
9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 1/35

NuCypher
Security Assessment
August 27th, 2018

Prepared For:
MacLane Wilkison | NuCypher
maclane@nucypher.com

Prepared By:
JP Smith | Trail of Bits
jp@trailofbits.com

Ben Perez | Trail of Bits
benjamin.perez@trailofbits.com

Changelog:
June 15, 2018: Initial report delivered
August 27, 2018: Updated for public release

mailto:maclane@nucypher.com
mailto:jp@trailofbits.com
mailto:benjamin.perez@trailofbits.com

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 2/35

Executive Summary

Engagement Goals & Coverage

Project Dashboard

Recommendations Summary
Short Term
Long Term

Findings Summary
1. Unsalted HKDF in utils.py
2. Multiple issues related to curve specification
3. Multiple issues related to parametrization over arbitrary curves
4. Insufficient validation of signatures
5. Network cannot detect malicious nodes
6. NuCypherKMSToken may be vulnerable to transaction reordering attacks
7. Server implements no rate-limiting functionality
8. Database has no snapshot and rollback functionality
9. Lack of anonymity allows collusion-based attacks
10. Database has no access controls
11. ProxyRESTServer.set_policy can be used to invalidate policy arrangements
12. Several issues related to policy issuance
13. Work orders have no protection from replay attacks
14. Ursula’s responses are unauthenticated

Appendix A. Vulnerability Classifications

Appendix B: Serialization testing code

Appendix C. Code Quality Recommendations

Appendix D. Slither static analysis

1

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 3/35

Executive Summary
From May 10 to June 29, NuCypher engaged with Trail of Bits to review the security of
NuCypher’s blockchain platform and the PyUmbral proxy re-encryption library. Trail of Bits
conducted this assessment over the course of twelve person-weeks with two engineers.

The first two weeks were spent examining the PyUmbral library for cryptographic flaws.
The third week was spent reviewing the smart contracts in NuCypher KMS. The final two
weeks comprised of looking at collusion and DoS-based attacks on the NuCypher network.

The PyUmbral library is high quality, overall. The discovered issues are primarily due to the
fact that the library is curve-agnostic, allowing users to choose their own curves instead of
forcing the use of curves known to be secure. Defining PyUmbral exclusively over one
curve, such as secp256k1, would be a substantial improvement.

NuCypher KMS contained a variety of high-severity issues. As of June 29th, malicious
miners in the NuCypher network can mint free money by outputting random numbers
instead of valid re-encryption keys. Furthermore, the network’s lack of an anonymization
mechanism could lead to collusion-based attacks that would result in the compromise of
users’ private keys. Finally, NuCypher KMS contained several medium-severity issues
stemming from unimplemented functionality and lack of input validation.

To protect users of their network from impersonation, NuCypher must fix the variety of
data-validation and signature issues outlined in this report. Furthermore, as it currently
stands, users are not anonymous, which can lead to their private keys being leaked by
malicious nodes. This issue must be fixed before users have a financial stake in the
network. Finally, the overall robustness of the network is weakened by the fact that
malicious miners cannot be challenged or detected, allowing them to flood the network
with fake re-encryption keys and getting paid for their malicious behavior. Creating a
scheme to prevent this is non-trivial, but is absolutely essential to a functional NuCypher
product.

2

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 4/35

Engagement Goals & Coverage
NuCypher sought to assess the safety of their proxy re-encryption library, PyUmbral,
against cryptanalytic attacks. They also wanted to ensure that their key management
system on the Ethereum blockchain was free of Solidity bugs, network vulnerabilities, and
collusion-based attacks.

During the engagement, we conducted a thorough audit of the PyUmbral library,
examining its openSSL use and writing tests to ensure its serialization routines were
correctly implemented. Also, we manually reviewed the cryptography in NuCypher KMS, as
well as the server code, policy management system, and Solidity contracts. We began
writing automated tests with Echidna for the blockchain component but were unable to
complete this activity due to time constraints.

PyUmbral

✓ Manually review all cryptographic code
✓ Read and review specifications for design flaws
✓ Check all serialization and deserialization code for possible risks
✓ Automate serialization testing with random inputs
❏ Check all call sites of the API for dangerous usage

Blockchain

✓ Perform static analysis on all Solidity code using Slither
✓ Manually review all Solidity code
✓ Manually review all Python code
✓ Run automated tests for ERC20 vulnerabilities
❏ Write property tests and fuzz UserEscrow, MinerEscrow, Issuer, and PolicyManager

contracts
✓ Explore collusion-based attacks

Crypto

✓ Manually review all cryptographic code
✓ Check all call sites of the crypto API for dangerous usage
✓ Check all signature usage
✓ Check all serialization and deserialization code for possible risks
✓ Check all X.509 certificate code for standards compliance and safety
✓ Ensure that the only randomness available via API is cryptographically secure, even

in pathological operating conditions
✓ Analyze the consequences of collusion attacks as they specifically pertain to

cryptographic code

3

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 5/35

Keystore
✓ Manually review all Keystore code for logic errors
✓ Check call sites of the crypto API for dangerous usage

