the result of this
function is passed to an instance of an OperationTracer. Currently, if the
DebugOperationTracer is used, this will result in an uncaught null pointer exception when
the gas cost is retrieved (e.g., during logging).

The severity of this finding was classified “Informational” because it appears as if the only
way this bug can manifest is if the system is run with debugging turned on, which should
never happen in production.

Exploit Scenario
The system running with a DebugOperationTracer processes a transaction that overflows
its gas cost calculation, causing an uncaught null pointer exception.

Recommendation
In the short term, document all uses of calculateGasCost to memorialize the fact that it
can return a null. In the long term, devise a better way to handle gas overflows.

PegaSys Pantheon Assessment | 14

5. Unnecessary complexity around setup and use of the CSPRNG
Severity: Low Difficulty: n/a
Type: Cryptography Finding ID: TOB-CPP-005
Target: /crypto/src/main/java/net/consensys/pantheon/crypto/*

Description
The current codebase uses multiple CSPRNGs that subclass Bouncy Castle’s DRBG
implementation, and implement a custom re-seeding mechanism. The rationale for this is
to have different security domains per CSPRNG and generate randomness such that an
attacker who breaks one CSPRNG will not compromise the others. Each instance, however,
uses the same algorithm, is seeded via the system CSPRNG, and then is re-seeded via calls
to nanoTime to gain small quantities of entropy and derive some prediction resistance.

This edifice is large and fragile and attempts to derive a defense against a state-level actor
where the attacker can modify /dev/urandom output, but can’t read memory or insert
malicious code. The approach drastically increases the implementation complexity for
limited gain, requires constant vigilance to ensure the “correct” CSPRNG is used for its
stated purpose, and introduces new potential points of failure.

Building a tiered hierarchy of CSPRNGs that feed into each other and attempting to
separate them into security domains doesn’t add real security. No significant advantage is
derived against a real-world threat actor, and yet it makes comprehension of the system
much more difficult for developers. Additionally, the probability of misuse of an CSPRNG
outside its permitted security domain seems higher in the medium- to long-term, which
would counteract the (limited) hypothetical advantage.

Exploit Scenario
The way these CSPRNGs are initialized is from a parent CSPRNG, which we are implicitly
considering out of scope. If you posit that these CSPRNGs (for any reason) are structurally
weak, then if the parent CSPRNG is weak, the quantity of entropy the child CSPRNGs work
with is much lower than expected. If you assume the DRBG algorithm used to seed the
CSPRNG is compromised, then all security domains would be compromised. Separation of
randomness again confers no benefit.

Recommendation
Consensys should either use SecureRandom directly or use a singleton instance of the
Bouncy Castle NIST SP800-90Ar1 HASH_DRBG random number generator with prediction
resistance turned on, no personalization (which provides no security benefit here), and
remove the custom prediction resistance mechanism (the subclass to do nanoTime
re-seeds).

PegaSys Pantheon Assessment | 15

The best CSPRNG option available in Java is the NativePRNG (or Windows-PRNG on
Windows). This is automatically selected by calling new SecureRandom() on a typical Java
install and will provide good random data on *nix/BSD/macOS when calling nextBytes. You
can ensure the selection of this even on systems without the default Java 8 java.security
configuration by passing -Djava.security.egd=file:/dev/urandom and/or using
SecureRandom.getInstanceStrong. On Windows, the best you can do in Java is to use
CryptGenRandom to seed the SHA1PRNG.

Since the native form of SecureRandom is tied to the underlying operating system, then you
may see significantly different performance characteristics depending on the version of the
kernel. On older Linux kernels (2.x, 3.x) the CSPRNG behind /dev/urandom could
sometimes be relatively slow (but still ~2MB/sec, more than enough for Pantheon)
compared to Java's SHA1PRNG. On Windows, Java seeds the SHA1PRNG using
CryptGenRandom, but can't exclusively use CryptGenRandom as its entropy source simply
because the JDK lacks support for that. Because it just uses the SHA1PRNG on Windows,
though, performance should be much higher than 2MB/sec.

If performance was a motivating factor for the current CSPRNG design choices, consider
testing with JDK10 DRBGs, which are sufficiently performant. See Appendix C.

References

● The right way to use SecureRandom
● Myths about urandom
● Cryptographic Right Answers
● Challenges with randomness in multi-tenant Linux container platforms
● NIST Recommendations for RNGs Using Deterministic Random Bit Generators
● Cryptographically Secure Pseudo-Random Number Generator

PegaSys Pantheon Assessment | 16

https://tersesystems.com/blog/2015/12/17/the-right-way-to-use-securerandom/
https://www.2uo.de/myths-about-urandom/
https://latacora.micro.blog/2018/04/03/cryptographic-right-answers.html
https://content.pivotal.io/blog/challenges-with-randomness-in-multi-tenant-linux-container-platforms
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://www.veracode.com/blog/research/cryptographically-secure-pseudo-random-number-generator-csprng

6. Plaintext local storage of node private key risks disclosure
Severity: Low Difficulty: Low
Type: Data Exposure Finding ID: TOB-CPP-006
Target:
/pantheon/src/main/java/net/consensys/pantheon/controller/KeyPairUtil.java

Description
As noted in the previous ConsenSys code review, Pantheon currently stores its node’s
private key in plaintext, on a file on the local filesystem.

public static SECP256K1.KeyPair loadKeyPair(final Path home) throws IOException {
 final File keyFile = home.resolve("key").toFile();
 final SECP256K1.KeyPair key;
 if (keyFile.exists()) {
 key = SECP256K1.KeyPair.load(keyFile);
 LOGGER.info(
 "Loaded key {} from {}", key.getPublicKey().toString(), keyFile.getAbsolutePath());
 }

Figure 6.1: key loaded from plaintext file. Excerpt from KeyPairUtil.java.

