
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Vitess 02.2019
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, MSc. D. Weißer, J. Larsson

Index
Introduction

Scope

Test Methodology

Phase 1. Manual Code Auditing

Phase 2. Code-Assisted Penetration Testing

Miscellaneous Issues

VIT-01-001 MySQL: Comparison of Auth Token allows timing Attacks (Info)

VIT-01-002 MySQL: Timing attacks due to plain-text password auth (Low)

VIT-01-003 PII: Not all SQL values covered by SQL redaction (Low)

Conclusions

Introduction
“Vitess is a database clustering system for horizontal scaling of MySQL”

From https://vitess.io/

This report documents the results of a security assessment targeting the Vitess software
database scaler. Funded by the CNCF / The Linux Foundation, this project was carried
out by Cure53 in February 2019 and revealed only three miscellaneous findings.

In terms of resources, the test was completed by six members of the Cure53 team who
worked within a time budget of eighteen days. The testers are considered very
experienced in their respective fields and have considerable expertise in regard to
system complexity, cloud infrastructure, source code auditing, operating system
interaction, low-level protocol analysis and multi-angled penetration testing.

Prior to the assessment, a CNCF-typical setup was requested by the testers and
provided by the development team. Besides furnishing Cure53 with a Kubernetes-based
cluster, locally installed systems were also used for testing. Access to all relevant code
and documentation was granted. While the first project meeting provided the basis for
the audit, a more ad-hoc kick-off meeting ensured that no major hurdles emerged. A

Cure53, Berlin · 03/08/19 1/9

https://cure53.de/
https://vitess.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

dedicated instant messaging channel was used for arising questions and further
inspiration for the test.

An initial assessment of the interfaces and the system architecture, supported also by
additional exchange with the development team, revealed a rather limited attack surface.
This observation was later confirmed as the subsequent phases of the test ensued.
While the results of this assessment are few and far between and may suggest some
kind of test limitations, they in fact prove that the Vitess team delivers on the security
promises they make. In Cure53’s view, there is a clear intention and follow-through on
providing a secure system for scaling MySQL databases. This was achieved by keeping
the attack surface minimal and selecting the language suited for this implementation.
The auditors managed to reach wide-spanning coverage of all aspects pertinent to the
main repository of the Vitess software system. The most likely avenues for exploitation
were chosen and verified for resilience.

In the following sections, the report first defines the scope of the test and then moves on
to explaining the employed test methodology. Subsequent phases and details relevant
for the test are covered next and clarify which aspects were investigated during this
February 2019 assessment. Later in the document, each of the individual findings is
discussed, with technical backdrop, illustrations of wider circumstances, and examples
with code snippets. Finally, this document ends with some broader conclusions and a
general impression that the Cure53 team gained about the Vitess scope system under
scrutiny.

Scope
• Vitess

◦ The publicly available main repository at https://github.com/vitessio/vitess was used
as the codebase to be verified.
▪ branch master commit 092479406b27ae61a8fcd146a0e08af2d51a7245

◦ Furthermore, the minimal reference client https://github.com/vitessio/messages was
used as additional illustration of use-cases.
▪ branch master commit 7d2ac2189573a7d26cf0f42e17df749673e3d16f

◦ The testers received unencumbered access to a Kubernetes test cluster hosted on
Amazon Web Services, which was provided as a reference of an installation typical
for a general Vitess deployment.

Cure53, Berlin · 03/08/19 2/9

https://cure53.de/
https://github.com/vitessio/messages
https://github.com/vitessio/vitess
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Test Methodology
This section describes the methodology that was used during this source code audit and
penetration tests. The test was divided into two phases. Each phase had goals that were
closely linked to the areas in scope.

The initial phase (Phase 1) mostly comprised manual source code reviews, in particular
in terms of the API endpoints, input handlers and parsers. The review carried out during
Phase 1 aimed at spotting insecure code constructs. These were marked whenever a
potential capacity for leading to buffer corruption, information leakages and other similar
flaws has been identified.

The secondary phase (Phase 2) of the test was dedicated to classic penetration testing.
At this stage, it was verified whether the security promises made by Vitess in fact hold
against real-life attack situations and malicious adversaries. This included watching out
for disclosure of personally identifiable information (PII), particularly in rarely
encountered error cases. Additionally, the deployment infrastructure was further
investigated for generalizable problems in their instrumentation of the Kubernetes
environment.