Network

✓ Review server code for code execution or resource exhaustion bugs
✓ Review server code for logic bugs
✓ Consider denial-of-service scenarios

Policy

✓ Review model code for logic bugs with security implications

Misc

✓ Review Bytestring splitter code for possible functionality issues
✓ Review Constant Sorrow for vulnerabilities

4

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 6/35

Project Dashboard
Application Summary

Name NuCypher, PyUmbral

Type Proxy re-encryption system

Platform Python, EVM

Engagement Summary

Dates May 10 - June 29, 2018

Method Whitebox

Consultants Engaged 2

Level of Effort 12 person-weeks

Vulnerability Summary

Total High Severity Issues 6 ◼◼◼◼◼◼

Total Medium Severity Issues 4 ◼◼◼◼

Total Low Severity Issues 4 ◼◼◼◼

Total Informational Severity Issues 0

Total 14

Category Breakdown

Access Controls 1 ◼

Configuration 1 ◼

Cryptography 2 ◼◼

Data Exposure 1 ◼

Data Validation 1 ◼

Denial of Service 7 ◼◼◼◼◼◼◼

Timing 1 ◼

Total 14

5

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 7/35

Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑ Add a salt parameter to the KDF . The utils.py library provides a KDF but sets salt to
none. All KDF applications must be salted to ensure independence across different uses of
the hash function.

❑ Define which curve the system is using in a single location. Many functions in
PyUmbral take a curve parameter but default to a global configuration if the curve is not
specified. This allows users to generate private keys over one curve but generate public
keys over another, leading to an inconsistent state.

❑ Only allow users a small whitelist of curves to select from. PyUmbral lets users
choose arbitrary–-even insecure–-curves for its cryptographic functionality.

❑ Validate signatures in signature.py . The signature class does not validate incoming
signatures, allowing for the construction of signatures that don’t depend on the private key
used to sign.

❑ Mitigate known ERC20 race conditions. Strict adherence to the ERC20 standard can
lead to situations where attackers can reorder transactions to take more tokens than they
were approved for. This should be mitigated in either the approve function or any client
used to interact with the system.

❑ Require an access token for API usage and limit the rate of requests. The server
code does not limit the rate at which its clients can make requests, leaving it vulnerable to
DoS attacks.

❑ Add application logic for reverting data storage to a previous state. Many functions
write to the database with no validation of input data. Currently, there is no way to revert
the database if it enters an undesirable state.

❑ Use file permissions to prevent unprivileged users from accessing the database.
The keystore database is stored unencrypted. No permission-based access controls are
present.

6

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 8/35

❑ Refactor the policy class to require a unique nonce and signature per policy. Lack of
kfrag validation and policy revocation leaves an attacker open to replay attacks.

❑ Validate signatures on work orders. The work order submission process happens
without a blockchain component or replay attack prevention.

❑ Require Ursula to sign responses to work orders. Ursula never signs responses to
work orders, allowing anyone to impersonate her to a given Bob.

Long Term
❑ Ensure that cryptographic primitives are used in accordance with their
specifications. Even if it is unlikely cryptographic functions will be used outside of a very
specific context, they should always adhere to their specification.

❑ Build a system so that NuCypher can detect and penalize malicious nodes. The
NuCypher system cannot currently detect malicious miners, leading to a potential DoS
attack or miners minting free money without adding value to the network.

❑ Design APIs resistant to front-running attacks. Due to the public nature of all data
and transactions on the blockchain, malicious miners can and will front-run valuable
transactions.

❑ Make sure any exposed cryptographic APIs are resistant to misuse. Users should not
be trusted to make sound cryptographic choices, especially in curve selection.

❑ Devise a system of pseudonyms for all users. Users of the NuCypher network are not
anonymized. Due to the mathematical properties of threshold schemes, malicious nodes
can collude to learn a specific user’s private key.

❑ Adopt layered defenses for network and compute resources. Assume the network
will fall prey to DoS attacks and accidental abuse from users.

❑ Assume attackers can observe, modify, and replay traffic on the wire. Cryptographic
systems must be designed to prevent attackers on the wire from reusing old messages.

❑ Sign and check signatures for communications with security implications. All
cryptographically important information should be signed and then validated to prevent
impersonation and replay attacks.