Exploit Scenario
Each Ethereum node is expected to maintain a static private key which is saved and
restored between sessions. This key is used during the ECIES (Elliptic Curve Integrated
Encryption Scheme) handshake part of the RLPx protocol with other nodes, in order to
exchange the AES key that protects their network session.

An attacker that gains access to the filesystem or backups that contain the configuration
could directly access the stored private key. An attacker with a node’s private key could
decrypt captured traffic to/from that node, or spoof Ethereum messages as that node. This
private key is not the same as the one used to sign transactions, so there is no direct risk of
a theft of funds. Nevertheless, a compromised node key would re-enable denial-of-service
attacks that the authenticated encryption of the DevP2P protocol was intended to protect
against.

Recommendation
Encrypt private keys via an authenticated encryption scheme (AES-GCM or
ChaCha20Poly1305) and derive the key used to encrypt via a password KDF like scrypt,
argon2id, or bcrypt. Java crypto providers like Bouncy Castle implement key stores with
password-based encryption, but avoid the default JKS Java keystores which are weak and
easily cracked.

In the longer term, you could also provide an option for storing keys entirely inside HSMs
via a PKCS11 JCE provider, or a cloud-based key management system via JCE providers.
There are two kinds of cloud crypto services available: Key Broker or Key Management

PegaSys Pantheon Assessment | 17

Services (KMS), and Cloud HSMs. However, at the time of this writing, Microsoft’s Azure
KeyVault appears to be the only KMS that offers the SECP256K1 support that Pantheon
requires.

References

● Cryptographic Right Answers (c.f., “password handling”)
● Java PCKS#11 Reference Guide
● Bouncy Castle Keystore Security
● “Nail in the Java Key Store Coffin”, PoC || GTFO 0x15
● Cloud Service Provider (CSP) Cloud Key Management Services (KMS)

○ AWS KMS and Supported Operations
○ GCP KMS
○ Microsoft Azure KeyVault and Supported Operations

● Cloud HSMs
○ AWS CloudHSM and Supported Operations
○ Microsoft Azure KeyVault (HSM backed mode)
○ Gemalto Cloud HSM

● DevP2P protocol’s use of public keys for node identity

PegaSys Pantheon Assessment | 18

https://latacora.micro.blog/2018/04/03/cryptographic-right-answers.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/p11guide.html
https://cryptosense.com/blog/bouncycastle-keystore-security/
https://www.sultanik.com/pocorgtfo/#0x15
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/crypto-intro.html
https://cloud.google.com/kms/
https://docs.microsoft.com/en-us/azure/key-vault/
https://docs.microsoft.com/en-us/azure/key-vault/about-keys-secrets-and-certificates
https://aws.amazon.com/cloudhsm/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-lib-supported.html
https://safenet.gemalto.com/data-protection-on-demand/
https://github.com/ethereum/devp2p/blob/master/rlpx.md

7. <removed after discussion with PegaSys>
Note: this issue was an apparent unhandled exception with regard to how Pantheon
accepts malformed public keys. Upon further inspection and a discussion with PegaSys, it
was determined that the exception is in fact handled in production, and the issue was
removed from the report.

PegaSys Pantheon Assessment | 19

8. Unsecured JSON-RPC interface
Severity: Medium Difficulty: Low
Type: Access Controls Finding ID: TOB-CPP-008
Target:
ethereum/jsonrpc/src/main/java/net/consensys/pantheon/ethereum/jsonrpc/JsonRp
cHttpService.java

Description
The JSON-RPC service (disabled by default when running ./pantheon) is an
unauthenticated interface. If the JSON-RPC service is activated, then the client is vulnerable
to a DNS rebinding attack.

Exploit Scenario
An attacker tricks the user into loading a malicious website. This website loads various
subdomains that (with the aid of DNS cache expiry) eventually results in JavaScript being
loaded in the browser that can send requests to 127.0.0.1. Since the JSON-RPC interface is
unauthenticated, the attacker can now control the service.

Recommendation
Whitelist localhost as a Host header, and reject communication from any client that can’t
set that header. DNS rebinding relies on the ability to set an arbitrary FQDN to 127.0.0.1
so this mitigation prevents browser-based attacks.

