Sai
Security Assessment

Sai Smart Contracts
October 24, 2017

Prepared For:
Andy Milenius | DappHub
andy@dapphub.com

Prepared By:
Josselin Feist | Trail of Bits
josselin@trailofbits.com

Mark Mossberg | Trail of Bits
mark@trailofbits.com

Changelog

October 24,2017: Initial report delivered

December 15, 2017: Added Appendix E with retest results

January 31, 2018: Public release

mailto:andy@dapphub.com
mailto:josselin@trailofbits.com
mailto:felipe@trailofbits.com

Table of Contents

Table of Contents

Executive Summary

Engagement Goals

Project Dashboard

Vulnerability Classifications

Recommendations Summary

Short Term
Long Term

Findings Summary

1.

Race condition in the ERC20 approve function may lead to token theft

. Unprotected function and integer overflow may lead to system destabilization

. Reliance on undefined behavior may lead to unexpected behavior

. Rounding strategy in DSMath fixed-point multiplication/division may lead to errors

. Misconfigured deploy may lead to unusable system

. Inconsistent SaiTub.join() docs may lead to unexpected user behavior

. Race conditions during contracts deployment may lead to system compromise

(o2 N (@) NN (6 Iy NS (GO)

. Multiple divisions by zero may lead to unusable system

9.

Lack of validation on tax may lead to unusable system

10. Inconsistent debt bookkeeping may lead to trapped tokens

11. Loss of decimal precision leads to free tokens

12. Loss of decimal precision leads to incomplete global settlement

A. Code Quality Recommendations

B. Analysis on the feasibility to call rdiv(x, 0)

C. Test cases

TOB-Sai-008
TOB-5ai-010
TOB-Sai-011: Pattern 1
TOB-Sai-011: Pattern 2
TOB-Sai-011: Pattern 3
TOB-Sai-011: Pattern 4
TOB-Sai-012

D. Manticore test case for TOB-Sai-011

E. Fix Log

Executive Summary

From September 19 to October 24, DappHub engaged with Trail of Bits to conduct an
assessment of the Sai system, the Dappsys libraries, and the DS-Chief project. All assessed
code was written in Solidity, except for a small number of shell scripts. Trail of Bits
conducted this assessment over the course of eight person-weeks with two engineers.

Trail of Bits completed the assessment using manual, static, and dynamic analysis
techniques. The first week focused on understanding Sai at a high level through
documentation and code, which was checked for common Solidity flaws. The second week
focused on examining the main contracts for more nuanced errors. The third week focused
on reviewing the authorization system as well as exploring mathematical exceptions as a
means of functionality disruption. The last two weeks focused on investigating the
possibility and implications of numerical errors in Sai and auditing DS-Chief (ea8759a0) for
common Solidity errors. Overall, most of the audit resources were devoted to the Sai main
contracts (SaiTub, SaiTap, SaiTop) and DS-Math, which were deemed highest priority. The
other various libraries and DS-Chief were assigned lower priority.

The assessment identified a variety of issues in Sai, including issues of high severity. The
most severe may lead to the generation of tokens for free, trapped tokens, and denial of
service. Though not directly part of Sai, for completeness, a relevant high-severity design
flaw of the ERC20 standard enabling token theft was also reported. Other reported issues
involved various implications of errors in configuration and deployment of the system as a
whole. Inconsistencies of low severity were discovered between documentation and code
in both Sai and DS-Chief, which may lead to incorrect use of the contracts.

Overall, the code reviewed is of excellent quality, written with obvious awareness of current
smart contract development best practices. Sai excels in the area of system design. Its
interfaces are well designed and its use of patterns such as pull vs push token transfer
displays maturity. The emphasis on constant time functions and simple business logic is
another sign of robust Solidity code. In the area of numerical computing, a notoriously
complex field, Sai can be improved. DSMath provides a solid, correct foundation for fixed
point computing. However, its higher level usage in Sai requires vigilance and updates to
ensure that numerical errors are anticipated and handled gracefully by the system.

https://github.com/dapphub/ds-chief/commit/ea8759a0a5f1b9724ac1c328d85a57eb1b3c9557

Engagement Goals

The goal of the engagement was to evaluate the security of the Sai system with specific
focus on potential numerical issues enabling stolen or trapped tokens. Specifically, we
sought out answers to the following questions:

e Isit possible for an attacker to steal or trap tokens?
e Isit possible to interfere with the settlement mechanism?
e Are the arithmetic calculations trustworthy?

Project Dashboard

Application Summary

Name Sai

Version e138chdc

Type Ethereum Smart Contract
Platform Solidity

Engagement Summary

Dates September 19 - October 24, 2017
Method Whitebox
Consultants Engaged 2

Level of Effort

8 person-weeks

Vulnerability Summary

Total High Severity Issues 5 EEEEN
Total Medium Severity Issues 4 EEEN
Total Low Severity Issues 3 EEN
Total Informational Severity Issues 0

Total |12
Category Breakdown
Business Logic 1 L
Configuration 2 (]
Data Validation 2 L]
Numerics 4 EEENE
Undefined Behavior 1]
Timing 2 L]

Total |12

https://github.com/makerdao/sai/tree/e138cbdc8a422e82949be55b8d200c975882ff48

Vulnerability Classifications

Vulnerability Classes

Class

Description

Access Controls

Related to authorization of users and assessment of rights

Auditing and Logging

Related to auditing of actions or logging of problems

Authentication

Related to the identification of users

Business Logic

Related to application business logic

Configuration

Related to security configurations of servers, devices or software

Cryptography

Related to protecting the privacy or integrity of data

Data Exposure

Related to unintended exposure of sensitive information

Data Validation

Related to improper reliance on the structure or values of data

Denial of Service

Related to causing system failure

Error Reporting

Related to the reporting of error conditions in a secure fashion

Numerics

Related to numeric calculations

Patching

Related to keeping software up to date

Session Management

Related to the identification of authenticated users

Timing

Related to race conditions, locking or order of operations

Undefined Behavior

Related to undefined behavior triggered by the program

Severity Categories

Severity

Description

Informational

The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined

The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user's information is at risk, exploitation would be bad for
client's reputation, moderate financial impact, possible legal
implications for client

High Large numbers of users, very bad for client’s reputation, or serious

legal or financial implications

Difficulty Levels

Difficulty

Description

Undetermined

The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

Recommendations Summary

Short Term

Mitigate all rounding issues. These issues may lead to free tokens or trapped users.

Remediate all the other identified vulnerabilities. Remove DS-Warp, add the proper
checks for the functions parameters. Except for the rounding issues, all the identified
issues have straightforward solutions.

Update and document the deployment scripts. The Sai deployment is a key step in the
system. It has to be updated and documented in sync with the code.

Long Term

Verify the corner cases of mathematical operations. Ensure that mathematical corner
cases, such as rounding, integer overflow/underflow, division by zero, modulo by zero, are
properly handled. Consider formal methods for verification of correctness.

Assume that users and owners will make mistakes. Smart contracts have a history of
costly errors due to users’ and owners' small mistakes. Assume that everyone will use the
API or the function parameters incorrectly.

Improve the documentation scope. The documentation has to cover all the underlying
assumptions, such as all the actions to perform for proper system configuration.

Add robustness for numerical imprecision. Numerical errors such as rounding errors are
inevitable when performing fixed-precision computations. Carefully consider when these
issues are likely arise, and how to mitigate them as much as possible. Mathematical code
using DSMath must be written with awareness of the strengths and weaknesses of a
fixed-point numerical representation.