7

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 9/35

Findings Summary
Title Type Severity

1 Unsalted HKDF in utils.py Cryptography Low

2 Multiple issues related to curve
specification

Configuration High

3 Multiple issues related to
parametrization over arbitrary curves

Cryptography High

4 Insufficient validation of signatures Data Validation High

5 Network cannot detect malicious nodes Denial of Service High

6 NuCypherKMSToken may be vulnerable
to transaction reordering attacks

Timing Medium

7 Server implements no rate-limiting
functionality

Denial of Service High

8 Database has no snapshot and rollback
functionality

Denial of Service Medium

9 Lack of anonymity allows collusion-based
attacks

Data Exposure High

10 Database has no access controls Access Controls Low

11 ProxyRESTServer.set_policy can be
used to invalidate policy arrangements

Denial of Service Medium

12 Several issues related to policy issuance Denial of Service Medium

13 Work orders have no protection from
replay attacks

Denial of Service Low

14 Impersonating Ursula is trivial Denial of Service Low

8

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 10/35

1. Unsalted HKDF in utils.py
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-NCY-001
Target: pyUmbral/umbral/utils.py

Description
utils.py in the Umbral codebase provides a function, kdf , which wraps an HKDF from
cryptography.io but sets salt to None . RFC 5869 , which specifies HKDF usage, recommends
salt be used when possible (§ 3.1), as it greatly increases robustness.

Fig. 1: the kdf function

Exploit Scenario
An attacker attempts to derive some input of kdf from its output via brute force. As no salt
is used, they can brute force all applications of kdf at once.

Recommendation
Add a salt parameter to kdf (even one that can take a value of None) and use it in
accordance with RFC 5869 § 3.1.

Going forwards, ensure all cryptographic primitives are used as their specifications dictate.

References

● HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

9

https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 11/35

2. Multiple issues related to curve specification
Severity: High Difficulty: Undetermined
Type: Configuration Finding ID: TOB-NCY-002
Target: Several

Description
A number of operations and object constructors take an optional curve parameter. If a
parameter isn’t provided, the operations will inherit from a global configuration. This can
be confusing, allows for inconsistency, and leads to some functionality bugs. Notably:

● When deserializing a capsule, the logic to determine its activation status assumes a
keysize of 32, which is not true for every curve. Specifically, it assumes 6 sections of
size key_size with 5 additional bytes will serialize to exactly 197 bytes.

● In keys.py, the UmbralPrivKey class has a get_pubkey method, which returns the
UmbralPubKey corresponding to the private key. Both classes carry information
about the curve being used. However, the get_pubkey method does not take curve
information. It always returns an UmbralPubKey on the default curve.

Fig. 2: CurveBN.from_bytes (excerpt)

Fig. 3: UmbralPrivKey.get_pubkey

10

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 12/35

Exploit Scenario
An implementer instantiates a private key over SECP521R1.
She doesn’t update the default curve from SECP256K1.
She attempts to generate a public key.
Now she cannot decrypt any incoming messages.

Recommendation
Replace 197 in the above snippet with 6 * key_size + 5 . Force get_pubkey to use the
same curve as the private key it’s being generated from. Most importantly, define which
curve the system is using in a single, canonical location.

Whenever possible, make sure illegal states are unrepresentable.

11

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 13/35

3. Multiple issues related to parametrization over arbitrary curves
Severity: High Difficulty: High
Type: Cryptography Finding ID: TOB-NCY-003
Target: pyUmbral

Description
Umbral: A Threshold Proxy Re-encryption Scheme doesn’t restrict the curve used in its
implementation. It just requires that the curve be defined over a group of prime order (the
actual phrasing is somewhat ambiguous. This is our interpretation.) The implementation
implicitly limits this to any cryptography.io elliptic curve object supported by OpenSSL, but
that may still be overly broad.

Fig. 4: An excerpt from the paper

Furthermore, this parametrization causes undefined behavior in pyUmbral. In openssl.py ,
the _get_new_EC_POINT takes an optional ec_group and curve_nid . If it is passed a
curve_nid it sets ec_group to the group associated with curve_nid . However, if both
parameters are passed to the function and are in disagreement, ec_group will default to
the group associated with curve_nid.

If a curve with a cofactor other than one is ever used, several parts of the application will
require reengineering to, for example, prevent small subgroup attacks by validating the
order of public keys.

Fig. 5: _get_new_EC_POINT

12

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 14/35

Exploit Scenario
Serialization code doesn’t take into account the variety of curves over which it can be called
and contains hard-to-reach logic bugs. A PyUmbral implementer chooses an unusual
elliptic curve and cannot correctly deserialize incoming messages.