References

● How your ethereum can be stolen through DNS rebinding
● Project Zero: agent rpc auth mechanism vulnerable to dns rebinding

PegaSys Pantheon Assessment | 20

https://blog.hacker.af/how-your-ethereum-can-be-stolen-using-dns-rebinding
https://bugs.chromium.org/p/project-zero/issues/detail?id=1471&desc=3

9. RLP decoding throws on encodings that report a length greater than
Integer.MAX_VALUE
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-CPP-009
Target: ethereum/rlp/src/main/java/net/consensys/pantheon/ethereum/rlp/RLP.java

Description
The Pantheon RLP implementation uses Java’s signed integers for decoding, which means
that any RLP string, byte array, or list that reports to be larger than 231-1 will cause an
integer overflow, regardless of whether the encoding is actually valid.

The RLP specification allows for lengths of up to 2568. Given that this is an impractically
large size that is unlikely to fit in the memory of today’s systems, some Ethereum clients
implement their own lower limits for encoded length — 264 seems to be a common choice.

Exploit Scenario
Alice sends the string "\xBC\x01\x00\x00\x00\x00" to Pantheon, which reports to be a
string of length 232. This will cause RLP.input to throw an exception due to integer
overflow. It is worth noting that although not inline with the protocol specification and not
clearly intentional, discarding huge messages is a reasonable action. This issue is listed as
only Informational severity.

Recommendation
In the short term, modify the error message and source code comments to indicate more
explicitly the choice for Pantheon to implement a max length of 231-1 rather than the max
length allowed by the RLP specification. Consider including the additional RLP unit tests
given in Appendix D.

In the long term, ensure that the RLP implementation is consistent with other Ethereum
clients, using differential testing.

References

● Ethereum wiki: RLP decoding
● RLP implementations that allow lengths up to the full 2568

○ pyrlp RLP serialization library
○ ruby-RLP library

● RLP implementations where the maximum allowed length is 264

○ EthereumJ
○ Ethminer

PegaSys Pantheon Assessment | 21

https://github.com/ethereum/wiki/wiki/RLP#rlp-decoding
https://github.com/ethereum/pyrlp/blob/master/rlp/codec.py#L95
https://github.com/cryptape/ruby-rlp/blob/49c11eaee9f0f58d8028e5f1a291504c22dc947c/lib/rlp/encode.rb#L96
https://github.com/ethereumj/ethereumj/blob/master/ethereumj-core/src/main/java/org/ethereum/util/RLP.java#L53
https://github.com/ethereum-mining/ethminer/blob/master/libdevcore/RLP.cpp#L168

10. Implementation differences between RLP length calculation vs.
decoding
Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-CPP-010
Target: ethereum/rlp/src/main/java/net/consensys/pantheon/ethereum/rlp/RLP.java
and RlpUtils.java

Description
There are two separate implementations of RLP decoding, one in the RLPInput class
hierarchy for doing a complete decoding, and another independent implementation in
RlpUtils for decoding only the offsets and lengths of RLP encoded elements in a byte
stream. These implementations do not agree with each other. For example,

RlpUtils.decodeLength(h("0xbc0100000000").extractArray(), 0);

returns the length 6 for this incomplete RLP encoding, while

RLPInput in = RLP.input(h("0xbc0100000000"));

raises an ArithmeticException due to integer overflow for the exact same input.

Likewise,

RLP.decode(BytesValue.wrap(

 new byte[]{(byte)0xBC, 0x01, 0x00, 0x00, 0x00, 0x00}

))

throws an ArithmeticException due to integer overflow.

This is because the implementation in RlpUtils uses integer arithmetic and does not check
for overflow. Therefore, any RLP encoding that reports a string, byte array, or list length
greater than Integer.MAX_VALUE will cause RlpUtils to silently overflow, return an
incorrect value, and fail to check whether the input is actually valid. RLPInput will not
process such encodings either, but fails with different behavior.

In order to be compatible with RLP, both implementations must support parsing strings,
byte arrays, and lists of up to length 2568.

PegaSys Pantheon Assessment | 22

Exploit Scenario
Alice sends an RLP encoded string whose length is larger than Integer.MAX_VALUE. This
causes RlpUtils to incorrectly segment the RLP stream, causing the payload of the string
to be parsed as the second RLP entry.

This inconsistency between length precalculation and actual decoding can lead to a class of
vulnerabilities with real-world consequences.

Recommendation
In the short term, ensure that both implementations have consistent behavior, and
implement the additional RLP unit tests given in Appendix D. In the long term, settle on a
single implementation that can perform both functions.

PegaSys Pantheon Assessment | 23

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3861
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3861

11. Pantheon permits RLP encoded ints with leading zeros
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-CPP-011
Target: ethereum/rlp/src/main/java/net/consensys/pantheon/ethereum/rlp/RLP.java

Description
In RLP.decode (one of the two code locations in Pantheon that decodes RLP-encoded
integers), it is possible to take an encoded scalar. This method assumes a fixed-length
sequence, and will decode an RLP-encoded integer even if it has leading zeros:

RLPInput in = RLP.input(h("0x0000D0"));

RLP.decode(in.raw());

The standard explicitly forbids this case for encoded scalars, and other RLP parsers throw
an exception on it.

“…positive RLP integers must be represented in big endian binary form with no
leading zeroes [sic] (thus making the integer value zero be equivalent to the empty
byte array). Deserialised positive integers with leading zeroes [sic] must be
treated as invalid.” (emphasis added)

This finding has “informational” severity because although RLP.decode makes this
assumption, it is used only in test, not in production. All production RLP encoding and
decoding methods in Pantheon explicitly specify whether the input is a fixed-length
sequence or a scalar value.