Findings Summary

| Title Type Severity

1 | Race condition in the ERC20 approve Timing High
function may lead to token theft

2 | Unprotected function and integer Data Validation High
overflow may lead to destabilization

3 Reliance on undefined behavior may lead | Undefined Low
to unexpected behavior Behavior

4 Rounding strategy in DSMath fixed-point Numerics Medium
multiplication/division may lead to errors

5 | Misconfigured deploy may lead to Configuration Low
unusable system

6 | Inconsistent documentation on Business Logic Low
SaiTub.join() may lead to unexpected
system behavior for users

7 | Race conditions during contracts Timing High
deployment may lead to system
compromise

8 Multiple division by zero may lead to Data Validation Medium
unusable system

9 | Lack of validation on tax may lead to Configuration High
unusable system

10 | Inconsistent debt bookkeeping may lead Numerics Medium
to trapped tokens

11 | Loss of decimal precision leads to free Numerics High
tokens

12 | Loss of decimal precision leads to Numerics Medium

incomplete global settlement

10

1. Race condition in the ERC20 approve function may lead to token theft

Severity: High Difficulty: High
Type: Timing Finding ID: TOB-Sai-001
Target: DSToken and DSTokenBase

Description
The ERC20 standard contains a known race condition on the approve function, making
possible the theft of tokens.

The ERC20 standard describes how to create generic token contracts. Among others, a
ERC20 contract has to define these two functions:

e +transferFrom(from, to, value)
e approve(spender, value)

The goal of these functions is to give the permission to a third party to spend tokens. Once
the function approve(spender, value) has been called by a user, spender can spend up
to value tokens of the user by calling transferFrom(user, to, value).

This schema is vulnerable to a race condition when the user calls approve a second time on
an already allowed spender. If the spender sees the transaction containing the call before it
has been mined, they can call transferFrom to transfer the previous value and still receive
the authorization to transfer the new value.

Exploit Scenario

1. Alice calls approve(Bob, 500). This allows Bob to spend 500 tokens.

2. Alice changes her mind and calls approve(Bob, 1000). This changes the number
of tokens that Bob can spend to 1000.

3. Bob sees the transaction and calls transferFrom(Alice, X, 500) before it has
been mined.

4. If Bob's transaction is mined before Alice's, 500 tokens will be transferred by Bob.
Once Alice’s transaction is mined, Bob can call transferFrom(Alice, X, 1000).

Bob has transferred 1500 tokens even though this was not Alice’s intention.

11

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

Recommendation
While this issue is known and can have a severe impact, there is no straightforward
solution.

One possible solution is to forbid a call to approve if all the previous tokens are not spent
by adding a require to approve. This solution prevents the race condition but it may result
in unexpected behavior for a third party.

require(_approvals[msg.sender][guy] == @)
Another possible solution is the use of a temporal mutex. Once transferFrom has been
called for a user, it needs to prevent a call to approve during the limited time. The user can
then verify if someone transferred the tokens. However, this solution adds complexity and

may also result in unexpected behavior for a third party.

This issue is a flaw in the ERC20 design. It cannot be fixed easily without modifications to
the standard.

12

2. Unprotected function and integer overflow may lead to system
destabilization

Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-Sai-002
Target: DSWarp

Description

If the contracts are not properly initialized, anyone can control the time involved in the
computing the token price, computing the stability fee, and enforcing the cooldown period.
This is due to the unprotected access to the DSWarp.warp function and an integer overflow.

DSWarp is used to control the time and is inherited by many contracts. The function
DSWarp.era() returns either:

e The value of the variable era
e Or the current time (now)

The function DSWarp.warp(age) increases _era by age.
Once DSWarp.warp(0) is called, DSwWarp.era() will only return the current time.

The first vulnerability is that DSWarp.warp is public. Anyone can call it and add any value to
_era. Moreover, there is a possible integer overflow in DSWarp.warp (warp.sol:29):

_era = age == 0 ? @ : _era + age;

As a result, the value of _era can be set to any arbitrary value by anyone. This would allow
an attacker to influence anywhere era() is used, including the token price computation,
the stability fee computation, and global settlement.

The purpose of DSWarp is not clear from the documentation. We suspect the contract is
only intended for testing and debugging purposes. During testing, warp(age) is used to
increase the time. During the deployment of the contracts in the blockchain, the function
warp (@) should be called, leading DSWarp.era() to return only the current time.

Exploit Scenario

The tokens are deployed, but warp (@) is not called. As a result, Alice can change the time
value used to compute the token price. As a result, Alice is able to influence the token price
valuation.

13

Recommendation
Authorization checks should be added to DSWarp, using DSAuth, to prevent untrusted
users from calling warp, in case of a misconfigured deployment.

Alternatively, if DSWarp solely exists to be used by tests, it should be removed. It adds
unnecessary complexity to the contracts. If the testing system through Dapp does not
provide any proper way to manipulate the time, other testing frameworks, such as truffle,
or pyethereum, should be considered.

The design of the smart contracts should not be influenced by the choice of the testing
framework.

The documentation needs to mention all the instructions that have to be followed to
deploy the contracts properly.

14

3. Reliance on undefined behavior may lead to unexpected behavior

Severity: Low Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-Sai-003
Target: SaiTap, SaiTub and DaiVox

Description
Due to the use of an undefined Solidity behavior, a future version of the compiler could
lead to uncompilable code or unexpected behavior.

Undefined behavior
Several functions are declared as constant functions, but they change the state of the
contract. This is an undefined behavior of solidity. These functions are:

e In SaiTap: bid and ask (tap.sol:71,75)

e |n SaiTub: safe and tab (tub.sol:60,175)

e In DaiVox: par and way (lib.sol:26,30)

The Solidity documentation specifies that:

Functions can be declared constant in which case they promise not

to modify the state.

A warning in the documentation points out that:

The compiler does not enforce yet that a constant method is not
modifying state.

In the current compiler version, constant functions can change the state of the contract. It
is up to the interpretation of the ethereum client to change the state. For example, the
solidity browser does not change the state of contracts when calling constants functions,
whereas pyethereum does.

A future version of the compiler could enforce this property. At that time, the code will not
be compilable, or a call to a constant function will not change the state of the contract.

Example of consequences on SAl

The function SaiTub.tab calls SaiTub.chi, which calls SaiTub.drip, which changes the
state variable _chi. _chi indicates the internal debt price. As SaiTub.tab is declared as a
constant function, a change of compiler could lead to a modification of _chi going
unnoticed. SaiTub.tab may then indicate an incorrect CDP debt, since an unupdated debt
price was used in the calculation.

15

http://solidity.readthedocs.io/en/v0.4.15/contracts.html#constant-functions
https://remix.ethereum.org/
https://github.com/ethereum/pyethereum/releases/tag/v1.6.1

Exploit Scenario

A new version of the Solidity compiler that enforces the restrictions on constant functions
is released before the launch of the smart contract. This new version of Solidity is used to
compile and deploy the token launch contracts. As a result, all constants functions do not
change the state variables. Several values aren’t updated after these functions are called.

Recommendation
Remove the constant attribute in SaiTap.bid, SaiTap.ask, SaiTub.safe, SaiTub.tab,
DaiVox.par and DaiVox.way.

Carefully review the Solidity documentation. In particular, any section that contains a
warning must be carefully understood since it may lead to unexpected or unintentional
behavior.

