

STRIDE/DREAD Analysis
Threat Modelling of Trinity Wallet

M. Masoom Alam, PhD

Department of Computer Science

COMSATS University Islamabad

Table of Contents
Management Summary 2

Assets for the Trinity Wallet 3

Overview of the Trinity Wallet Architecture 3

Crumble the Trinity Wallet 5

Security Analysis per/Platform 14

Threat Ratings 19

Use of Threat-Model 19

Rating Priority (High, Medium & Low) 19

Using STRIDE-Model for Classification of Threats 20

Using DREAD-Model for Rating Risk 21

Procedure for DREAD-Model Risk Analysis 22

Conclusion 23

1

Management Summary

Trinity is a user-friendly IOTA wallet that has been in development for the past few
months. It serves as a base wallet for the IOTA cryptocurrency and due to the
decentralized nature of the IOTA platform, Trinity stores all user private information for
accessing funds on the device (Mobile and desktop).

Considering the data gathered for analysis, the probability of risk has been
determined by identifying the assets affected by different possible threats in the Trinity
wallet. Each risk has a different impact upon the respective asset. We have used
DREAD and STRIDE analysis for identification of threats and their risk rating in the
Trinity wallet.
Threat Risk Modelling mainly comprises the following steps:

1. Identifying security objectives
2. Breaking down application features
3. Identifying threats and vulnerabilities

Identifying security objectives of the Trinity wallet mainly involves analyzing:

1. Security of the sensitive information stored on device.
2. Review of the third party libraries used.
3. Quantifying the loss of reputation derived from the application being misused.

Breaking down application features involves decomposing the application into small
feature sets and categorizing/prioritizing them. The goal of this step is to identify the
security impact, evaluated on the basis of data flow, entry points, components and
boundaries. The cross platform nature of the Trinity wallet and its dependencies is
analyzed thoroughly as some features are more secure if built natively.

Identifying threats involves formalizing known threats. This should include the risks
associated with using the application or a certain feature.

Our threat analysis is done in three stages:

1. Identify assets in Trinity: Identify trust boundaries, data flow, entry points,
privileged code and document the security profile.

2. Identify threats: Identification of threats in the Trinity wallet for Android, Linux,
Windows and iOS platforms

3. Rate threats: Rating threats using STRIDE and DREAD analysis.

2

Identification of Assets
Identifying critical assets is crucial for information security. A threat process for the
Trinity wallet is modeled as follows:

1. Assets for the Trinity wallet.
2. Overview of the Trinity Architecture.
3. Crumble Trinity wallet.

Assets for the Trinity Wallet

Trinity is a stateful wallet which means it stores client data. The most valuable data
that the Trinity wallet stores is the seed, balance information, and transaction metadata.
To ensure security, the user’s seed is encrypted with two layers of AES encryption.

The valuable assets of user that wallet stores are:

● The seed, a string of 81 random characters using A-Z or number 9. [A-Z or 9].
● Balance information, which describes the amount of IOTA owned by the user.
● Public addresses, which are used to receive payments.
● Transaction metadata.

Overview of the Trinity Wallet Architecture
During this step, the following activities are performed

● What can Trinity do?
● Diagram for an overview of the Trinity architecture.
● Technology stack of the Trinity Wallet.

What can Trinity Wallet do?

Trinity offers several unique services that make it one of the most promising
candidates for a user-friendly wallet. The IOTA community is growing swiftly, and there
has been an increase in the number of non-technical users. Users are exasperated
following snapshots, when they have to reattach addresses until their balance is
recovered. To combat this situation, Trinity wallet provides an automatic balance
recovery feature. Another nuisance of the current IOTA wallet is that users have to do
manual reattachment or promotion if a transaction is pending for a while. The Trinity
wallet performs automatic reattachment and promotion under the hood to make the
wallet user-friendly.

Trinity wallet provides two factor authentication to combat the risk of theft. This feature
creates an additional level of security because solely knowing the victim’s password is

3

not enough to gain access to account. Trinity wallet also allows its users to scan
addresses via QR codes for convenience.