Phase 1. Manual Code Auditing

The following list of items presents the noteworthy steps undertaken during the first part
of the test, which entailed the manual code audit of the sources of the Vitess software in
scope. This is to underline that, in spite of the almost nonexistent findings, substantial
thoroughness was achieved and considerable efforts have gone into this test. The
completed tasks are listed next. Note that a given realm yielded no results unless
otherwise indicated with a specific link to a finding.

• A comprehensive list of all accessible API endpoints was enumerated and
checked for visible defects. This entailed the functionality exposed by vtlctld and
the same functions that are also reachable via vtctlclient.

• Despite this being only an administrative functionality, a typical example for such
functions interacting with the file system would be ExecuteHook. This item was
analyzed in depth to see if it is by any means possible to inject API commands.
The overarching goal was clearly to achieve injection of the OS-level commands.
The filter implemented for this particular endpoint protects the function sufficiently
and no path traversal instructions can be submitted via the hook’s name.

• The monitor and debug web interfaces were analyzed for common vulnerabilities
like SQL injection or XSS. However, in all encountered cases the user-input was
found to be correctly sanitized, in particular due to the Angular framework’s
proper handling of parameter-supplied values.

Cure53, Berlin · 03/08/19 3/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The cryptographic and authentication-related aspects were analyzed for potential
general bypasses but no flaws allowing for such circumvention were found.

• A potential timing issue pointed out by the development team was investigated
in-depth but revealed no readily available exploitation paths. The reason behind
the secure premise is that the attacker would need to obtain the hashes
contained in the user-table prior to the attack. A minor issue was filed as VIT-01-
001 to describe the exact circumstances.

• As requested, plenty of additional effort was invested into discovering leaks of
personally-identifiable information, for example during the extensive logging of
executed queries. The redactor was checked for flaws allowing for the exfiltration
of unredacted or incompletely redacted values. The minor issue was filed (see
VIT-01-003) but the real-world impact, as with most information leak issues in
general, would need to be considered as low.

• The configuration of the Kubernetes cluster deployment was investigated for
common problems like AllowPrivilegeEscalation, the application of name-space
rules in the network policies, the running of pods in privileged mode, and the
characteristics of the DefaultServiceAccounts, ContainerSecurityContext and
RunAsNonRoot’s usage were confirmed as secure, either because of being
correct or by virtue of inapplicability.

• Furthermore, the used secret stores were analyzed for potentially being reused
from across other contexts but no encryption prone to disclosure was found in
any of the stores.

Phase 2. Code-Assisted Penetration Testing

A list of items below presents the noteworthy steps undertaken during the second phase
of the test, which encompassed code-assisted penetration testing against the Vitess
system in scope. Given that the manual source code audit did not yield an overly large
number of findings, the second approach was added as means to maximize the test
coverage. As for specific tasks taken on to enrich this Phase, these can be found listed
and discussed in the ensuing list.

• Despite of the Kubernetes cluster provided by the development team, several
other, local test installations were built and deployed; one type concerned simple
3-tablet versions that were crafted via the provided docker images, another type
was built along the lines of the minikube-instructions. This was done to gain
better understanding of the general deployment structure and the integration with
the core components.

• The initially enumerated application endpoints were tested for potential input
manipulation, i.e. path traversal and OS-level command injection were attempted
for every function that interacted with the file system.

Cure53, Berlin · 03/08/19 4/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Additional testing for filter circumvention did not uncover any methods to
successfully achieve Remote Code Execution. All enumerated endpoints were
investigated for bypasses of the described protections without success in a form
of a compromise.

• Quite a few of the mentioned endpoints allow execution of the SQL statements
either as the Database administrator or the Application user. The testers sought
to escalate the privilege level in a futile attempt to execute commands as root.
The unachieved goal was to have file system-level capabilities and turn them into
direct file manipulation.

• After checking all user-exposed endpoints, the application-level SQL parser was
investigated for robustness. The parser enables features that are not directly
present in the MySQL and therefore slightly extend the capacities of the
database. In particular, the possibility of breaking out of strings by providing
legitimately escaped data was attempted but no vulnerabilities could be spotted.