Recommendation
Choose one curve over which Umbral is canonically defined, or at least implemented. If
that’s infeasible, a small, well-tested whitelist can suffice. Rewrite 5.1 from Umbral: A
Threshold Proxy Re-encryption Scheme to use slightly more precise terminology, e.g. “Any
curve over a field of prime order.”

Ensure that specifications give enough detail to prevent potential misuse. While generality
is appropriate in some circumstances, it cannot come at the cost of security.

References

● Weak Curves In Elliptic Curve Cryptography
● A state-of-the-art Diffie-Hellman function

13

https://wstein.org/edu/2010/414/projects/novotney.pdf
https://cr.yp.to/ecdh.html

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 15/35

4. Insu�ficient validation of signatures
Severity: High Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-NCY-004
Target: nucypher/crypto/signature.py

Description
The Signature class implements no verification for the r and s parameters, allowing for the
construction of signatures that don’t depend on the private key used to sign. This can pose
a significant risk if these signatures are ever checked without also checking the validity of
the r and s parameters.

Right now the impact of this is mitigated because every curve in cryptography.io will
ultimately use OpenSSL’s ossl_ecdsa_verify_sig , which does parameter verification.
However, ossl_ecdsa_verify_sig is not guaranteed to be used for every OpenSSL curve.
Furthermore, this validation should be done as soon as a signature is initialized to prevent
the unvalidated signature from being used in another context.

Fig. 6: Signature.__init__

Exploit Scenario
A client chooses to implement Curve1174 in OpenSSL themselves and use it with
NuCypher-KMS. They forget to check for the case where r is equal to 0 modulo the curve
order when verifying signatures. An adversary can now craft valid signatures for any
message from any key.

A signature is created with r=0 and stored in NuCypherKMS. It’s verified outside the system
by software that overlooks parameter validation. As before, an attacker can now craft
signatures that verify as if from any private key.

Recommendation
Make r and s CurveBN s, reusing existing validation there.

An unbounded integer is rarely the right type for elements used in cryptographic
computation.

14

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 16/35

References
● The Elliptic Curve Digital Signature Algorithm (ECDSA)

15

http://www.cs.miami.edu/home/burt/learning/Csc609.142/ecdsa-cert.pdf

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 17/35

5. Network cannot detect malicious nodes
Severity: High Difficulty: Low
Type: Denial of Service Finding ID: TOB-NCY-005
Target: nucypher/blockchain/

Description
NuCypherKMS does not currently have a way to establish whether a miner is performing
valid re-encryptions. At best, this severely reduces the reliability of the network. At worst, it
could lead to malicious nodes mining free money.

Exploit Scenario
A miner runs a node that simply outputs random numbers. Their cfrags do not directly
cause any failures in the network, since re-encryption uses a threshold scheme. However,
this miner will be able to mint free money until they are manually removed from the
network. Even after being removed, there is nothing stopping this malicious user from
creating another node.

The lack of validation also could lead to a DoS attack. There is nothing preventing a flood of
malicious nodes from rendering the NuCypherKMS useless. This attack may require a large
amount of upfront capital, since all miners must put up collateral in the MinersEscrow
contract, but such a scenario is not unimaginable. A group of semi-affluent actors could
collude to short NuCypher tokens. Even if the network is running a decent number of
nodes, say 9,000, it would only take 3,000 fake nodes to ensure that re-encryption fails 25%
of the time when k/n = 3/4.

Recommendation
We propose the following system for incentivizing correct and safe proxy re-encryption
coordinated via the Ethereum blockchain.

Work is coordinated via a “dispatcher” contract. Users may interact with this contract in
several capacities. First, let’s consider the case in which someone wants to perform
re-encryption in exchange for NU tokens.

We’ll call this actor Ursula. We wish to incentivize Ursula to reply to every request for
re-encryption with a correct answer (as opposed to either replying with an incorrect answer
or simply failing to reply, which, from a utilitarian perspective, are equivalent). Ursula must
commit to performing re-encryption for some time to be useful as a participant in the
Umbral cryptosystem. We cannot simply pay per job. As a result, we propose the following:

Ursula makes a commitment to being available for some period of time, during which she’ll
reply to some portion of requests with a correct response. When she makes this
commitment, she stakes some amount of tokens. The dispatcher assembles multiple

16

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 18/35

Ursulas into cohorts based on the assumed rate at which other Ursulas drop out, the
commitments of the cohort, and the Umbral threshold parameter.

When Alice requires re-encryption services, she pays the dispatcher for access to some
cohort of Ursulas for some time. She can then make requests (at some maximum rate) for
re-encryption consisting of a set of kfrags and a public key. Each request has an associated
nonce. Once a request is published, the chosen Ursulas form a Plasma-like sidechain. This
is to prevent exorbitant gas costs and latency during verification. On the sidechain, Ursulas
provide timestamped proofs to a verifier contract that they did the claimed work. Once the
sidechain has reached consensus and the contractual obligation has finished, the sidechain
syncs with the main Ethereum blockchain and the Ursulas are paid.