Here are some unique features that distinguish Trinity wallet from the current official
IOTA wallet:

● Statefulness: stores data locally and thus improves efficiency of the wallet.
● Transaction auto-promotion/reattachment : to increase the probability of

transaction confirmation.
● Two factor authentication: achieved with Google Authenticator and Authy using

Time-based One time Passwords (TOTP).
● Fingerprint authentication: A user can use mobile device fingerprint scan for

authentication after first login.
● Multi seed support: multiple seeds can be stored and managed.
● QR scanning: the Trinity wallet allows users to scan QR codes when entering

IOTA addresses.

The Trinity wallet accesses locally stored data at login since it is stateful wallet. The
data obtained from full nodes by Trinity is secured by the HTTPS protocol.

 Figure:1 The Trinity Architecture Diagram

Technology/Platform Implementation Details

Electron An open source framework for the
development of desktop applications.

React Native/ React framework A javascript library for the development of
mobile applications.

 Table:1 Technology of the Trinity Wallet

4

Crumble the Trinity wallet
In the next section we discuss the following aspects of the Trinity wallet:

● The trust boundaries.
● The data flow.
● The entry points.
● The privileged code.
● The security profile.

Boundaries of Trinity Wallet can be Trusted

The Trinity wallet validates the user-provided data at all entry points. Itvalidates
user-provided addresses to check whether an address is of the required length: 81
trytes (non-checksum) or 90 trytes (checksum). The IOTA protocol works on trinary
logic, so wallet functions check if the user-provided trytes are valid. Valid trytes are [9,
A-Z]. Before creating the transaction, the wallet checks if the user-provided amount is
an integer quantity of IOTA.
The other functions for validating data at entry points to Trinity are isNum, isHash,

isTransferArray, isArrayofHashes, isArrayofTrytes, isArrayofAttachedTrytes,
isArrayofTxObjects, isInputs, isString, isArray, isObject and isUri.

Data Flow

At the login, the IOTA stateless wallet generates addresses from index 0 upto the
index of the last unspent address. That’s why it takes a long time to login. However, the
Trinity wallet is stateful. At login, it utilizes the locally stored data to provide user
transaction history, balance information etc. When a user requests to generate a new
receiving address, the wallet gets the latest address index from the data stored locally.
The wallet then generates addresses and checks for associated transactions, before
displaying the latest unspent address.

Entry Points

The entry point for a user is the password only. The user can access the wallet only if
they have the valid password. The entry point for a user can also act as the entry point
for attacks. An attacker can only access the user's seed if he has the valid password
only. However, Trinity wallet hardens the security around the entry point by offering two
factor authentication.

Privileged Code
 The wallet requires permission to access the camera to scan QR codes.

5

Security Profile

The following table answers what kinds of questions can be asked while analyzing 1

each aspect of the design and implementation of the application.

Category Consideration

 Input validation

Q. Is all input data of the Trinity wallet
validated?

A. Yes. iota.lib.js library is used to
validate all input data.

Q. Could an attacker inject commands or
malicious data into the Trinity wallet?
A. No, because input data is validated
perfectly using iota.lib.js library.
Q. Is data validated as it is passed between
separate trust boundaries (by the recipient
entry point)?

A. Full node data validation is outside the
scope of this report.

Q. Can data in the database be trusted?
A. Not Applicable

Authentication

Q. Are credentials secured if they are passed
over the network?

A. Yes, through HTTPS
Q. Are strong account policies used in the
Trinity wallet?
 A. Currently, a 12 character password is
required. A strong password should be
enforced.
Q. Are strong passwords enforced in the
Trinity wallet?
 A. No. The Trinity team confirms they plan
to enforce Dropbox’s zxcvbn library.
Q. Does Trinity use certificates?
 A. Nodes are required to use Transport
Layer Security encryption
Q. Are password verifiers (using one-way
hashes) used for user passwords?
 A. Yes, the password hash is stored
locally.