Exploit Scenario
A new developer on Pantheon uses this implementation to decode RLP scalars, rather than
the one intended for production. Pantheon processes a transaction with a positive integer
erroneously encoded with leading zeros. Pantheon will ignore the error and accept the
transaction, while other Ethereum clients would have rejected it, leading to a fork.

Recommendation
In the short term, ensure that Pantheon’s RLP implementations are clearly documented as
being for test-only or for production. Implement the additional RLP unit tests given in
Appendix D.

In the long term, consider de-duplicating the RLP decoding methods so that it is not
possible to use the “wrong” one in production. Ensure that the RLP implementation strictly
adheres to the standard, e.g., by performing differential testing against other RLP
implementations.

PegaSys Pantheon Assessment | 24

https://github.com/ethereum/wiki/wiki/RLP

12. eth_getTransactionReceipt silently fails for raw transaction
Severity: Undetermined Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-CPP-012
Target: EthGetTransactionReceipt.java

Description
The eth_getTransactionReceipt JSON RPC call will return an invalid result. For example, a
Pantheon instance was started using this command:

./gradlew run -Ppantheon.run.args="--no-discovery --datadir=/tmp/pantheontmp

--miner-enabled --rpc-enabled --miner-coinbase

fe3b557e8fb62b89f4916b721be55ceb828dbd73 --rpc-listen=127.0.0.1:1234

--p2p-listen=127.0.0.1:33333

--genesis=ethereum/core/src/main/resources/dev.json"

The following transaction was then submitted to Pantheon for mining:

{'from': '0xFE3B557E8Fb62b89F4916B721be55cEb828dBd73', 'gas': '0x99999',

'gasPrice': '0x430e23400', 'value': '0x0', 'data':

'0x608060405234801561001057600080fd5b506101c0806100206000396000f3006080604052600

43610610057576000357c01009

00463ffffffff168063554c5abd1461005c5780638c9670b51461008b5780639ccb138f146101075

75b600080fd5b34801561006857600080fd5b50610071610181565b6040518082151515158152602

00191505060405180910390f35b34801561009757600080fd5b50610105600480360381019080803

51515906020019092919080359060200190929190803590602001908201803590602001908080602

00260200160405190810160405280939291908181526020018383602002808284378201915050505

05050919291929050505061018a565b005b34801561011357600080fd5b5061017f6004803603810

19080803590602001909291908035906020019092919080359060200190820180359060200190808

06020026020016040519081016040528093929190818152602001838360200280828437820191505

050505050919291929050505061018f565b005b60006001905090565b505050565b5050505600a16

5627a7a72305820c33d6d41fb62e921093df0df9278328c3f1f256bac6be1400b47d233c6b1aeff0

029', 'nonce': 0}

This transaction creates a contract. It is manually signed and submitted to Pantheon using
eth_sendRawTransaction:

{'id': 1, 'jsonrpc': '2.0', 'method': 'eth_sendRawTransaction', 'params':

['0xf9023380850430e23400830999998080b901e0608060405234801561001057600080fd5b5061

01c0806100206000396000f300608060405260043610610057576000357c01000000000000000000

00000000000000000000000000000000000000900463ffffffff168063554c5abd1461005c578063

8c9670b51461008b5780639ccb138f14610107575b600080fd5b34801561006857600080fd5b5061

PegaSys Pantheon Assessment | 25

0071610181565b604051808215151515815260200191505060405180910390f35b34801561009757

600080fd5b5061010560048036038101908080351515906020019092919080359060200190929190

80359060200190820180359060200190808060200260200160405190810160405280939291908181

52602001838360200280828437820191505050505050919291929050505061018a565b005b348015

61011357600080fd5b5061017f600480360381019080803590602001909291908035906020019092

91908035906020019082018035906020019080806020026020016040519081016040528093929190

818152602001838360200280828437820191505050505050919291929050505061018f565b005b60

006001905090565b505050565b5050505600a165627a7a72305820c33d6d41fb62e921093df0df92

78328c3f1f256bac6be1400b47d233c6b1aeff00291ca051bf58218652a7b0c4323c0b4af2f73860

28556b4695226fc18d99ff2569aaa9a07c117b21247c1d2fb19c643fc0d373e71a12a624d2831516

cf6057e9ea8dcf48']}

Pantheon then proceeds to mine the transaction and create the contract:

Successful creation of contract 0x42699a7612a82f1d9c36148af9c77354759b210b with

code of size 448 (Gas remaining: 488970)

However, subsequent calls to eth_getTransactionReceipt on the transaction hash return
an invalid response, in which the result field is the transaction hash:

{'id': 1, 'jsonrpc': '2.0', 'result':

'0xbba27352c4f655a15fc9d85bc79166b13592528063642b6e95c9a74f2c9bcbcf'}

The severity of this finding is undetermined because it is unclear whether this is simply a
bug in the JSON RPC interface or whether it is a manifestation of a more serious bug
related to mining.

Furthermore, Lucas Saldanha investigated this bug on a different version of the
codebase (RC2) and was unable to reproduce it, so it may be specific to the assessed
version of the codebase (68164f65).