16

http://solidity.readthedocs.io/en/develop/index.html

4. Rounding strategy in DSMath fixed-point multiplication/division may
lead to errors

Severity: Medium Difficulty: Medium
Type: Numeric Finding ID: TOB-Sai-004
Target: DSMath

Description

In specific cases where the precise result of a fixed-point multiplication or division is exactly
halfway between the smallest degree of precision accounted for, DSMath will perform
“round half up” rounding to fit the result into the available number of decimals tracked. If
these cases occur frequently, this will tend to bias the calculation results in the positive
direction, introducing error.

Example: Consider a smart contract using DSMath which divides numbers and computes
the sum of the results of the divisions. For simplicity of illustration, assume DSMath is
slightly modified so the WAD type has three digits of decimal precision (1000 = 1.000). Also
assume the division operations may often result in a five in the ten-thousandths place, as
the last digit in the number (x.xxx5). Let the input data that the contract processes be
(0.015, 6) and (0.015, 10).

Computed with no loss of precision:
.015/6 =.0025

.015/10=.0015

.0025 +.0015 =.004

Computed by DSMath, using “round half up” rounding
wdiv(15, 6000) = 3 //.0025 rounded up

wdiv(15, 10000) = 2 // .0015 rounded up
3+2=5//.005in decimal

DSMath computes .005, but the correct result is .004. An upward bias has been introduced,
due to the fact that numbers exactly halfway between the smallest degree of precision are
always rounded up. As further computations occur using this biased result, the bias will
propagate, creating an increasing divergence from the ideal result.

The severity of this issue is directly related to the likelihood of the result of a multiplication
or division being exactly halfway between the smallest degree of precision. For example,
for DSMath WAD, this issue will only manifest if results of multiplication or division
precisely should end with a 5 in the 1e-19-th decimal place, followed by no other digits (e.g.
XXXXXXXXXXXXXXXXXXXS).

17

Exploit Scenario

Alice uses a smart contract which does fixed-point multiplication with DSMath for exchange
rate computations and various analyses on the converted values. The contract returns
erroneous results randomly, based on current exchange rates and the particular analysis in
question. Alice relies on these erroneous results to make investment decisions, and loses a
significant amount of money when an incorrect analysis result leads her to make a bad
investment.

Recommendation

Instead of the “round half up” strategy, use the “round half to even” strategy, also known as
“banker’s rounding.” This approach rounds halfway numbers up or down using a simple,
dynamic policy which helps eliminate rounding bias. However, this approach assumes an
even distribution of numbers that will be rounded up and down.

Referring to the above example from the description, the computation using “round half to
even” is:

Computed using “round half to even” rounding, with three decimals of precision:
.015/6 =.002 //.0025 rounded down

.015/10 =.002 // .0015 rounded up

.002 +.002 =.004

Even though precision is still lost due to rounding, the end result retains accuracy.
It is possible that the risk of this error occuring with WAD and RAY types does not justify the
additional implementation complexity involved with “round half to even” rounding.

Consideration should be given to the possibility of adding a new fixed-point type in the
future with less decimals of precision, increasing likelihood of error.

18

5. Misconfigured deploy may lead to unusable system

Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-Sai-005
Target: SaiTub, bin/deploy-live-public

Description

The hat SaiTub state variable is the system parameter controlling the Sai debt ceiling. It is
of type uint256 and never explicitly initialized, thus taking an initial value of zero. This
variable is used to enforce the debt ceiling in SaiTub.draw (tub.sol:228), which mints Sai.

require(sin.totalSupply() <= hat);

If hat is not initialized, this require will always fail, since sin.totalSupply () will always be
greater than zero at this point. While hat is uninitialized, it will be impossible for CDP users
to generate Sai.

The hat variable can only be set via SaiTub.mold, which serves as the administration
interface for configuring the various SaiTub parameters. This interface should be used in
the deploy scripts to ensure that a debt ceiling is always set for the system. However it is
never referenced in any of the deploy scripts in bin/. In bin/deploy-1live-public there is
code to configure system parameters which uses sai cork with the intention of setting
hat. The sai cork command, however, calls the SaiTub. cork interface (sai-cork:8), which
does not exist, so this will have no effect.

(set -x; seth send "${SAI_TUB?}" "cork(uint256)" "$wad")
Additionally, in bin/deploy-1live-public there appear to be two other uses of
non-existent configuration interfaces: sai cuff and sai chop, which call SaiTub.cuff and
SaiTub.chop respectively. These will also have no effect.

The bin/validate-deployment script is an effective way to verify the state of a newly
deployed Sai system. However, the specific hat value it checks for (5000000) appears to be
inconsistent with the value attempted to be set in bin/deploy-1live-public (100000000).

validate-deployment:14
test $(sai hat) = $(sai wad -h 5000000.0)

deploy-live-public:32
sai cork 100000000.00

19

Exploit Scenario

Sai is deployed using flawed deployment scripts which leave the debt ceiling unspecified.
Sai users immediately begin to interact with the system, converting Ether to SKR, opening
CDPs, and locking SKR into them as collateral. They attempt to draw Sai from the system,
find that they cannot, and lose trust in the Sai platform.

Recommendation
In the short term, ensure that the configuration interfaces used by deployment code match
those in Sai.

For long term confidence in the correctness of the deployment code, use automated
means of checking a deployment; the existing validate-deployment script is an excellent
start towards this. Consider automatically invoking it at the end of the deployment process
to be aware of faulty deployment as soon as possible. Going further, it should be possible
to express the parameters that the deploy system will set, in a format that can be checked
for invariants (e.g. hat is set, and is nonzero) prior to deployment of the system.

20

6. Inconsistent SaiTub.join() docs may lead to unexpected user behavior

Severity: Low Difficulty: Low
Type: Business Logic Finding ID: TOB-Sai-006
Target: SaiTub

Description

The SaiTub. join function is the user interface for exchanging Ether for SKR. It takes a
single parameter: the amount of SKR to receive expressed as a DSMath WAD type. It
directly mints the input parameter amount of SKR to the sender, and converts that amount
of SKR into Ether (GEM) and transfers that amount from the sender.

tub.sol:133

function join(uint wad) note {
require(!off);
gem.transferFrom(msg.sender, this, ask(wad));
skr.mint(msg.sender, wad);

The documentation for SaiTub. join in the Sai README.md file, and sai join command
line utility are inconsistent with this behavior. They document that the join function takes
an input of the amount of GEM to buy SKR.

sai-join:2-3, 7

sai-join -- buy SKR for gems
Usage: sai join <amount-in-gem>

echo >&2 "Sending $jam GEM to TUB..."

Here, the comments at the top, and the tool's output document the behavior as sending an
input amount of GEM to SaiTub.