1 https://msdn.microsoft.com/en-us/library/ff648644.aspx

6

Authorization

Q. What gatekeepers are used at the entry
points of the Trinity wallet?

A. Password is used.
Q. How is authorization enforced at the
database?
 A. Not Applicable
Q. Does the wallet fail securely and only
allow access upon successful confirmation of
credentials?
 A. Yes.

Sensitive data

Q. What sensitive data is handled by the
Trinity wallet?

A. Seed, public addresses, transaction
metadata.

Q. How is it secured over the network and in
persistent stores?
 A. TLS, Async storage, Keychain and
Keystore
Q. What type of encryption is used and how
are encryption keys secured?
 A. Stanford Javascript Crypto Library
(SJCL), TweetNaCl

Cryptography

Q. What algorithms and cryptographic
techniques are used?
 A. Stanford Javascript Crypto Library (SJCL),
TweetNaCl - AES for seed storage, SHA256
for password hashing.
Q. How long are encryption keys and how are
they secured?
 A. 32 bytes
Q. Does the Trinity wallet put its own
encryption into action?
 A. No, standard encryption.

Parameter manipulation

Q. Does the Trinity wallet detect tampered
parameters?

A. Yes. Trinity wallet detects tampered
parameters for transactions, bundles,
missing checksums. Strict type
checking is done within iota.lib.js used
by Trinity wallet.

7

Q. Does it validate all parameters in form
fields, view state and HTTP headers?
 A. Yes. iota.lib.js adds HTTP headers and
API version for IRI automatically.

Exception management

Q. How does the Trinity wallet handle error
conditions?

A. Through exception handling.
Q. Are exceptions ever allowed to propagate
back to the client?
 A. Not Applicable

Auditing and logging

Q. Does Trinity audit activity across all tiers
on all servers?

A. Not Applicable.

Q. How are log files secured?

A. Log files are not stored by Trinity.

 Table:2 Creating Security Profile

8

Identification of Threats

At this step , we identify the threats that “can affect” the Trinity wallet and
compromise sensitive assets. To direct this identification proof process, we have
identified the risks as a probabilistic outcome of threat to the Trinity wallet, and have
determined how much loss can be expected from an incident. This leads us to have a
better understanding on how to protect the system. Performance of risk assessment has
outlined a considerable number of probable threats that can affect the Trinity wallet.

The first thing to realize is that there is no way to eliminate every threat that may affect
Trinity. There is no such thing as absolute security. Making a facility absolutely secure
would require excessive costs, and it would be so secure that no one would be able to
perform the actions they need to. The goal is to manage risks, so that the problems
resulting from them will be minimized.

Libraries/Dependencies Assessment

Dependency Management is more of a concern nowadays due to the popularity
of frameworks including 3rd party modules and libraries. Security of dependencies is a
time-consuming and ongoing task. Most projects make use of these libraries to speed
up the development process and end up having large number of dependencies.

A major problem lies in the testing and security of project dependencies. Different
vulnerabilities of different severity are found within these libraries and must be patched
accordingly. A variety of commercial and open-source tools are available to test the
project for finding vulnerable dependencies.
General Approach:

The libraries assessment was performed on the source code from the Gitlab
Repository (wallet/tree/develop/src/mobile) develop branch - May 10, 2018. During the
assessment, the following tools were used to test the project for vulnerable
dependencies.

● Snyk
A commercial service that focuses on Javascript npm dependencies. It helps

users detect and fix the known vulnerabilities in Javascript projects.
● RetireJs

An open-source Javascript dependency checker. It has multiple components
including a command line scanner and plugins for multiple browsers.
What follows is a description of the Table:3 Libraries dependency assessment
,summarized using the tools mentioned above.

Table Description

● Dependency Used

9

○ Refers to the dependency used in the project.

● File Path
○ Path to the package.json file consumed by the tools
○ Mobile: /wallet/src/mobile/package.json
○ Desktop: /wallet/src/desktop/package.json
○ Shared: /wallet/src/shared/package.json

● Vulnerable Dependency
○ Dependency used has a vulnerable path to the dependency defined here.