Exploit Scenario
This bug is a manifestation of a mining error that can result in a fork.

Recommendation
In the short term, determine the underlying cause of this bug and fix it. In the long term,
add more integration tests for the JSON RPC interface, and regularly compare Pantheon to
other Ethereum client implementations using a differential tester like Etheno (see
Appendix F).

PegaSys Pantheon Assessment | 26

https://github.com/PegaSysEng/pantheon/releases/tag/0.8.0-RC2

13. Inconsistent milestone defaults can lead to rejected transactions
Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-CPP-013
Target: ethereum/core/src/main/java/net/consensys/pantheon/ethereum/mainnet/
MainnetTransactionValidator.java

Description
Pantheon's MainnetTransactionValidator will raise a
REPLAY_PROTECTED_SIGNATURES_NOT_SUPPORTED exception if it does not have a chainId
specified but a transaction does have an explicit chainId. However, when using Pantheon
with a custom genesis file and chain ID, any transaction with a chain ID specified—even if it
is the correct chain ID—will be rejected by Pantheon. This appears to be due to the fact that
Pantheon will default to Frontier milestones (which do not include transaction replay
protection) when configured in this way.

To reproduce this finding, run Pantheon using the
ethereum/core/src/main/resources/dev.json genesis (which uses the chain ID 2018)
and submit a valid, raw transaction with

‘params’ : [{‘chainId’ : 2018, …}]

This transaction will be rejected by the MainnetTransactionValidator.

The severity of this finding is informational because it is unlikely that a production node
would be configured in such a way to exercise the bug, since it is the result of using a
genesis configuration with no milestones defined.

Exploit Scenario
A valid transaction containing a correct chain ID is rejected by Pantheon, at best resulting in
inconsistency with other Ethereum clients, and at worst causing a fork.

Recommendation
In the short term, determine why MainnetTransactionValidator does not have
knowledge of the chain ID on which Pantheon is running, and fix this bug. In the long term
increase test coverage to exercise transactional edge cases.

PegaSys Pantheon Assessment | 27

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Arithmetic Related to arithmetic calculations

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

PegaSys Pantheon Assessment | 28

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

PegaSys Pantheon Assessment | 29

B. Code Quality Recommendations
● util/src/main/java/net/consensys/pantheon/util/uint/UInt256Bytes.java

line 401:

static int bitLength(Bytes32 bytes) {

 for (int i = 0; i < SIZE; i++) {

 byte b = bytes.get(i);

 if (b == 0)

 continue;

 return (SIZE * 8) - (i * 8) - (Integer.numberOfLeadingZeros(b & 0xFF) - 3 * 8);

 }

 return 0;

}

Returning at the end of a for loop is confusing, and can potentially mask or induce
errors in the future. Consider refactoring the code to use different loop semantics.

● Ensure that all serializable classes define a serialVersionUID. Currently, only
classes derived from com.google.errorprone.bugpatterns.BugChecker are
missing serialVersionUID. Pantheon may never plan to serialize these objects, but
the parent class Bugchecker implements the Serializable interface. The
serialVersionUID is declared as a static field within a class that implements the
java.io.Serializable interface, similarly to the following. A Java IDE can assist in
generating UID values.

public class DoNotReturnNullOptionals extends BugChecker implements MethodTreeMatcher
{
 private static final long serialVersionUID = 1011858925107209062L;

References:

● What is a serialVersionUID and why should I use it?

PegaSys Pantheon Assessment | 30

https://stackoverflow.com/questions/285793/what-is-a-serialversionuid-and-why-should-i-use-it

C. Notes on Cryptographic Libraries

JCE providers
Java supports pluggable JCE providers which allow consumers to pick and choose the
underlying implementation for a given set of cryptographic operations. Bouncy Castle is a
widely used JCE provider and supports the secp256k1 ECDSA signatures with RFC 6979
deterministic nonces that are required. In the future, PegaSys may want to investigate
explicitly supporting alternate JCE providers for PKCS11 support or cloud providers. For
example:

● Azure Key Vault, a Microsoft JCE provider that allows for ECDSA signatures against
keys stored securely by Microsoft.

● Sun PKCS#11 provider, a method of bridging PKCS11 APIs (used by hardware
security modules) to JCE.

At this time, GCP’s KMS and the AWS Cloud HSM v2 do not support secp256k1 operations; a
requirement for considering their use with PegaSys.

Since Java allows end users to specify JCE providers (and preferential ordering) via a
java.security configuration file if the exact provider is not hard-coded, then the provider
chosen can be anything that implements the JCE interfaces. If alternate JCE providers are
unsupported then hard-coding is the easy solution. However, if PegaSys decides to support
alternate JCE providers that have not been explicitly tested by the PegaSys team, they
should run automated health check tests during startup to confirm the JCE provider is
performing as expected.

Tink
Google Tink is a multi-language, cross-platform library that provides cryptographic APIs
that are secure, easy to use correctly, and harder to misuse. Trail of Bits evaluated Tink as a
more secure replacement to Bouncy Castle.