README.md:167-173

We need to have some GEM (W-ETH) balance to start with
$ token balance $(sai gem) $ETH_FROM
2.467935274974511817

Join the system by exchanging some GEM (W-ETH) to SKR
$ sai join 2.2

21

Sending 2.200000000000000000 GEM to TUB...
$ token balance $(sai gem) $ETH_FROM
0.267935274974511817

$ token balance $(sai skr) $ETH_FROM
2.200000000000000000

Here, the example usage of sai join shows using join to exchange GEM for SKR,
deducting the parameter to sai join from the initial GEM balance. This example is
misleading because the user actually specified for Sai to spend 2.2 SKR worth of the user’s
GEM rather than for Sai to spend 2.2 GEM worth of SKR. The math here happens to work
out. The GEM account balance post-join is equal to the initial balance minus the input
parameter to sai join because the GEM/SKR ratio in this example appears to be 1:1, and
the bid/ask gap is also 1. This will result in a 1:1 GEM:SKR conversion because the
SaiTub.ask converts a SKR amount to GEM by multiplying the GEM/SKR ratio (per()), the
bid/ask gap (gap), and the SKR amount together.

tub.sol:126-128

function ask(uint wad) constant returns (uint) {
return rmul(wad, wmul(per(), gap));

}

If the GEM/SKR ratio was 2:1, calling join(2 ether) would be documented as asking for 2
GEM worth of SKR (spending two of the user's GEM), but in actuality would be telling Sai to
spend 2 SKR worth of GEM. Since the GEM/SKR ratio is always maintained, the user would
actually spend twice as many GEM as intended.

Exploit Scenario

The current Sai GEM supply is 4, and the SKR supply is 2. Alice wishes to exchange 2 GEM
for SKR. After reading the Sai README.md file, she calls sai join 2, expecting to spend 2
GEM. She finds that 4 GEM has been transferred from her GEM account, becomes
confused, and loses trust in Sai.

Recommendation

Verify interface documentation is correct for all external Sai interfaces. During
development, make documentation modifications in the same commit or pull request as
interface changes.

22

7. Race conditions during contracts deployment may lead to system
compromise

Severity: High Difficulty: High
Type: Timing Finding ID: TOB-Sai-007
Target: All the contracts

Description
The deployment validation lacks checks, which can be used by an attacker to compromise
the system.

The system relies heavily on the correct initialization of the contracts. To ensure these
initializations, the script bin/validate-deployment performs several verifications.
However, some checks are not implemented. An attacker could compromise the system by
calling the initialization functions before the deployment scripts.

For example, the authentication system (DSAuth) of each contract relies on the fact that the
owner has their privileges removed by the script bin/deploy-drop-auth. However, no
check is performed to ensure that the privileges are dropped. An attacker could prevent
loss of privileges by changing the owner of the contract to another controlled address,
before the call to bin/deploy-drop-auth.

Missing checks:
e The actions performed in bin/deploy-drop-auth
e Thecall to tap.turn (bin/deploy:33)
e All the calls to setAuthority (bin/deploy:33-50)

Exploit Scenario

The owner of a Sai token contract changes the owner of the contract to another controlled
address, before the call to the deploy-drop-auth script. As the result, deploy-drop-auth
on Sai token fails but validate-deployment does not emit a warning. The attacker will be
authorized to call any function of the Sai token contract. As a result, the attacker can create
new Sai tokens for free by calling the function mint.

Recommendation

Add the following checks to bin/validate-deployment:
e Check the actions performed in bin/deploy-drop-auth
e Check the outcome of the call to tap.turn (bin/deploy:33)
e Checks the authority setting (bin/deploy:33-50)

Sai relies on a complex initialization process. Ensure that the documentation maintains a
clear description of each step to reduce future issues.

23

8. Multiple divisions by zero may lead to unusable system

Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-Sai-008
Target: SaiTub, SaiTap, SaiTop, DaiVox

Description
Multiple divisions by zero are possible due to a wrongly parameterized system. A division
by zero leads to throwing. As a result, the system may become temporarily or fully blocked.

See details in Appendix B and test cases for some of them in Appendix C.

Exploit Scenario

The Sai team decides to stop the tokens and calls SaiTub.cage. But the function is called
with 0 as fit_ parameter. Such a mistake can easily occur due to the short address issue.
As a result, any further calls to bite will throw. Users will not be able to liquidate their
CDP.

Recommendation

Add require(val != @) in SaiTub.mold (tub.sol:113)

Add require(fit_ != @) SaiTub.cage (tub.so0l:269)

Consider the case where per() and tag() return 0 in bite (tub.sol:254)
Consider the case where sin.totalSupply() returns 0 in cage (top.sol: 52)
Add require(par != @) inDaiVox (lib.s0l:19)

All the functions assigning parameters in the contracts should check that the parameters
have reasonable values. This is particularly true for the parameters that can be set only one
time, as the parameters of the cage system.

24

https://blog.golemproject.net/how-to-find-10m-by-just-reading-blockchain-6ae9d39fcd95

9. Lack of validation on tax may lead to unusable system

Severity: High Difficulty: High
Type: Configuration Finding ID: TOB-Sai-009
Target: SaiTub, SaiTop

Description

SaiTub contains many system configuration parameters for Sai, including tax, which
controls the stability fees Sai collects from CDPs. The tax value should, in practice, always
be greater than or equal to one. However, no code enforces this. This may allow tax to be
accidentally set to a value less than 1 at some point, which can have dire consequences for
the Sai system.

SaiTub.drip is one of the primary users of tax, using it for the stability fee calculation.
First, tax is used to compute a value, inc, representing the increase factor of the system’s
sin debt.

tub.sol:160
var inc = rpow(tax, age);

That variable, inc, is then used to compute the actual amount of fees that the system
collects.

tub.sol:163
var dew = sub(rmul(ice(), inc), ice());

If tax is less than 1, inc will correspondingly be less than 1. This will cause the above
subtraction to trigger an exception, as there will be an integer underflow. In this
configuration, the SaiTub.drip function will always fail.

This has several implications. First, many of the SaiTub interfaces for CDP interaction will
fail, as SaiTub.drip is indirectly called via the chi function which itself is called often by
these interfaces. Next, the tax parameter will effectively become immutable after such an
erroneous configuration because SaiTub.drip is called before setting the tax in
SaiTub.mold. Lastly, the cage function in the SaiTop contract for global settlement will fail,
as it calls SaiTub.drip. Depending on the authorization configurations of SaiTub.cage and
SaiTap.cage, this may prevent Sai from settling its ledger.

25

Exploit Scenario
The SaiTub.mold function is accidentally used to set tax to the RAY equivalent of 0.99.
SaiTub CDP operations like draw, wipe, free, and bite immediately begin failing. A reset of

the tax is attempted, but this fails, as does an attempt to call SaiTop. cage to settle the
system.

Recommendation
In the short term, a require statement should be used to ensure that tax is never set to a

value below 1.

In the long term, for all sensitive system parameters with ranges of intended values, add
code which enforces these ranges.

26

10. Inconsistent debt bookkeeping may lead to trapped tokens

Severity: Medium Difficulty: Low
Type: Numerics Finding ID: TOB-Sai-010
Target: SaiTub

Description
Note: This issue is the result of our investigation into Sai Issue #87.

The Sai system uses the sin token to track the total CDP debt to the Sai system, as well as
the individual debts for each CDP. At any point, the sum of the debts of all CDPs should be
consistent with the total sin count of the system. However, rounding operations can violate
this invariant and cause the system to trap tokens.

A user can generate sai tokens, by generating a debt in a CDP, through SaiTub.draw. The
debt is expressed through sin tokens. The functions involved in the sin tokens
manipulation are:

SaiTub.tab: compute the current debt of a CDP

SaiTub.ice: give the number of sin tokens of SaiTub
SaiTub.draw: increase the debt of a CDP

SaiTub.wipe: decrease the debt of a CDP

SaiTub.bite: remove the debt of a CDP

SaiTub.drip: increase SaiTub.ice, and influence SaiTub.tab

SaiTub.ice is expected to contain at least the sum of all the SaiTub.tab(cup).