● Info
○ Brief description of the vulnerability

● Risk
○ Severity of the vulnerability generated by the tool itself

● Description Link
○ Link to the detail description of the vulnerability

Dependency
Used

File Path
(packag
e.json)

Vulnerable
Dependency

Info Risk Description Link

 keytar@4.2.1 Desktop deep-extend@
0.5.2

Prototype
Pollution

Low https://snyk.io/vuln/np
m:deep-extend:201804
09

tinycolor2@1.
4.1

Shared jquery@1.9.1 3rd party CORS
request may
execute

Medium https://github.com/jq
uery/jquery/issues/24
32
http://research.insec
urelabs.org/jquery/te
st/

react-native-
level-fs 3.0.1

Mobile semver 2.3.2 semver_regular-
expression-denial-
of-service

Medium http://nodesecurity.io
/advisories/31

 Table:3 Libraries dependency assessment

Recommendations:
It is important to monitor dependency vulnerability creep. Most of the time

outdated dependencies become prone to vulnerabilities and the latest module versions
could potentially be free of vulnerabilities. Developers should actively update all of their
project modules dependencies once newer versions of them are published. However,
this can involve a lot of work and repetition, particularly where there are a large number
of dependencies in each application.

10

https://snyk.io/vuln/npm:deep-extend:20180409
https://snyk.io/vuln/npm:deep-extend:20180409
https://snyk.io/vuln/npm:deep-extend:20180409
https://github.com/jquery/jquery/issues/2432
https://github.com/jquery/jquery/issues/2432
https://github.com/jquery/jquery/issues/2432
http://research.insecurelabs.org/jquery/test/
http://research.insecurelabs.org/jquery/test/
http://research.insecurelabs.org/jquery/test/
http://nodesecurity.io/advisories/31
http://nodesecurity.io/advisories/31

There are a number of tools available that help you keep your dependencies up to date.

Tools:

● Greenkeeper
● Snyk
● RetireJs

The identified threats in the Trinity wallet are catalogued in the following section:

● Threat Description: Gives the description of the threat within Trinity
● Threat Target: Refers to the component/process of Trinity
● Attack Techniques: Defines an attack approach
● Countermeasures: Actions to mitigate risk within the Trinity wallet
● Risk: CVS Scoring is used to calculate the risk

Threat 1:

Threat Description Attacker steals seed by monitoring the Android
Clipboard

Threat Target Seed verification process

Risk High

Attack Techniques Use of a malicious app to monitor the Android Clipboard

Countermeasures - Restrict user from copying/pasting the seed
- Remove the copy/paste feature
- Switch to a custom keyboard application during

copy/paste of the seed, to sandbox the seed in that
particular keyboard application.

- Refrain from downloading apps from unfamiliar sites
and only install apps from trusted sources

NB: Threat 1 has been mitigated by using a custom secure share
function.

Threat 2:

Threat Description Attacker steals funds by manipulating receiving
address copied to the clipboard.

11

Threat Target Generating and sending a receiving address process

Risk High

Attack Techniques Use of a malicious app to monitor and manipulate the
Android Clipboard.

Countermeasures - Restrict user from copying/pasting the receive
address

- Switch to a custom keyboard application during
copy/paste of the receive address, to sandbox the
address in that particular keyboard application.

- Refrain from downloading apps from unfamiliar sites
and only install apps from trusted sources

NB: Threat 2 has been mitigated by adding a warning when address
paste is detected.

Threat 3:

Threat Description Changing date/time of the system prevents users from
logging in to the application. Application gets stuck at
the Loading Screen.

Threat Target Application Availability

Risk Low

Attack Techniques - Use AlarmManager Service and its method
setTime()

- Need android.permission.SET_TIME permission

Countermeasures - Keep your software up to date
- Refrain from downloading apps from unfamiliar sites

and only install apps from trusted sources
- Pay close attention to the permissions requested by

apps

12

Threat 4:

Threat Description Attacker steals sensitive information using phishing
attack

Threat Target Deep Link component

Risk Medium

Attack Techniques Use of a malicious app for a successful phishing attack

Countermeasures - Keep your software up to date
- Refrain from downloading apps from unfamiliar sites

and only install apps from trusted sources
- Pay close attention to the permissions requested by

apps

NB: Threat 4 has been mitigated by temporarily disabling deep
linking.