To be an effective replacement, Tink must provide both a quality CSPRNG as well as ECDSA
signing using secp256k1 with nonce generation via RFC 6979. Tink’s random class is a very
thin wrapper on SecureRandom (which is great), but the ECDSA layer does not expose
secp256k1, so the library would require maintaining a local patch or convincing Tink to land
support for this curve. At this time, Tink is not appropriate for use by PegaSys.

PegaSys Pantheon Assessment | 31

https://github.com/Azure/azure-keyvault-java
https://cloud.google.com/kms/docs/algorithms#elliptic_curve_signing_algorithms
https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-lib-supported.html
https://github.com/google/tink
https://tools.ietf.org/html/rfc6979

Newer JDK improvements simplify cryptographic operations
Consider accelerating the existing plan to require JDK 10, in order to benefit from its
improved cryptographic API support relative to JDK 8. JDK 11 is out now (and JDK 10 is
rapidly approaching unsupported, given Oracle’s new release strategy).

If you were to require a more recent JDK, you could use its implementations of
cryptographic algorithms instead of relying on Bouncy Castle. JDK 10 and later provides its
own implementation of the NIST SP 800-90Ar1 DRBG recommendations. The JDK 10 (and
later) implementation of NIST DRBG recommendations would simplify the existing codebase
and resolve the issue with the Bouncy Castle DRBG improperly attempting to write to
/dev/urandom on macOS.

In JDK 10 and later, TLS works by default in OpenJDK. Secure-by-default TLS is not relevant
in the current Pantheon codebase (it makes no TLS requests), but if it performs any TLS in a
future version, then it would be best to avoid using a runtime like JDK 8 that implements a
dangerous-by-default TLS. In a default OpenJDK 8 install, you can’t verify a connection
without additional work, because OpenJDK 8 builds didn’t ship with CA certificates. Only
Oracle JRE or Open JDKs from certain distros shipped with CA certificates in JDK 8. JDK 10
and later don’t have this issue. JDK 11 also adds the cipher chacha20poly1305, which is
useful for constrained mobile devices.

And, of course, the usual raft of security hardening and improvement around the JVM itself
comes along with each upgrade (JDK 9 Release Notes, JDK 10 Release Notes, JDK 11 Release
Notes).

urandom permissions issues when reseeding on macOS
The NIST DRBG implementation in Bouncy Castle attempts to write to the underlying
random device on calls to setSeed. When passing
-Djava.security.egd=file:/dev/urandom this causes the code to write to /dev/urandom.
On Linux this is fine, but macOS does not allow writes to /dev/urandom, only /dev/random.
This additional reseeding is, as discussed in other sections, not necessary. Switch to using a
pure SecureRandom implementation to resolve this issue, in addition to its other
advantages.

PegaSys Pantheon Assessment | 32

https://www.oracle.com/technetwork/java/javase/9all-relnotes-3704433.html
https://www.oracle.com/technetwork/java/javase/10-relnote-issues-4108729.html
https://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html
https://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html

D. Additional RLP Unit Tests
The following are additional unit tests we recommend be integrated into Pantheon for
better test coverage. They exercise edge cases in RLP length calculations and handling of
malformed RLP encodings. Tests intMaxRLPStringDecode, intMaxRLPStringLength,
intMaxRLPStringInput, and decodeIntWithLeadingZeros fail on the assessed version of
Pantheon. See findings TOB-CPP-009, TOB-CPP-010, and TOB-CPP-011 for more
information.

package net.consensys.pantheon.ethereum.rlp;

import static org.junit.Assert.assertEquals;

import net.consensys.pantheon.util.bytes.BytesValue;

import org.junit.Test;

import java.util.Random;
import java.util.Stack;

public class RlpUtilsTest {
 private static BytesValue h(String hex) {
 return BytesValue.fromHexString(hex);
 }

 private static String times(String base, int times) {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < times; i++)
 sb.append(base);
 return sb.toString();
 }

 private void testLength(byte[] b, Integer expected) {
 if (expected == null) {
 expected = b.length;
 }
 assertEquals(RlpUtils.decodeLength(b, 0), expected.intValue());
 }

 private void testLength(byte[] b) {
 testLength(b, null);
 }

PegaSys Pantheon Assessment | 33

 private void testLength(BytesValue hex, Integer expected) {
 testLength(hex.extractArray(), expected);
 }

 private void testLength(BytesValue hex) {
 testLength(hex, null);
 }

 private void testLength(String hex, Integer expected) {
 testLength(h(hex), expected);
 }

 private void testLength(String hex) {
 testLength(hex, null);
 }

 @Test
 public void singleByte() {
 testLength("0x01");
 }

 @Test
 public void singleShortElement() {
 testLength("0x81FF");
 }

 @Test
 public void singleBarelyShortElement() {
 testLength("0xb7" + times("2b", 55));
 }

 @Test
 public void singleBarelyLongElement() {
 testLength("0xb838" + times("2b", 56));
 }

 @Test
 public void singleLongElement() {
 testLength("0xb908c1" + times("3c", 2241));
 }

 @Test
 public void assertLongScalar() {
 testLength("0x80");
 testLength("0x01");

PegaSys Pantheon Assessment | 34

 testLength("0x0F");
 testLength("0x820400");
 }

 @Test(expected = IndexOutOfBoundsException.class)
 public void longScalar_NegativeLong() {
 testLength("0xFFFFFFFFFFFFFFFF");
 }