17

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 19/35

6. NuCypherKMSToken may be vulnerable to transaction reordering attacks
Severity: Medium Difficulty: High
Type: Timing Finding ID: TOB-NCY-006
Target: nucypher/blockchain/NuCypherKMSToken.sol

Description
There’s a well-known race condition in the ERC20 standard where an attacker with the
ability to reorder transactions can use transferFrom to take more tokens than they were
allotted with approve . While mitigations for this vulnerability exist, NuCypherKMSToken
does not implement them. In addition, a very similar vulnerability exists in
decreaseApproval .

approve sets the allowance of the given user to some number regardless of their current
allowance. This allows front-running attacks, where an attacker can use a victim’s tokens in
unexpected ways by preempting their calls to approve with a call to transfer .
decreaseApproval has a similar but less serious problem. It will behave identically if an
attacker can insert a transfer between its origination and resolution, which could
conceivably deceive a user.

Exploit Scenario
Alice approves Bob to transfer up to 100 of her tokens. Later, she decides to approve Bob
for 150 tokens. Bob is watching for transactions from Alice that call approve . When he
observes one, he introduces another transaction with a lower timestamp that transfers 100
tokens to his own address. After Alice’s transaction finalizes, he transfers 150 tokens to
himself for a total of 250 tokens extracted (instead of the 150 intended).

Alice approves Bob to transfer up to 100 of her tokens. Later, she wants to make those
tokens available to Carol. Alice calls decreaseApproval to set Bob’s allowance to 0. As
before, Bob notices Alice’s decreaseApproval and preempts it with a transfer of those 100
tokens. Alice’s decreaseApproval transaction still appears to work, so she approves Carol
to use 100 tokens. Carol then transfers them out. 200 tokens are transferred out of Alice’s
account (instead of the 100 intended).

Recommendation
Either in the client or the NuCypherKMSToken contract, ensure you cannot approve
someone for a nonzero number of tokens if they aren’t currently approved for zero tokens
(N.B.: doing this in the contract is technically an ERC20 standard violation). Change
decreaseApproval to return the actual number of tokens the allowance it’s modifying
decreased by

Always assume malicious entities can front-run transactions for financial gain.

18

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 20/35

References

● ERC20 API: An Attack Vector on Approve/TransferFrom Methods
● Method decreaseApproval in StandardToken.sol is unsafe
● Implementation of ‘approve’ method violates ERC20 standard

19

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit
https://github.com/OpenZeppelin/openzeppelin-solidity/issues/437
https://github.com/OpenZeppelin/openzeppelin-solidity/issues/437
https://github.com/OpenZeppelin/openzeppelin-solidity/issues/437
https://github.com/OpenZeppelin/openzeppelin-solidity/issues/437
https://github.com/OpenZeppelin/openzeppelin-solidity/issues/437
https://github.com/OpenZeppelin/openzeppelin-solidity/issues/438

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 21/35

7. Server implements no rate-limiting functionality
Severity: High Difficulty: Low
Type: Denial of Service Finding ID: TOB-NCY-007
Target: nucypher/network

Description
The NuCypher server code features no functionality that limits the rate at which its clients
can make requests. As many of its endpoints modify database state or perform
cryptographic computation, this lack of functionality makes it exceedingly easy for a client
to exhaust the server’s resources.

The risk from this issue increases dramatically from the fact that this code is designed to be
executed as part of a “testnet” so that developers can build applications against NuCypher’s
API. Developing code can easily have bugs that lead to accidental extreme API usage.

Exploit Scenario
A developer is integrating their app with the NuCypher system and wants to create one
policy per file in some directory. Due to a simple bug each time a re-encryption is
performed, a logfile is produced in the same directory, meaning policies are created in an
infinite loop. The databases of every consumer of policies from this developer fill up with
junk and can no longer contribute to the network.

Recommendation
Require an access token for API usage. Limit the requests made per access token per unit
of time.

Always assume developers will grossly misuse APIs and develop accordingly.

20

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 22/35

8. Database has no snapshot and rollback functionality
Severity: Medium Difficulty: Undetermined
Type: Denial of Service Finding ID: TOB-NCY-008
Target: nucypher/keystore

Description
Right now, many functions write to the database with no validation of input data. Especially
in concert with TOB-NCY-007, we believe it is likely some databases become large to the
point of being unwieldy and filled with mostly useless data. Short of clearing the database
and starting over, NuCypher offers no solution for reverting these changes.