SaiTub.ice is increased through an addition in SaiTub.draw and SaiTub.drip. In
SaiTub.drip the addition is proportional to the debt increasing inc.

e draw(wad) -> SaiTub.ice += wad

e drip() -> SaiTub.ice += (SaiTub.ice * inc) - SaiTub.ice

SaiTub.tab(cup) is computed through the multiplication of the current debt (cup.art) and
the price of the internal debt chi. The current debt is increased in draw. chi is the result of
the multiplication of its previous value to the debt increasing inc.

e draw(wad) -> cup.art += wad / chi

e drip() -> chi = chi * inc

SaiTub.ice is not computed using the same mathematical logic as SaiTub.tab, resulting in
different rounding operations. This can cause SaiTub.ice to be less than the sum of all
SaiTub.tab, which affects repayment of CDPs. It may be not possible to cancel all the debts
in this situation. Indeed, the last owner of a CDP may not be able to wipe their CDP's

27

https://github.com/makerdao/sai/issues/87

balance, as the subtraction of SaiTub.tab(cup) from SaiTub.ice (In sin.burn) will
underflow. This affects the SaiTub shut and bite functions.

Appendix C contains a test case for this issue.

Exploit Scenario

The cage system is activated. Bob has a CDP with an active debt. He is the last user to call
bite to cancel the debt of his CDP. Due to the difference in the rounding operation, there
are not enough sin tokens in SaiTub for him to cancel the debt. As a result, he is not able
to retrieve his remaining skr tokens and cash out his money.

Recommendation
A quick workaround would be to:
e Change SaiTub.mend(src, wad) to burnthe minimum between wad and
sin.balanceOf(this)
e Change SaiTub.bite to push to SaiTap the minimum between tab(cup) and
sin.balanceOf(this)

However, this solution does not fix the root of the issue.
To fix the difference, the logic used to compute the number of sin tokens mined in SaiTub
and affected to a CDP should be changed. The same mathematical operations have to be

used to prevent a difference from appearing during rounding.

If two values are entangled, it is preferable to store only one and compute the second from
it. If it is not possible, the relation between these values has to be proved, or at least tested.

28

11. Loss of decimal precision leads to free tokens

Severity: High Difficulty: Low
Type: Numerics Finding ID: TOB-Sai-011
Target: SaiTub, SaiTap, Ds-math

Description

The Sai system uses the fixed point decimal representation to handle fractional values.
Fixed point arithmetic is known to lack precision when dealing with multiplication or
division. These operations are used to compute token prices. The resulting loss of precision
allows an attacker to receive tokens for free.

Exploitation of these issues requires a specific state of the system (e.g., a specific value for
chi). Appendix C contains test cases along with each required beginning state. Note that
these test cases exercise the vulnerabilities but do not exploit them to the fullest. To
demonstrate the severity of the problem, we provide a test case in Appendix D where an
attacker is able to generate 0x28000000 free skr tokens.

Pattern 1: Division rounding to zero
This pattern represents draw, and can be exploited to generate free Sai tokens (15 wei
worth in our example in Appendix C):

f(input):
a += input / x
b += input

If an attacker calls f(user) where the following condition is met, then a is not increased,
while b is increased by user.

user / x == (1)
Pattern 2: Division roundings

This pattern represents draw/wipe and can be exploited to generate free Sai tokens (1 wei
worth in our example in Appendix C):

fl(input):
a += input / x
b += input
f2(input):
a -= input / x
b -= input

29

https://accu.org/index.php/journals/1717

If an attacker calls f1(userl) followed by f2(user2) where the following conditions are
met, then a ends with its initial value, while b is increased by y.

user2 == userl -y (1)
userl / x == user2 / x (2)

Pattern 3: Multiplication rounding to zero
This pattern represents join and can be exploited to generate free skr tokens (1 wei in
our example in see Appendix C):

f(input):
a += input * x
b += input

If an attacker calls f(user) where the following condition is met, then a is not increased,
while b is increased by user.

user * x == 0 (1)
SaiTap.bust may also be vulnerable to this issue.

Appendix D shows an example where a user can generate 0x28000000 free skr tokens by
abusing this pattern.

Pattern 4: Multiplication roundings
This pattern represents join/exit and can be exploited to steal gem tokens (1 wei in our

example in Appendix C).

fl(input):
a += input * x
b += input
f2(input):
a -= input * x
b -= input

If an attacker calls f1(userl) followed by f2(user2_9), ..., f2(user2_n) where the
following conditions are met, then a ends with its initial value, while b is increased by the
difference in (2).

userl = user2 @ + ... + user2.n (1)
userl * x < user2 ©@ * x + ... + user2_n * x (2)

SaiTap.bust/SaiTap.boom may also be vulnerable to this issue.

Exploit Scenario

Bob exploits certain token ratio conditions in Sai, using join to generate 0x28000000 free
skr tokens. This allows Bob to do several things, including maliciously manipulate the
SKR/GEM ratio, and effectively draw SAl without spending any GEM.

Alice discovers the attack and announces it publicly. As a result, users lose trust in Sai.

Recommendation
To prevent the pattern 1, add in SaiTub.draw:
require(div(wad, chi()) > 9)

To prevent the pattern 3, add in SaiTub.join and SaiTap.bust:
require(ask(wad) > @)

A solution to prevent the pattern 2 could be to add in SaiTub.draw:
wad = rmul(rdiv(wad, chi()), chi())

Note that all of these recommendations require additional, thorough testing to validate the
work properly. Further, we could not easily find a solution to mitigate the fourth pattern.

Fixed point computation is not well suited for multiplication and division, and requires
careful consideration of corner cases. Consider using a tool based on formal methods, such
as Manticore, to ensure that these issues are properly mitigated.

Recommended References:
e What causes floating point round errors? (as answered by Mark Booth)

31

https://github.com/trailofbits/manticore
https://softwareengineering.stackexchange.com/questions/101163/what-causes-floating-point-rounding-errors/101197#101197

12. Loss of decimal precision leads to incomplete global settlement

Severity: Medium Difficulty: Low
Type: Numerics Finding ID: TOB-Sai-012
Target: SaiTub, SaiTap, SaiTop

Description

Rounding errors can prevent Sai from converting tokens in certain situations. This has been
examined for converting SKR to GEM via exit, but we believe this also applies to converting
SAl to GEM post-cage, and potentially other conversions.

As an example, consider a Sai system whose state is comprised of a single SKR holder
wishing to convert to GEM. It has the following initial state:

e SKR balance (holder/total): 575710461955084070.04879367427457268
e GEM balance (tub): 1059836680168385020.599124280851040344
e gap parameter: 1.0

When the holder converts their entire SKR balance to GEM, they should receive the entire
remaining GEM balance since they are the only SKR holder. In reality, exit reverts due to
integer underflow in the GEM DSToken and the token conversion fails. This is
demonstrated in Appendix C.

The exit operation converts a SKR balance to GEM, according to a conversion rate. This
conversion process, and all conversions done by Sai, necessarily involves the introduction
of numerical rounding errors, due to the nature of fixed precision multiplication and
division.

The predicate below expresses a failure scenario for exit, when a single holder owns all
remaining SKR. holder_skr represents the holder’s SKR balance, equal to the SKR total
supply. tub_gem represents the GEM balance owned by SaiTub.

holder_skr * (tub_gem / holder_skr) > sai_gem

The value computed on the left side of the > operator is ultimately subtracted from the
value on the right side. If this predicate is true, exit will fail because there will be an integer
underflow in the subtraction. According to pure math, this predicate is false. However we
found that, due to aforementioned rounding errors, it can actually evaluate to true. We
tested this predicate’s satisfiability through targeted use of symbolic execution with
Manticore.