• Interesting behaviors, such as the comment directives, were investigated. In this
realm, it is possible to supply additional Vitess runtime options during the
execution of the SQL statements via special ‘/*vt+’ directives; nothing particularly
wrong with those extensions was uncovered, since it does not seem possible to
inject such comment-style options in undesirable locations like strings and
similar.

• The web interface was probed for XSS and other general web application flaws
without any weaknesses being discovered. Additional path traversal was
attempted in the topology browser and, while the application of the ‘../’ path
fragment does have an effect, it was found to be impossible to break out of the
base directory.

• The network communication between the different Kubernetes application pods
was analyzed in order to find potential logical flaws. Nothing prone to being
leveraged could be identified.

• The runtime behavior of the different components was probed from a perspective
of the services. In focus were Denial-of-Service and similar resource-depletion
scenarios.

• The deployed TLS configurations were analyzed for common misconfigurations,
again to no avail.

Cure53, Berlin · 03/08/19 5/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

VIT-01-001 MySQL: Comparison of Auth Token allows timing Attacks (Info)

One of the discovered issues allows an attacker to perform a timing attack against the
authentication of the Vitess server. This attack requires an adversary who is in
possession of the hashed MySQL password, e.g. by obtaining it beforehand from the
mysql.user table. Thus, this issue has a rather low impact.

The MySQL authentication uses hashing and a salt in order to prevent authenticating
with only a hash or replaying a previously recorded authentication request. The
authentication protocol can be consulted next.

MySQL authentication protocol:
Server stores: plain pw OR sha1(sha1(pw))
Server -> Client: salt (randomly generated for each connection attempt)
Client -> Server: sha1(pw) ^ sha1(salt + sha1(sha1(pw)))
Server computes: sha1(client_response ^ sha1(salt + sha1(sha1(pw)))
Server compares: generated_hash == stored_hash

In case the password is stored as plain-text, Vitess spares itself the final SHA1 operation
on the server-side and compares the client's authentication token directly with its own
version of the scrambled password, rendering the attack described below possible.

In this scenario, if the password hash is not known to an attacker, a timing attack is not
possible. This is because the salt is never reused and causes unpredictable changes. If
the attacker has retrieved the stored password hash (e.g. via SQL injection), a timing
attack can be performed by xoring the tested bit with sha1(salt + sha1(sha1(pw)). By
exploiting the timing-unsafe comparison, an attacker would be able to retrieve sha1(pw),
which is sufficient for authenticating to the server. The relevant code is displayed in the
following code snippet.

Affected file:
vitess/go/mysql/auth_server_static.go

Affected code:
computedAuthResponse := ScramblePassword(salt, []byte(entry.Password))
// Validate the password.

Cure53, Berlin · 03/08/19 6/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

if matchSourceHost(remoteAddr, entry.SourceHost) && bytes.Compare(authResponse,
computedAuthResponse) == 0 {

return &StaticUserData{entry.UserData, entry.Groups}, nil
}

As the attacker requires the double SHA1 hash of the password and the server has to
store the password as plain-text, attacks where this issue is of relevance are not likely.
However, it is recommended to perform a timing-safe comparison instead. Go’s
ConstantTimeCompare can be used in this realm.

VIT-01-002 MySQL: Timing attacks due to plain-text password auth (Low)

Next to the authentication schemes mentioned above, Vitess also implements
MysqlDialog, which makes use of plain-text password comparison from both the server’s
and the client’s perspectives. The problem is similar to the one mentioned in VIT-01-001
because the method of comparing both passwords is incorrectly implemented. As such,
the method allows timing attacks due to the ‘==’ operator’s behavior of aborting early if a
match between the characters is not found. The relevant code is displayed below.

Affected File:
vitess/go/mysql/auth_server_static.go

Affected Code:
func (a *AuthServerStatic) Negotiate(c *Conn, user string, remoteAddr net.Addr)
(Getter, error) {
[...]

for _, entry := range entries {
// Validate the password.
if matchSourceHost(remoteAddr, entry.SourceHost)

&& entry.Password == password {
return &StaticUserData{entry.UserData, entry.Groups}, nil

}

As in the previously mentioned issue, it is recommended to switch to a timing-safe
variant of comparing strings. Using Go’s ConstantTimeCompare in the crypto/subtle’s
module is advised.