Exploit Scenario
Due to poor termination logic in a loop, some developer accidentally publishes billions of
keys to the network. As keys are identified with a unique integer, all key space in each DB is
exhausted. State was completely fine 24 hours ago, but the only way to return each
database to functionality is either to discard all previously known keys or handwrite a SQL
query to delete all records matching some pattern (bugs in which could cause serious
problems).

Recommendation
Add application-level logic for reverting data storage to a previous state.

Assume states will become invalid, and add both aggressive validation logic and ways to
recover from inconsistency.

21

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 23/35

9. Lack of anonymity allows collusion-based attacks
Severity: High Difficulty: Medium
Type: Data Exposure Finding ID: TOB-NCY-009
Target: nucypher/keystore

Description
Currently the NuCypher system does not anonymize its users. Therefore re-encryption
nodes can acquire information about both the senders and recipients of the data they are
re-encrypting. This allows for attacks where Ursulas collude with Bob to learn Alice’s private
key.

Exploit Scenario
Alice runs a Netflix-like service which Bob subscribes to. Bob wishes to stop paying for the
service while still being allowed to stream media. He creates the threshold number of
Ursula nodes, which proceed to enter into a Policy with Alice for Bob’s re-encrypted key.
Since Bob and the Ursulas are owned by the same person, they can collude to learn Alice’s
private key. Bob can stop paying for Alice’s service while still accessing its data.

Recommendation
Devise a system where users are all pseudonymous. This could be done by the booker in
the scheme outlined in TOB-NCY-006 , since it would be able to mask each job’s origin. Once
the policy has been created, its involved parties become de-anonymized. The fact that all
parties remain anonymous during job selection prevents many collusion attacks.

Since Umbral leaks Alice’s private key if the Ursulas and Bob collude, collusion attacks must
be taken very seriously.

22

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 24/35

10. Database has no access controls
Severity: Low Difficulty: High
Type: Access Controls Finding ID: TOB-NCY-010
Target: nucypher/keystore

Description
The keystore sqlite database is stored unencrypted. No permission-based access controls
are present. An attacker with even temporary filesystem access can add, modify, or delete
entries at will.

Exploit Scenario
Due to an unpatched operating system, An attacker briefly obtains a shell on several
NuCypher nodes. He uses this access to remove some user’s keys from all nodes’
databases. This user can no longer make use of the NuCypher network.

Recommendation
Explicitly ensure that file permissions on the database prevent unprivileged users from
accessing it, and use sqlite’s encryption facilities to ensure it’s stored encrypted.

Whenever possible, adopt layered “defense in depth” strategies to mitigate partial
compromises.

References

● How To Compile And Use the SQLite Encryption Extension (SEE)

23

https://www.sqlite.org/see/doc/trunk/www/readme.wiki

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 25/35

11. ProxyRESTServer.set_policy can be used to invalidate policy
arrangements
Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-NCY-011
Target: nucypher/network/server.py

Description
set_policy decrypts an AEAD-encrypted message containing a kfrag to attach to a given
policy arrangement. However, due to several individual small bugs and questionable design
decisions, an attacker with network access can make policy arrangements held by any node
effectively useless. Specifically, we note the following issues:

● verify_from returns a decrypted message even if no valid signature is provided
● set_policy does not check whether verify_from succeeded
● attach_kfrag_to_saved_arrangement does not check if a kfrag is attached to some

arrangement already

Exploit Scenario
An attacker observes a user’s network traffic, and records a message she sends to
set_policy . They then doctor the message such that the kfrag is different, and the
message no longer contains a signature. set_policy commits the updated signature to the
DB, preventing re-encryption.

Recommendation
Make sure verify_from performs verification. Don’t let it fail silently anywhere it is called.
Separate logic for creating and updating kfrags.

Assume attackers can observe, modify, and replay traffic on the wire for malicious ends.

24

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 26/35

12. Several issues related to policy issuance
Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-NCY-012
Target: nucypher

Description
The policy system presents the following issues:

● The m parameter is never signed
● Alice’s signature is optional, and not included when creating a policy with from_alice
● The signed portion of the policy is just kfrags, which are left in the keystore after the

policy expires
● Kfrags are never validated
● Ursula doesn’t respond to arrangements made
● Alice doesn’t have to publish arrangements on the blockchain, as Ursula doesn’t

validate against them
● There is no policy revocation mechanism
● The policy and arrangement code offers no protection from replay attacks

As a result, there are several ways to craft policies that appear to be from Alice and
convince Ursulas to execute them, frequently with different parameters than the original
policy intended. Alice cannot tell if this is taking place, and Ursula cannot distinguish
legitimate policies from fake ones.