The Trinity Wallet registers a custom URL schema i.e android:scheme="iota" with the
device. Whenever a URL or deep link matching the defined schema is called, the
smartphone opens up the Trinity Wallet app. There lies the possibility for a phishing
attack.

Any malicious app can have the same URL schema for "iota" defined within the
AndroidManifest.xml file. So if a device has more than one application to handle the
schema, it will show a dialog box to choose an application to perform the specific action
defined in the deep link URL. Sensitive information might be disclosed if a user chooses
the malicious app to open the specified URL.

13

Threat 5:

Threat Description Desktop-only: Attacker Obtains Seeds by monitoring
the Volatile Memory during new seed setup

Threat Target Wallet Seed

Risk High

Attack Techniques Use of spyware to get the seed from memory

Countermeasures - Save seed in encrypted form
- Remove the seed from memory once there is no

more use

NB: Threat 5 has been mitigated by clearing memory and using
encryption.

Security Analysis per/Platform
(For Android Platform)

Identify Host Threats: Threat 1 can be identified as both a host and application threat,
as the application is the reason the information is leaked into memory in the first place.

Issue: Clipboard Vulnerability
Platform: Android
Tested On:

Manufacturer: LG
Model: H818P
Android Version: 7.0
API Level: 24

Summary:
While creating an account for the first time, the user can copy/paste the seed for

back-up and verification purposes. In this process, the seed gets copied to the clipboard
and can be manipulated/stolen from the clipboard.
Details/Steps:

1) Stealing a newly generated Seed

14

 Figure:2 Stealing a newly generated seed

Steps:

1. User selects “NO”, if he/she does not have the seed.
2. User generates a new seed and press “Next”.
3. Application provides three options for saving the seed before seed re-entry

verification.

15

4. User chooses “Add to Password Manager”, and He/She has to share the seed to

a secure place by pressing “COPY SEED”.
5. User can save it anywhere. e.g User shares it on whatsapp as shown in image

(5).
6. In the reentry process, when the user is asked to reenter the seed to verify it it is

a tiresome task to type an 81-character seed. Hence, the user has to copy/paste
it from the previously saved place. While copying, the seed gets added to
Android Clipboard. Any other application can have a listener attach to the
clipboard and the malicious application can manipulate or steal the seed.

2) Stealing funds by manipulating the clipboard

To receive funds from other users, the user has to generate a receive address
and send it to the sender. In this process, the user has to copy the receive address
which gets added to the clipboard and can be manipulated by the malicious app
accordingly.

e.g The malicious application can attach a listener to the clipboard and check for
a valid address. If an event occurs at the clipboard, the malicious application can
manipulate the copied (desired) address to his receiving address.

When the user pastes the address while sending it to the sender, he might send
the malicious address to the sender.

Issue: Date/Time Vulnerability
Platform: Android,Desktop(Linux)
Tested On:

Manufacturer: LG
Model: H818P
Android Version: 7.0
API Level: 24

Summary:
Changing date/time of the system does not let users log in to the application.

Application gets stuck at the Loading Screen.
Details/Steps:

1. User opens the application
2. User gives his password and tries to log in.
3. The attacker changes the System Date to any date before 2018. i.e date <

01-01-2018
4. The Application gets stuck at the loading screen
5. User would not be able to log in to the application.

16

Security Analysis per/Platform.

Threat : Information Leakage
Platform : Linux Mint 64-bit
Tested On :

Manufacturer : Hp
Model : Hp 1000
Kernel Version : 4.4.0-119

Summary :

When setting up the wallet for the first time, the user has to generate a seed. In this
process the seed gets copied to the physical memory which can be captured from
physical memory image.