Cure53, Berlin · 03/08/19 7/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

VIT-01-003 PII: Not all SQL values covered by SQL redaction (Low)

During an investigation of the Vitess logging mechanism, it was discovered that
personally identifying information is not properly stripped from logged queries. Note that
this PII potentially resides in string values of SQL statements This might lead to the
leakage of sensitive user-data whenever the debug interfaces of Vitess are opened. In
MySQL, strings are usually encapsulated by double- or single quotes but it is also
possible to write them as hexadecimal strings prefixed by 0x. As the variable
deduplication ignores strings with the 0x prefix, those values are not redacted. This
behavior can be observed in the following example.

Code example:

sql := "select a,b,c from t where x = 1234 and y = 1234 and z = 'apple'

and foo = 0x1337"
redactedSQL, err := RedactSQLQuery(sql)
if err != nil {
 t.Fatalf("redacting sql failed: %v", err)
}
fmt.Printf("redaction: %v", redactedSQL)

Output:
select a, b, c from t where x = :redacted1 and y = :redacted1 and z = :redacted2
and foo = 0x1337

Expected output:
select a, b, c from t where x = :redacted1 and y = :redacted1 and z = :redacted2
and foo = :redacted3

Furthermore, it was discovered that large numbers and boolean values are also not
redacted. While this is not as crucial as having unredacted strings, certain scenarios
where logging such values might be undesirable can be envisioned.

Example queries:
select * from t where x = 11111111111111111112;
select * from t where x = true;

It is recommended to include the affected data-types in the parameter deduplication.
This will help prevent the leakage of data in the logged queries.

Cure53, Berlin · 03/08/19 8/9

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The results of this Cure53 assessment funded by CNCF / The Linux Foundation certify
that the Vitess database scaler is secure and robust. This very good outcome is
achieved by limiting the attack surface, taking appropriate care of user-supplied input
with security-driven best practices, as well as - to a certain extent - the usage of the Go
language ecosystem. A team of five Cure53 testers investigated the software system
during a budgeted period of 18 days in February 2019. All tasks were completed in
accordance with the specified testing methodology, namely pure code auditing in Phase
1 and source-code assisted penetration testing in Phase 2. The main source code
repository examined during the audit pertained to the Vitess itself, while the rather
minimal sample client called messages was employed as a use-case reference.

The scope of the test was well-defined but not particularly extensive. Conversely, the
actual threat-model was left mostly undefined until the actual commencement of the
assessment, with the progress of the test making it increasingly more precise. The
communications between the auditors and the development team were fluent and
incurred no delays. After introductory discussion via mail and video conferencing, the
ensuing exchanges took place in a dedicated Slack channel. To give a more realistic
assessment of the real-world deployment, the security of the provided Kubernetes
cluster was scrutinized. It was considered that no wider-ranging problems impacted this
scope item. Further, Cure53 can attest that the Vitess code is cleanly written and mostly
well-documented, making it particularly easy for the auditors to review the software’s
structure. Except for the SQL parser, none of the components had overly complex logic
or included typically vulnerable constructs. The above factors contributed to the
impressive security posture found during this assessment. The number of issues found
during this test is particularly low despite the testers’ best efforts to locate additional
problem-areas. Only three minor issues were identified and their respective implications
should be evaluated as insignificant in the broad picture of assessing Vitess. The
intermediate results of the test were shared with the development team during the
course of the test, while the details of the discovered issues were only included in this
final test report. In light of this February 2019 project, Cure53 concludes that the Vitess
database scaler is mature and secure. Therefore, it is deemed fit-for-purpose as far as
deployment in modern scalable environments is concerned.

Cure53 would like to thank Sugu Sougoumarane, Gary Edgar, Lori Clerkin and Deepthi
Sigireddi from the Vitess team as well as Chris Aniszczyk of The Linux Foundation, for
their excellent project coordination, support and assistance, both before and during this
assignment. Special gratitude also needs to be extended to The Linux Foundation for
sponsoring this project.

Cure53, Berlin · 03/08/19 9/9

https://cure53.de/
mailto:mario@cure53.de

	Conclusions