 @Test
 public void intScalar() {
 testLength("0x80");
 testLength("0x01");
 testLength("0x0F");
 testLength("0x820400");
 }

 @Test
 public void emptyList() {
 testLength("0xc0");
 }

 @Test
 public void simpleShortList() {
 testLength("0xc22c3b");
 }

 @Test
 public void simpleIntBeforeShortList() {
 testLength("0x02");
 testLength("0xc22c3b");
 testLength("0x02c22c3b", 1);
 testLength("0xc22c3b02", 3);
 }

 @Test
 public void simpleNestedList() {
 testLength("0xc52cc203123b");
 }

 @Test
 public void readAsRlp() {
 // Test null value
 testLength("0x80");

PegaSys Pantheon Assessment | 35

 testLength("0xc0");
 }

 @Test
 public void raw() {
 testLength("0xc80102c51112c22122");
 }

 @Test
 public void reset() {
 testLength("0xc80102c51112c22122");
 }

 @Test
 public void ignoreListTail() {
 testLength("0xc80102c51112c22122");
 }

 @Test
 public void leaveListEarly() {
 testLength("0xc80102c51112c22122");
 }

 private BytesValueRLPOutput randomRLP(Random random) {
 final BytesValueRLPOutput out = new BytesValueRLPOutput();
 final Stack<Integer> lengths = new Stack<>();
 out.startList();
 lengths.push(0);
 while(!lengths.empty() && (lengths.size() > 1 || random.nextInt(3) > 0)) {
 if (lengths.peek() >= Integer.MAX_VALUE) {
 if (lengths.size() > 1) {
 out.endList();
 }
 lengths.pop();
 continue;
 }
 switch (random.nextInt(6)) {
 case 0:
 out.writeByte((byte)random.nextInt(256));
 lengths.push(lengths.pop() + 1);
 break;
 case 1:
 out.writeShort((short)random.nextInt(0xFFFF));
 lengths.push(lengths.pop() + 2);
 break;

PegaSys Pantheon Assessment | 36

 case 2:
 out.writeInt(random.nextInt());
 lengths.push(lengths.pop() + 4);
 break;
 case 3:
 out.writeLong(random.nextLong());
 lengths.push(lengths.pop() + 8);
 break;
 case 4:
 out.startList();
 lengths.push(0);
 break;
 case 5:
 if (lengths.size() > 1) {
 out.endList();
 lengths.pop();
 }
 break;
 }
 }
 out.endList();
 return out;
 }

 @Test
 public void fuzz() {
 final Random random = new Random();
 for (int i=0; i<1000; ++i) {
 BytesValueRLPOutput out = randomRLP(random);
 assertEquals(RlpUtils.decodeLength(out.encoded().extractArray(), 0),
out.encodedSize());
 }
 }

 @Test
 public void extremelyDeepNestedList() {
 final int MAX_DEPTH = 20000;
 final BytesValueRLPOutput out = new BytesValueRLPOutput();
 int depth = 0;
 for (int i=0; i<MAX_DEPTH; ++i) {
 out.startList();
 depth += 1;
 }
 while (depth > 0) {
 out.endList();

PegaSys Pantheon Assessment | 37

 --depth;
 }
 RlpUtils.decodeLength(out.encoded().extractArray(), 0);
 }

 /*
 * RLP encoded strings, byte arrays, and lists can be up to 256^8 bytes long.

 * This is over twice as big as Long.MAX_VALUE, so confirm that the encoding and

decoding algorithms can handle

 * edge cases with long lengths.

 *

 * The following several tests check for this.

 */

 /**
 * Test how the length calculation handles an incomplete RLP encoding that

reports to be a string of length 2^32.

 * This is larger than Integer.MAX_VALUE, so check that the length calculation

doesn't fail on it due to integer

 * overflow.

 */

 @Test(expected = IndexOutOfBoundsException.class)
 public void intMaxRLPStringLength() {
 RlpUtils.decodeLength(h("0xbc0100000000").extractArray(), 0);
 }

 /**
 * Test how the length calculation handles an incomplete RLP encoding that

reports to be a string of length 2^32.

 * This is larger than Integer.MAX_VALUE, so check that the decoding doesn't fail

on it due to integer overflow.

 */

 @Test
 public void intMaxRLPStringInput() {
 RLP.input(h("0xbc0100000000"));
 }

 @Test
 public void intMaxRLPStringDecode() {
 RLP.decode(BytesValue.wrap(new byte[]{(byte)0xBC, 0x01, 0x00, 0x00, 0x00,
0x00}));
 }

 @Test(expected = MalformedRLPInputException.class)
 public void decodeIntWithLeadingZeros() {

PegaSys Pantheon Assessment | 38

 RLPInput in = RLP.input(h("0x0000D0"));
 RLP.decode(in.raw());
 }
}

PegaSys Pantheon Assessment | 39

E. Using the Java SecurityManager
The JVM contains a feature known as the SecurityManager which allows you to restrict your
Java application’s network, file system, and other core operations. By restricting its
privileges, an application can contain the impact of an exploited vulnerability in Java
program logic, help preserve system integrity, and reduce the possibility of information
disclosures outside of any data that the program is designed to require. Use of the
SecurityManager does not mitigate risks of vulnerabilities in the JVM itself or of native code
dependencies, but is part of a defense-in-depth strategy.