Details :

1). Stealing a New Generated Seed

a. Examine

We examined that when the seed is created, it resides in physical memory until
the system is restarted, which is a major confidentiality breach.
b. Capture

After setting up the wallet, we generated a new seed, copied that seed to another
file and then after a successful login,we took the image of physical memory through
LiME tool, which allows the acquisition of volatile memory from Linux and Linux-based
devices.

c. Analyze

We analyze the image of physical memory through X-ways Winhex v19.6 tool.
We examined hexadecimal codes by which we found the seed in several places in the
physical memory dump. This seed remains in memory even if the wallet is reset.

d. Recommendation

The seed should be stored in encrypted form with hash.

Screenshots: (The seed generated is for test purposes and hence contains zero IOTA.)

Figure 3 shows the settings screen after a successful login. Before login, the seed is not
stored in memory, but when we log in successfully the seed is loaded into memory and
hence can be captured.

17

 Figure:3 shows the seed generated

 Figure:4 shows the same seed recovered by WinHex.

18

Threat Analysis

Threat Ratings
In the last section, we described a rundown of threats that apply to our specific

application situation. In the last step of the procedure, we rate threats in light of the risks
they cast. This leads us to address the threats that are most problematic, and
afterwards resolve alternate threats. Truth be told, it may not be financially reasonable
to address the greater part of the distinguished threats, and we may choose to overlook
some if the chance of them happening is minimal and the harm that would come about
on the off chance that they materialised is negligible.

Use of Threat-Model:
 How it fits in with the Security System development life cycle.

 Figure:5 shows the Threat Model life cycle.

Rating Priority (High, Medium & Low)
We can utilize a straightforward High, Medium, or Low scale to organize threats. If a

threat is appraised as high, a noteworthy risk is presented by our application and should
be sorted out as soon as possible. Medium threats should be tended to, but are less
critical. We may choose to overlook low threats contingent on “How much work
required” and “Required cost to mitigate the risk”.

19

Using STRIDE-Model for Classification of Threats
After the vulnerabilities are distinguished, STRIDE procedure acquainted by Microsoft

is utilized to characterize these vulnerabilities. Amid security commitment it is important
to reinforce your cases (regarding vulnerabilities) with an established standard.
STRIDE stands for (along with the area of attack)

● Spoofing: Impact related to Authentication
● Tampering: Impact related to Integrity
● Repudiation: Impact related to Non-Repudiation
● Information disclosure: Impact related to Confidentiality
● DOS: Impact related to Availability
● Elevation of Privilege: Impact related to Authorization

Threats Spoofing
Identity

Tampering
with data

Repudiation Information
Disclosure

Denial Of
Service

Elevation of
Privilege

Threat 1 ✓ ✓ ✓ ✓

Threat 2 ✓ ✓

Threat 3 ✓

Threat 4 ✓ ✓ ✓

Threat 5 ✓ ✓ ✓ ✓

 Table:4 STRIDE threat classification for analysis

As we go through the analysis from STRIDE threat classification (cf. Table:4), Threat
1 is classified as Spoofing of the user’s seed to get unauthorized access, Repudiation
for the victim can deny the unauthorized transaction, Information Disclosure for
disclosure of user seed information and Elevation of Privilege for an attacker can
authorize himself by using the stolen user seed.

Threat 2 is classified as Tampering with Data for an attacker tampers with the
address copied to the clipboard to have a successful attack and Repudiation for the
victim can deny the unauthorized transaction.

Threat 3 is classified as only Denial of Service for changing date/time of the system
that prevents the user from logging into the app.

20

Threat 4 is classified as Spoofing of the user’s seed to get unauthorized access,
Repudiation for the victim can deny the unauthorized transaction and Information
Disclosure for disclosure of user sensitive information, as the sensitivity of information
depends upon the phishing attack.

Threat 5 is classified as Spoofing of the user’s seed to get unauthorized access,
Repudiation for the victim can deny the unauthorized transaction, Information
Disclosure for disclosure of the user’s seed and Elevation of Privilege for an attacker
can authorize himself by using the stolen user seed.