32

https://github.com/trailofbits/manticore

We found that ratios that induce this failure are not rare. Given SKR and GEM balances
requiring the full range of precision offered by DSMath WAD types, it is easy to produce
failing test cases. We found this through a simple fuzzer designed to generate large,
random SKR/GEM balances and test the exit scenario above .

This particular exit failure scenario is mitigated by the user’s control over the amount of
SKR to convert. If converting an entire balance fails, it would likely be possible for them to
incrementally convert nearly their entire balance. Though not thoroughly investigated, we
believe this issue also applies to conversions of SAl to GEM in a post-cage system state, due
to the same fundamental conversion (via error-introducing multiplication/division), and
subtraction. This scenario is more severe, not only because it affects SAl holders directly,
but because SAIl holders do not control the amount of SAIl to convert in the cash function. If
the holder’s SAl balance happens to convert to a GEM balance greater than the SaiTap’s
GEM balance, it will be impossible to convert any amount of their SAl to GEM.

Exploit Scenario

Alice is the only SKR holder. She becomes confused when she finds herself unable to
convert her SKR balance to GEM in one transaction, despite calling exit with her exact SKR
balance. She discovers she is able to convert most of her balance with incremental
conversions, but loses trust in Sai.

Recommendations

Similar to the recommendation for TOB-Sai-010, this issue may be mitigated at the surface
level by modifying the logic for exit (and other affected functions) to transfer the minimum
between the converted value and the total available tokens. For example, in exit, transfer
the minimum between bid(wad) and gem.balanceOf(this).

According to our analysis, there is no single, comprehensive solution that eliminates the
need to carefully consider introduced numerical errors and their potential effects. Care
should be taken to avoid integer underflows which can occur easily in token conversion
and transfer scenarios. Be aware of the strengths and weaknesses of fixed point
computation, and if possible, choose computational strategies favoring
addition/subtraction over multiplication/division.

33

A. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance readability and may prevent the introduction of vulnerabilities in the future.

General Recommendations
e Explicitly define the visibility of all functions. This would prevent mistakes in the
understanding of their scope.
e Note: It is possible for a user to burn skr tokens for free. If a user sends some sai
tokens to SaiTap, he generates fake stability fees. He can then call SaiTap.boom to
burn its own skr tokens and receive back the sai tokens.

SaiTub

e Use modifiers for repetitive pattern checks, such as require(msg.sender ==
cups[cup].lad); and require(!off);. Such design is less error prone and
facilitates the review of the code.

e Add to shut its own validation. shut relies on the check performed by its inside calls
(wipe and free). This would prevent bugs introduced in a future refactoring of the
code and improves the consistency of the functions.

e Use DSMath.add when incrementing cupi in SaiTub.open. Even though integer
overflow is impractical in this case, using DSMath.add improves code uniformity and
adds safety with few drawbacks.

SaiTap
e Add require(loff) in SaiTap.cage (tap.sol:107), to forbid an owner to set fix a second
time.

SaiTop
e Inthe cage function, tub.vox().par() can be replaced with vox.par().

DSToken
e Note: the variable decimals is never used (DSToken.sol:23).

DSMath
e Refactor mul() to not return an uninitialized unit value if the function is called with y
== 0. Though correct behavior, this function is difficult to read due to Solidity
boolean expression short circuiting, which makes it unclear what will be returned,
given that z is not at all related to the path that executes.

function mul(uint x, uint y) internal returns (uint z) {
require(y == @ || (z = x *y) /y == x);

34

Cage System
e Out-of-order calls in the cage function (calling SaiTub.cage or SaiTap.cage before
SaiTop.cage) will block the call to SaiTop.cage. In the current configuration, this
attack vector is only feasible by the authority of the contracts and is, therefore, not a
vulnerability.

Deployment scripts
e Change the address 0x0 used by deploy-drop-auth script, as 0x0 is a valid address.
The address of the contract itself can be used instead.
e Note: SaiTap.calk does not exist anymore (deploy-config-multisig:20,
validate-deployment:33). It was replaced by mold in c42d6006.

DS-chief
e Correct the mismatches between the code and the documentation:

o LogLockFree/ LogEtch/LogVote / LogLift are not implemented

o vote(address[] yays) in the doc versus vote(address[] guys) in the code

o vote(address[] yays, address 1lift_whom) in the doc versus
vote(address[] guys, address lift_whom) in the code

o DSChief.isUserRoot and DSChief.setRootUser do not match the
documentation (they do not call up DSRoles)

o DSChief.getUserRoles and DSChief.setUserRole are notimplemented (but
they are present in DSRoles)

o vote(address[] yays, address lift_whom) fails if 1ift whomis not
elected. As a result the vote is not taken into account. It is not the expected
behavior, according the documentation.

o Simillary vote(bytes32 slate, address lift_whom) fails if 1ift_whomis
not elected. The documentation is not clear on the expected outcome

35

https://etherscan.io/address/00
https://github.com/makerdao/sai/tree/c42d6006ea6d6ea1ff6f6a525f5fc9816169a2ec

B. Analysis on the feasibility to call rdiv(x, 0)

The following details the analysis of the issue TOB-Sai-008. Note that we consider here only
the divisions by zero that are due to a wrong parameterization of the system. We do not
consider the divisions by zero that are triggered due to a direct input of the call.

In SaiTub #1
The call to rdiv in draw (tub.sol:224):

cups[cup].art = add(cups[cup].art, rdiv(wad, chi()));
And to wipe (tub.sol:234):

cups[cup].art = sub(cups[cup].art, rdiv(wad, chi()));
Can lead to a division by zero, if chi() (tub.sol:147) returns 0. chi() canreturn O if incis O
(tub.sol:165):

_chi = rmul(_chi, inc);
inc can return O if tax is O (tub.sol:160):

var inc = rpow(tax, age);
tax is initialized at RAY and is modified by mold (tub.sol:113):

else if (param == 'tax') { drip(); tax = val; }

val should be different to 0 in mold (tub.sol:113)

A test case is provided in Appendix C.

In SaiTub #2
The call to rdiv in bite (tub.sol:254):
var owe = rdiv(rmul(rmul(rue, axe), vox.par()), tag());
Can lead to a division by zero, if tag() (tub.sol:171) returns 0.
function tag() constant returns (uint wad) {
return off ? fit : wmul(per(), uint(pip.read()));
2a
If fit is 0, tag() can return 0. fit is assigned in SaiTub.cage (tub.sol:269):
fit = fit_; // ref per skr

fit should be different to 0 in SaiTub.cage (tub.sol:269)

A test case is provided in Appendix C.

36

2b
If per() (tub.sol:122) is O, tag() can return 0. per() is 0 if pie() (tub.sol:73)is 0. pie()isO
if gem.balanceof(SaiTub) is 0.
function pie() constant returns (uint) {
return gem.balanceOf(this);

It is not clear how to avoid the case where gem. balanceOf (this) is zero, nor its feasibility.
Note that this would only temporarily block the contract as it is possible to send a gem to
SaiTub to avoid the division by zero.

In SaiTop #1
The first call to rdiv in cage (top.sol: 52)

fix = min(rdiv(WAD, price), rdiv(tub.pie(), sin.totalSupply()));
Can lead to a division by zero if sin.totalSupply() is 0.