SecurityManager can be defined both as a policy file (invoked via a command line
argument) or programmatically. However, the latter approach allows for potential
replacement/removal of the security policy, so it should not be used. Instead, pass

-Djava.security.manager -Djava.security.policy==pegasys.policy

where pegasys.policy is the policy file that is built for the application.

By default an empty policy file grants no privileges, so a good way to build a restrictive
policy would be to start up the application and add a new (minimal) permission for every
exception encountered. Alternately, granting full permissions and then ratcheting down on
high-risk areas (e.g., file system reads and writes) may be more manageable.

PegaSys Pantheon Assessment | 40

https://docs.oracle.com/javase/8/docs/api/java/lang/SecurityManager.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

F. Differential Testing with Etheno
Differential Testing, also known as Differential Fuzzing, is a technique in which identical inputs
are fed to multiple implementations of the same specification in an attempt to detect
behavioral differences between the implementations. This approach is ideal for testing
Ethereum clients, since the clients must exhibit identical behavior or risk forking the
blockchain.

Differential testing of Ethereum clients is challenging because:

1. it requires the clients to be undiscoverable, so other peers do not influence their
state;

2. contract addresses and transaction hashes can be different between clients if they
have different geneses or have processed different blocks; and

3. there needs to be a way to automatically detect erroneous differences between
clients’ output.

The JSON RPC multiplexer and testing tool Etheno addresses these challenges.

Using Etheno for Differential Testing
Etheno acts as a JSON RPC client, multiplexing the JSON RPC calls it receives to one or more
“real” Ethereum clients, taking care to synchronize contract addresses across the clients.
Etheno does this by dynamically rewriting transactions as necessary. It then compares
various features such as gas usage and contract creations in order to determine if any of
the clients are behaving differently from one another. Discrepancies in behavior causes
problems for maintaining consensus between nodes of different clients, and may result in
unintended blockchain forks.

First, install Etheno:

$ git clone https://github.com/trailofbits/etheno.git
$ cd etheno

$ pip3 install .

Alternatively, you can run Etheno in a Docker container:

$ docker pull trailofbits/etheno

$ docker run -it trailofbits/etheno

Then call Etheno with a list of URLs of Ethereum clients to test:

PegaSys Pantheon Assessment | 41

https://github.com/trailofbits/etheno
https://github.com/trailofbits/etheno
https://github.com/trailofbits/etheno.git

$ etheno http://localhost:8545/ http://localhost:8546/

Etheno is also integrated with Geth (and will soon be integrated with Parity). To compare a
local Ethereum client to Geth, for example, run:

$ etheno --geth http://localhost:8545/

You can also provide a genesis file for Geth, e.g., to ensure that it starts with the exact same
state as your client:

$ etheno --geth --genesis /path/to/genesis.json http://localhost:8545/

If your client does not support the eth_sendTransaction call for local accounts, prefix its
URL with --raw and Etheno will automatically sign incoming transactions and send them to
your client using eth_sendRawTransaction.

$ etheno --geth --genesis /path/to/genesis.json \

 --raw http://localhost:8545/

Note that use of --raw and --genesis at the same time requires that account private keys be
included in the genesis file.

"<ACCOUNT_ADDRESS>": {

 "privateKey": "<PRIVATE_KEY>",

 "comment": "private key and this comment are ignored.

 In a real chain, the private key should

 NOT be stored",

 "balance": "90000000000000000000000"

}

Etheno performs differential testing automatically, emitting a report at the end of the run.

Automated Fuzzing with Etheno and Echidna
Echidna is a fuzzer/property-based tester of EVM bytecode. It supports sophisticated
grammar-based fuzzing campaigns. It is integrated with Etheno and can be used to
automatically generate transactions to test against clients. Etheno will automatically
prompt you to install Echidna, if necessary. Invoke it by passing --echidna to Etheno:

$ etheno --geth --genesis /path/to/genesis.json \

 --raw http://localhost:8545/

 --echidna

PegaSys Pantheon Assessment | 42

https://github.com/trailofbits/etheno/issues/16
https://github.com/trailofbits/echidna

By default, the --echidna option deploys a standard fuzzing contract, generates a minimal
set of transactions that achieve maximal coverage of the contract, executes those
transactions, and exits. There are command-line options to provide a custom contract for
Echidna to fuzz.

See below for a sample command to begin a fuzzing campaign against Pantheon with
Etheno:

$./gradlew run -Ppantheon.run.args="--no-discovery

 --datadir=/tmp/pantheontmp --miner-enabled --rpc-enabled

 --miner-coinbase fe3b557e8fb62b89f4916b721be55ceb828dbd73

 --rpc-listen=127.0.0.1:1234 --p2p-listen=127.0.0.1:33333

 --genesis=ethereum/core/src/main/resources/dev.json"

$ etheno --geth --raw http://localhost:1234/

 --genesis ethereum/core/src/main/resources/dev.json

 --echidna

PegaSys Pantheon Assessment | 43