Using DREAD-Model for Rating Risk
The issue with an oversimplified rating framework is that colleagues typically won't

agree on the chosen ratings. To help alleviate this issue, additional measurements are
included to figure out the effect of a security threat. The DREAD model is utilized to
figure out the probability of risk, which is abbreviated as Damage Potential,
Reproducibility, Exploitability, Affected Users and Discoverability. The threats are rated
for a given risk by following the accompanying inquiries : 2

• Damage potential: How awesome is the harm if the vulnerability is misused?

➢ 1 = Nothing
➢ 2 = Compromised or affected individual user data.
➢ 3 = Compromised or affected every user data.

• Reproducibility: How easy is it to repeat the assault?

➢ 1 = Very hard or impossible, even for administrators of the application.
➢ 2 = One or two steps required, may need to be an authorized user.
➢ 3 = Just a malicious app, No need of authentication.

• Exploitability: How simple is it to dispatch an assault?

➢ 1 = Advanced programming and deep knowledge, with custom or advanced
attack tools.

➢ 2 = Malware exists on the Internet, or an exploit is easily performed, using
available attack tools.

➢ 3 = Just a malware or native application
• Affected clients: As an unpleasant rate, what number of clients are influenced?

➢ 1 = None
➢ 2 = Some users, but not all
➢ 3 = All users

2 https://www.owasp.org/index.php/Threat_Risk_Modeling

21

https://www.owasp.org/index.php/Threat_Risk_Modeling

• Discoverability: How simple is it to discover the vulnerability?

➢ 1 = Very hard to impossible; requires source code or administrative access.
➢ 2 = Can figure it out by guessing or by analyzing the application data flow.
➢ 3 = Details of faults like this are already in the public domain and can be easily

discovered using a search engine.
We have the above scale to rate every threat. We can likewise extend the above

inquiries to address further issues. For instance, we have included an inquiry regarding
Potential harm:

1) Evaluations don't need to utilize a substantial scale since this makes it hard to
rate dangers reliably nearby each other. We can utilize a straightforward plan, for
example, High (3), Medium (2), and Low (1).

2) Characterizing risk rate in our framework makes it easy to perform risk analysis.

Procedure for DREAD-Model Risk Analysis
After you make the above inquiries, check the qualities (1 to 3) for a given threat. The

outcome can fall in the scope of (5 to 15). At that point threat dangers with general
evaluations can be given as:

➢ (12 to 15) => High Risk.
➢ (8 to 11) => Medium Risk.
➢ (5 to 7) => Low Risk.

 Prioritizing the threat in the following way to analyze the risk factor from first to last:

● First High Risk.
● Second Medium Risk.
● Last Low Risk.

 We have considered our five threats:

1. Attacker steals seed by monitoring the Android Clipboard.
2. Attacker steals funds by manipulating receiving address copied to the clipboard.
3. Changing date/time of the system would not let users to login to the application.

Application gets stuck at the Loading Screen.
4. Attacker steals sensitive information using phishing attack.
5. Attacker Obtains Seeds by monitoring the Volatile Memory.

22

Threats D R E A D Total Rating
Threat 1 2 3 3 2 3 13 High
Threat 2 2 3 3 2 2 12 High
Threat 3 1 1 1 3 1 7 Low
Threat 4 2 2 2 2 3 11 Medium
Threat 5 2 3 2 3 3 13 High

 Table:5 shows DREAD rating for all Threats

Conclusion

While we can mitigate the risk of an attack, we can never wholly eliminate risk from
any complex application. The truth in the world of security is that we recognize the
nearness of threats and we deal with our risks. Threat analysis enables us to examine
and impart security throughout our work.

In our threat analysis, we have: identified sensitive system assets, identified ways that
an attacker could compromise the system and gain access to the sensitive assets, and
prioritised these threats by categorizing them as “High”, “Medium”, or “Low” risk.

Our threat analysis has demonstrated that the IOTA Foundation and the Trinity team
have taken considerable measures for hardening the security of the Trinity wallet.
Application end users who follow the instructions provided in the setup guide should not
encounter any significant risks, provided that they do not download apps from unknown
sources. We appreciate the Trinity wallet team for putting great efforts in making Trinity
happen and wish them all the best.

23