Exploit Scenario
An attacker observes some of Alice’s policies over the wire. They replay Alice’s policies with
different ms and different kfrags to all Ursulas without publishing anything on the
blockchain. Ursula realizes Alice isn’t playing fair (she’s issuing policies that cannot be
fulfilled and aren’t paid for) and refuses to accept further policies from her (possible due to
TOB-NCY-009). Alice can no longer use the Nucypher system, but cannot tell why (other
than Bob’s work orders never being fulfilled).

Alternatively, a developer accidentally issues dozens of bad policies without publishing on
the blockchain, and cannot revoke them. Ursula, as before, now refuses to do business
with that Alice.

Recommendation
Refactor the policy class to require a nonce and signature per policy. Require Ursula to
track nonces and ensure they aren’t reused. Implement a fix for TOB-NCY-009 .

Always consider the ways in which an attacker can observe and replay traffic to
compromise a system.

25

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 27/35

13. Work orders have no protection from replay attacks
Severity: Low Difficulty: Low
Type: Denial of Service Finding ID: TOB-NCY-013
Target: nucypher/keystore/keystore.py

Description
The work order submission process happens with no blockchain component and no
protection against replay attacks. An attacker that can observe one valid work order can
replay it indefinitely and Ursulas will honor it. In addition, the signature field is never
validated.

Exploit Scenario
An attacker observes Bob’s network traffic, records a work order submission to some
Ursula, and replays it. Data to all other Ursulas may be manipulated as well, straining the
network’s resources.

Recommendation
Validate Bob’s signature on work orders. Add a nonce, which cannot be repeated.

Always consider the ways in which an attacker can observe and replay traffic to
compromise a system.

26

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 28/35

14. Ursula’s responses are unauthenticated
Severity: Low Difficulty: Low
Type: Denial of Service Finding ID: TOB-NCY-014
Target: nucypher/characters.py

Description
Ursula never signs her response to work orders. Anyone can pretend to be her and
respond to a given Bob.

Exploit Scenario
An attacker Eve observes that Bob submits a request to some Ursula that Eve wants to
sabotage, then spams him with grossly incorrect results. Ursula is then not paid for any
valid re-encryption she may perform.

Recommendation
Require Ursula to sign responses to work orders. Require Bob to validate Ursula’s signed
response.

If communications have security implications, they should be signed and that signature
should be validated.

27

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 29/35

Appendix A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Documentation Related to documentation accuracy

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

28

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 30/35

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

29

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 31/35

Appendix B: Serialization testing code
This code tests the serialization functionality of pyUmbral. It randomly generates
cryptographic objects, then serializes them, deserializes the resulting data, and ensures no
changes have occured. This code requires hypothesis , and can be run with pipenv run
pytest roundtrip.py

from cryptography.hazmat.backends.openssl import backend

from cryptography.hazmat.primitives.asymmetric.ec import SECP224R1

from hypothesis import HealthCheck, given, settings, unlimited

from hypothesis.strategies import binary, booleans, integers, lists, text

from umbral.config import set_default_curve, default_curve

from umbral.curvebn import CurveBN

from umbral.fragments import CorrectnessProof, KFrag

from umbral.keys import UmbralPrivateKey, UmbralPublicKey

from umbral.params import UmbralParameters

from umbral.point import Point, unsafe_hash_to_point

from umbral.pre import Capsule

from umbral.openssl import _get_ec_order_by_curve_nid

from umbral.utils import get_curve_keysize_bytes

crypto constants

set_default_curve(SECP224R1)

curve = default_curve()

params = UmbralParameters(curve)

ks = get_curve_keysize_bytes(curve)

generators

bns = integers(min_value=1, max_value=backend._bn_to_int(params.order)).map(

 lambda x: CurveBN.from_int(x))

points = binary(min_size=1).map(

 lambda x: unsafe_hash_to_point(x, label=b'hypothesis', params=params))

utility

def assert_kfrag_eq(k0, k1):

30

https://hypothesis.works/

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 32/35

 assert(all([k0._id == k1._id

 , k0._bn_key == k1._bn_key

 , k0._point_noninteractive == k1._point_noninteractive

 , k0._point_commitment == k1._point_commitment

 , k0._point_xcoord == k1._point_xcoord

 , k0._bn_sig1 == k1._bn_sig1

 , k0._bn_sig2 == k1._bn_sig2

]))

def assert_cp_eq(c0, c1):

 assert(all([c0._point_e2 == c1._point_e2

 , c0._point_v2 == c1._point_v2

 , c0._point_kfrag_commitment == c1._point_kfrag_commitment

 , c0._point_kfrag_pok == c1._point_kfrag_pok

 , c0._bn_kfrag_sig1 == c1._bn_kfrag_sig1

 , c0._bn_kfrag_sig2 == c1._bn_kfrag_sig2

 , c0._bn_sig == c1._bn_sig

 , c0.metadata == c1.metadata

]))

tests

@given(bns)