It is not clear if the case sin.totalSupply() is zero is realistic. Note that this would only
temporarily block the contract as it is possible to send a token to sin to avoid the division by
zero.

In SaiTop #2
The second call to rdiv in cage (top.sol:61):
cage(rdiv(uint(tub.pip().read()), vox.par()));
Can lead to a division by zero, if vox.par() (lib.sol:28) returns 0. vox.par() returns if
DaiVox is called with 0O:
function DaiVox(uint256 par) {
_par = fix = par;

par should be different to 0 in DaiVox (lib.sol:20)

Note that SaiVox initializes DaiVox with RAY (vox.sol:12).
function Saivox() DaiVox(RAY) {
This prevents the division by zero in the current configuration.

In SaiTap #1
The call to rdiv in s2s (tap.sol:68):
var par = vox.par(); // ref per sai
return rdiv(tag, par); // sai per skr
Can lead to a division by zero, if vox.par() (lib.sol:28) returns 0. vox.par() returns if
DaiVox is called with O:

37

function DaiVox(uint256 par) {
_par = fix = par;

par should be different to 0 in DaiVox (lib.sol:20)

This case is similar to the division by zero in SaiTop.

38

C. Test cases

TOB-Sai-008
// same import as sai.t.sol

// Copy of original SaiAdmin
// the function setTaxUnprotected is added
contract SaiAdmin is DSThing {

[..]

// Stability fee

// copy of setTax, without the checks

function setTaxUnprotected(uint ray) note auth {
tub.mold('tax"', ray);

// Copy of original SaiTestBase, except that
// tub.setOwner(®); is ignored in configureAuth
contract SaiTestAudit is DSTest, DSMath {

[...]

function configureAuth() {

[...]

// removed, to allow to call tub.cage easily
// tub.setOwner(0);

[..]

contract Audit is SaiTestAudit {
function testDrawDive() {
admin.setMat(ray(1 ether));
tub.join(10 ether);
var cup = tub.open();
tub.lock(cup, 10 ether);

39

}

// set tax (and chi()) to ©
admin.setTaxUnprotected(9);
warp(1l days);

require(tub.chi() == 0);

// trigger the division by zero
tub.draw(cup, 1 ether);

function testCageDive() {

admin.setMat(ray(1 ether));
tub.join(10 ether);

var cup = tub.open();
tub.lock(cup, 10 ether);

// set fit to ©
tub.cage(0,0 ether);

require(tub.fit() ==0);

// trigger the division by zero
tub.draw(cup, 1 ether);

40

TOB-Sai-o10
function testTOBSainl1o(){
gem.mint (1000 ether);
sai.mint (100 ether); // so it can pay back stability fee
tub.mold('hat', 1000 ether);
tub.mold('tax', 1000000400000000000000000000) ;
var cup = tub.open();
tub.join(100 ether);
tub.lock(cup, 100 ether);
// draw initial amount
tub.draw(cup, 10 ether);
// increase chi
warp(1l days);
tub.drip();

// initial values

// _chi = 1.035164129205985238932488761
// cup.art = 10.000000000000000000
// sin.balanceOf(tub) = 10.351641292059852389

// tab(cup) = 10.351641292059852389
tub.draw(cup, 4 wei);

// cup.art = 10.000000000000000004
// sin.balanceOf(tub) = 10.351641292059852393

// tab(cup) = 10.351641292059852393
tub.draw(cup, 1 wei);

// cup.art = 10.000000000000000005
// sin.balanceOf(tub) = 10.351641292059852394

// tab(cup) = 10.351641292059852395

// the last digit for sin(tub) is 4, and for tab(cup) is 5

// Details of tub.draw(cup, 1 wei)

// cup.art = cup.art + 1/ chi = cup.art + 1
// sin(tub) sin(tub) + 1

// tab(cup) = cup.art * chi

// Due to the rounding, tab(cup) is added by two
// while sin(tub) is added by one

// this should be true
assert(tub.sin().balanceOf(tub) >= tub.tab(cup));

TOB-Sai-011: Pattern1

function testTOBSai@llPatternl(){
gem.mint (1000 ether);

tub.mold('tax', 1000040100000000000000000000) ;

var cup = tub.open();
tub.join(100 ether);

// increase chi
warp(1l days);
tub.drip();

assert(sai.balanceOf(this) == 9);
tub.draw(cup, 15 wei); // create 15 sai, and 9@ art

assert(sai.balanceOf(this) >0);
assert(tub.art(cup) > 0);

42

TOB-Sai-011: Pattern 2

Note: for testing purposes, we created the function tub.art(cup) which returns the art of

a cup.

function testTOBSai@llPattern2(){
tub.mold('tax', 1000040100000000000000000000) ;

var cup = tub.open();
tub.join(100 ether);
// increase chi
warp(1l days);
tub.drip();

tub.lock(cup, 1 ether);
assert(sai.balanceOf(this) == 9);

// create 21 sai, for 20 art
tub.draw(cup, 21 wei);
// remove 20 sai, for 20 art
tub.wipe(cup, 20 wei);

// no more art
assert(tub.art(cup) == 0);

// 1 sai left
assert(sai.balanceOf(this) == 9);

43

TOB-Sai-011: Pattern 3

function testTOBSai@llPattern3(){
sin.mint(tap, 1 ether); // so the bust/flop will work

// Get the per ratio less than .5

var cup = tub.open();

tub.join(1l ether);

tub.lock(cup, 1 ether);

tub.draw(cup, 1 ether);

tap.bust(1.1 ether); // this mints skr and modifies per
assert(tub.per() < ray(1l ether / 2));

assert(gem.balanceOf(tub) == 1 ether);
assert(skr.balanceOf(this) == 1.1 ether);

tub.join(1l wei); // create 1 skr for @ gem

assert(skr.balanceOf(this) > 1.1 ether);
assert(gem.balanceOf(tub) > 1 ether);

TOB-Sai-011: Pattern 4

function testTOBSai@llPattern4(){
// put some initial fee
sai.mint(tap, 1 ether);

MyFakePerson person = new MyFakePerson(tap, tub, gem, skr);
gem.mint(person, 100 ether);

bytes32 cup_1 = person.open();

person.join(10 ether);

person.lock(cup_1, 0.5 ether);

person.draw(cup_1, 0.5 ether);

// pay the fee

// as a result pie() != skr.totalSupply (in per())
person.boom(9.5 ether);

assert(gem.balanceOf(this) == 100 ether);
tub.join(28 wei); // cost 29 gem
tub.exit(10 wei); // return 11 gem
tub.exit(10 wei); // return 11 gem

tub.exit(8 wei); // return 8 gem

// cost 29 gem for 30 gem
assert(gem.balanceOf(this) <= 100 ether);

TOB-Sai-012

function testTOBSai0l1l2() {
uint user® = 575710461955084070048793674274572680;
uint gems = 1059836680168385020599124280851040344;
skr.mint(this, user9);
gem.mint(tub, gems);
tub.exit(usere); // fails
assertEq(gem.balanceOf(tub), 0);
assertEq(skr.balanceOf(this), 0);

46

D. Manticore test case for TOB-Sai-011

Manticore is a dynamic binary analysis tool that supports symbolic execution of EVM
bytecode. The following code triggers the third pattern from issue TOB-Sai-011 with
Manticore.