@settings(max_examples=10000, timeout=unlimited)

def test_bn_roundtrip(bn):

 assert(bn == CurveBN.from_bytes(bn.to_bytes()))

@given(points, booleans())

@settings(max_examples=10000, timeout=unlimited)

def test_point_roundtrip(p, c):

 assert(p == Point.from_bytes(p.to_bytes(is_compressed=c)))

@given(binary(min_size=ks, max_size=ks), bns, points, points, points, bns,

bns)

@settings(max_examples=10000, timeout=unlimited)

def test_kfrag_roundtrip(d, b0, p0, p1, p2, b1, b2):

 k = KFrag(d, b0, p0, p1, p2, b1, b2)

 assert_kfrag_eq(k, KFrag.from_bytes(k.to_bytes()))

@given(points, points, bns)

@settings(max_examples=10000, timeout=unlimited)

def test_capsule_roundtrip_0(p0, p1, b):

 c = Capsule(p0, p1, b, None, None, None)

31

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 33/35

 assert(c == Capsule.from_bytes(c.to_bytes()))

@given(points, points, bns, points, points, points)

@settings(max_examples=10000, timeout=unlimited)

def test_capsule_roundtrip_1(p0, p1, b, p2, p3, p4):

 c = Capsule(p0, p1, b, p2, p3, p4)

 assert(c == Capsule.from_bytes(c.to_bytes()))

@given(points, points, points, points, bns, bns, bns)

@settings(max_examples=10000, timeout=unlimited)

def test_cp_roundtrip(p0, p1, p2, p3, b0, b1, b2):

 c = CorrectnessProof(p0, p1, p2, p3, b0, b1, b2)

 assert_cp_eq(c, CorrectnessProof.from_bytes(c.to_bytes()))

@given(points)

@settings(max_examples=10000, timeout=unlimited)

def test_pubkey_roundtrip(p):

 k = UmbralPublicKey(p)

 assert(k == UmbralPublicKey.from_bytes(k.to_bytes()))

@given(binary(min_size=1))

@settings(max_examples=100, timeout=unlimited,

suppress_health_check=[HealthCheck.hung_test])

def test_privkey_roundtrip(p):

 k = UmbralPrivateKey.gen_key()

 rt = UmbralPrivateKey.from_bytes(k.to_bytes(password=p), password=p)

 assert(k.get_pubkey() == rt.get_pubkey())

32

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 34/35

Appendix C. Code Quality Recommendations

PyUmbral

● unsafe_hash_to_point in PyUmbral doesn’t work when a label isn’t provided. If the
provided label is None (or no label is provided), it uses a label of [] , but you can’t
concatenate lists and bytes.

NuCypher-KMS

● The provided Pipfile doesn’t build bytestring_splitter or constant_sorrow , both
of which are required for NuCypher-KMS to work.

● The CAPSULE_LENGTH constant in constants.py is only accurate for unactivated
capsules (activated capsules are 197 bytes long). This propagates to
capsule_splitter and thus UmbralMessageKit .

● The blockchain portion of the system implements staking, but is not ERC900
compatible. Adopting this interface would enable usage of standard contracts and
testing tools designed for this model.

● NuCypherKMSToken doesn’t allow transfers from a person to themselves, either via
transfer or transferFrom . This can cause unexpected behavior when these
functions are called as part of a larger function and unexpectedly revert.

● The constants KFRAG_LENGTH and CFRAG_LENGTH_WITHOUT_PROOF , defined in
Constants.py , are neither initialized nor used anywhere else in the codebase

● The constant _EXPECTED_LENGTH defined in models.py is unused

33

https://github.com/ethereum/EIPs/issues/900

9/26/2018 Public Report - Google Docs

https://docs.google.com/document/d/18dtRtBIVTmpuoiHpl1HO_bPYZivLW0PhBLRDmyJZKDI/edit 35/35

Appendix D. Slither static analysis
Trail of Bits has included our Solidity static analyzer, Slither, with this report. Slither works
on the Abstract Syntax Tree (AST) generated by the Solidity compiler and detects some of
the most common smart contract security issues, including:

● The absence of a constructor
● The presence of unprotected functions
● Uninitialized variables
● Unused variables
● Functions declared as constant that change the state
● Deletion of a structure containing a mapping
● … and many more.

Slither is an unsound static analyzer and may report false positives. The lack of proper
support for inheritance and some object types (such as arrays) may lead to false positives.

In order to use Slither, simply launch the analysis on the Solidity file:

$ python /path/to/slither.py file.sol

Ensure that import dependencies and libraries, such as OpenZeppelin, can be found by the
solc compiler in the same directory.

34