Figure 1 contains the Python script to find values that trigger the issue. We use a proxy
function (test_join_pattern_3(uint wad, uint wad_min, uint pie, uint
skrTotalSupply) to simulate the behavior of pattern #3 on the join function.

import https://github.com/trailofbits/manticore/blob/0.1.5/examples/evm/seth.py
from seth import ManticoreEVM

seth = ManticoreEVM()

Make the contract account to analyze
source_code ="
pragma solidity 20.4.15;

contract DSMath {

event Log(string);

function add(uint x, uint y) internal returns (uint z) {
require((z =x +y) >=x);

}

function mul(uint x, uint y) internal returns (uint z) {
require(ly==0 || (z=x*y)/y==X);

}

uint constant WAD =10 ** 18;

uint constant RAY = 10 ** 27;

function rmul(uint x, uint y) internal returns (uint z) {
z = add(mul(x, y), RAY / 2) / RAY;

}

function rdiv(uint x, uint y) internal returns (uint z) {
z = add(mul(x, RAY),y/2)/y;

}

// This function simulates the join function for the pattern 3
function test_join_pattern_3(uint wad, uint wad_min, uint pie, uint skrTotalSupplyX{
// limit the range of values

47

https://github.com/trailofbits/manticore

require(pie > 0);

require(pie < 10 ether);
require(skrTotalSupply > 0);
require(skrTotalSupply < 10 ether);

// require the wad to be greater than a user provided value
require(wad >= wad_min);

// simulate join
uint per = rdiv(pie, skrTotalSupply);
uint ask = rmul(wad, per);

// simulate art+=0
require(ask == 0);
return ;

#lnitialize user and contract

user_account = seth.create_account(balance=1000)

bytecode = seth.compile(source_code)

contract_account = seth.create_contract(owner=user_account,
balance=0,
init=bytecode)

Decide what is symbolic or concrete in test_joint_pattern_3
wad = seth.SValue

wad_min = 0x28000000

pie = seth.SValue

skrTotalSupply = seth.SValue

Generate the symbolic data
symbolic_data =

seth.make_function_call('test_join_pattern_3(uint256,uint256,uint256,uint256)’,

wad,

wad_min,

pie,
skrTotalSupply)

Generate one transaction
seth.transaction(caller=user_account,

48

address=contract_account,
value=0,
data=symbolic_data,

)

print "[+] There are %d alive states now"% len(seth.running_state_ids)
for state_id in seth.running_state_ids:
seth.report(state_id)

Figure 1: Manticore Script

Figure 2 is the output of the run of the script in Figure 1 (the solution may differ according
the valuation of the solver).

REPORT: STOP

LOGS:
INPUT SYMBOLS
data_1:
b8c71c9100V0VVV00VVVVVR28000000000
00000000000000000000000000000000000VV0VVV00VVLVVVRRVVV00000100000000000000
00060200000000000000000000000000000
0000000000000000000000PO9b4c5e41c115138
BALANCES
0xd30a286ec6737b8b2a6a7b5fbb5d75b895f62956L 1000
Ox1bfa530d5d685155e98cd7d9dd23f7b6a801cfefL ©

Figure 2: Script output

The data of Figure 2 can be split as follow:

000000V RVRVRVBRVRVRVBVORARBYV28000000RVAO
0000000V VVVRVVLVBVRVVBVBVRVVBVRVRRB10VVVVBVVVRVVBVBVLOD
0000000000V VRVRVRYB6020000VVVRVVRVRVRVVBVRVRBVBVRBRBVRVRO
000000000000000O9b4c5e41¢c115138
Where:

is the function signature
0x28000000 is wad
ox1is wad_min
0x6020000 is pie
Ox9b4c5e41c115138 is skrTotalSupply

49

The Figure 3 is the corresponding solidity test case.

function testTOBSai011Pattern3Large(){
gem.mint(tub, 0x6020000);
skr.mint(tub, 0x9b4c5e41c115138);

assert(gem.balanceOf(this) == 100 ether);
//generate 0x28000000 skr tokens for 0 gem
tub.join(0x28000000);

assert(gem.balanceOf(this) == 100 ether);
/1 it fails as 0x28000000 tokens were generated
assert(skr.balanceOf(this) == 0);

Figure 3: Solidity test case

As a result, the user is able to generate 0x28000000 free skr tokens in this scenario.

50

E. Fix Log

DappHub made the following modifications to their codebase as a result of this report.
Each of the fixes was verified by the audit team. The reviewed code is available in git
shortcode: 6a2b3ac5.

Finding 1: Race condition in the ERC20 approve function may lead to token theft
Not fixed. DappHub prefers to maintain the expected approval semantics.

Finding 2: Unprotected function and integer overflow may lead to destabilization
Fixed by removing DSWarp.

Finding 3: Reliance on undefined behavior could unexpected behavior
Fixed by removing the the inappropriate constant modifiers.

Finding 4: Rounding strategy in DSMath may lead to errors
Not fixed. DappHub prefers to maintain the current rounding strategy due to concerns

about increases in code complexity. Banker's rounding will be considered in the future.

Finding 5: Misconfigured deploy may lead to unusable system
Fixed by updating the deployment scripts.
https://github.com/makerdao/sai/pull/105

Finding 6: Inconsistent SaiTub.join() docs may lead to unexpected user behavior
Fixed by updating the client.
https://github.com/makerdao/sai/pull/105

Finding 7: Race conditions during contract deployment may lead to compromise
Fixed by creating a new deployment method via smart contract.
https://github.com/makerdao/sai/pull/105

https://github.com/makerdao/sai/pull/112

Finding 8: Multiple division by zero may lead to unusable system
Fixed by adding additional argument checks and a hard limit on risk-parameters.
https://github.com/makerdao/sai/pull/107

Finding 9: Lack of validation on tax may lead to unusable system
Fixed by adding the hard limit tax >= 1.
https://github.com/makerdao/sai/pull/107

Finding 10: Inconsistent debt bookkeeping may lead to trapped tokens

51

https://github.com/makerdao/sai/tree/6a2b3ac54538dedb14d329af446bd2aa175b27a8
https://github.com/makerdao/sai/pull/105
https://github.com/makerdao/sai/pull/105
https://github.com/makerdao/sai/pull/105
https://github.com/makerdao/sai/pull/112
https://github.com/makerdao/sai/pull/107
https://github.com/makerdao/sai/pull/107

Fixed by modifying and relaxing a system invariant. SaiTub.ice was replaced by
SaiTub.din in 6d238598.

Finding 11: Loss of decimal precision leads to free tokens
Fixed by adding additional constraints that prevent free tokens:

Pattern 1

Pattern 2 not exploitable due to cost of the attack
Pattern 3

Pattern 4 not exploitable due to cost of the attack
Additionally, f1ip is now protected against similar issues.

Finding 12: Loss of decimal precision leads to incomplete global settlement

Partially fixed by replacing cash with cash(wad). It does not fix the error but if the loss of
decimal precision leads to an error, the user can call exit and cash with the maximum
amount of tokens available.

52

https://github.com/makerdao/sai/commit/6d238598addd93fe89e82f5d66eb82664fe30999
https://github.com/makerdao/sai/blob/6a2b3ac54538dedb14d329af446bd2aa175b27a8/src/tub.sol#L266
https://github.com/makerdao/sai/blob/6a2b3ac54538dedb14d329af446bd2aa175b27a8/src/tub.sol#L177
https://github.com/makerdao/sai/blob/6a2b3ac54538dedb14d329af446bd2aa175b27a8/src/tap.sol#L76

