
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Pentest-Report NTPsec 01.2017
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, BSc. D. Weißer

Index

Introduction

Scope

Test Coverage

Identified Vulnerabilities

NTP-01-002 NTP: Buffer Overflow in ntpq when fetching reslist (Critical)

NTP-01-012 NTPsec: Authenticated DoS via Malicious Config Option (High)

NTP-01-015 NTPsec: Regression in ctl_putdata() leads to Endless Loop (High)

NTP-01-016 NTPsec: Denial of Service via Malformed Config (High)

Miscellaneous Issues

NTP-01-001 NTPsec: Makefile does not enforce Security Flags (Low)

NTP-01-003 NTPsec: Improper use of snprintf() in mx4200_send() (Low)

NTP-01-004 NTPsec: Potential Overflows in ctl_put() functions (Medium)

NTP-01-005 NTPsec: Off-by-one in Oncore GPS Receiver (Low)

NTP-01-006 NTP: Copious amounts of Unused Code (Info)

NTP-01-007 NTP: Data Structure terminated insufficiently (Low)

NTP-01-008 NTP: Stack Buffer Overflow from Command Line (Low)

NTP-01-009 NTP: Privileged execution of User Library code (Low)

NTP-01-010 NTP: ereallocarray()/eallocarray() underused (Info)

NTP-01-011 NTP: ntpq_stripquotes() returns incorrect Value (Low)

NTP-01-013 NTPsec: Inclusion of obsolete NTPclassic-dependent Script (Info)

NTP-01-014 NTP: Buffer Overflow in DPTS Clock (Low)

Conclusion

Cure53, Berlin · 03.02.17 1/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Introduction

“Welcome to the NTPsec project - a secure, hardened, and improved implementation of
Network Time Protocol derived from NTP Classic, Dave Mills’s original.

NTPsec, as its name implies, is a more secure NTP. Our goal is to deliver code that can
be used with confidence in deployments with the most stringent security, availability, and
assurance requirements.

Towards that end we apply best practices and state-of-the art technology in code
auditing, verification, and testing. We begin with the most important best practice: true
open-source code review. The NTPsec code is available in a public git repository. One of
our goals is to support broader community participation.”

From https://www.ntpsec.org/

This report documents the findings of a source code audit of the NTPsec software. The
project was completed by Cure53 team in January 2017. Four members of the Cure53
participated in this assignment, which required a total of thirty-two days of testing in
order for a satisfactory level of coverage to be reached.

The audit constituted a joint project dedicated to both the NTPsec and the NTP. The
code base of the NTP was examined in parallel and the two components of the scope
were given the same amount of attention and scrutiny. While this document primarily
pertains to the NTPsec element, the relevant results applicable to NTP are also briefly
recalled. At the same time, a separate report has been created to discuss the NTP
issues in detail and at length. In the latter NTP-related document, the discoveries
connected to NTPsec are analogically given less space and specificity in reporting.

As for the test’s approach, the investigations were rooted in the so-called white-box
methodology, meaning that the testing team was granted full access to relevant sources
and the like. Prior to initiating the audit, the Cure53 team established solid
communication channels for the two respective software items in scope, liaising with the
development teams of the NTPsec and NTP, respectively.

The document proceeds with describing the test’s scope, then discusses coverage and
findings, ultimately delivering conclusions and verdicts about the general level of security
discovered, and the state of the audited code for the two software products in question.

Cure53, Berlin · 03.02.17 2/18

https://cure53.de/
https://www.ntpsec.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Scope
• NTPsec 0.9.6

◦ https://ftp.ntpsec.org/pub/releases/ntpsec-0.9.6.tar.gz

Test Coverage

One can consult an overview of the test’s coverage below. The listing shows the
percentage of the coverage reached by the code audit per directory. All directories
belong to the downloaded code base.

Coverage in % SLOC Directory
 100 38094 ntpd
 20 6175 libntp
 n/a 5933 tests
 100 3955 include
 n/a 3884 ntpclients
 n/a 3745 libparse
 40 2822 libisc
 n/a 2220 wafhelpers
 n/a 1679 pylib
 n/a 950 libjsmn
 100 483 ntpfrob
 100 471 libsodium
 100 435 ntptime
 100 416 attic
 n/a 130 devel
 n/a 111 contrib

The directories marked with “n/a” were explicitly left out of scope along with all of the
subcomponents written in Python and the testing framework unity.

Cure53, Berlin · 03.02.17 3/18

https://cure53.de/
https://ftp.ntpsec.org/pub/releases/ntpsec-0.9.6.tar.gz
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. NTP-01-001) for the purpose of facilitating any
future follow-up correspondence.

NTP-01-002 NTP: Buffer Overflow in ntpq when fetching reslist (Critical)

Note: This issue affects NTP only and is not present in the NTPsec code.

A stack buffer overflow can be triggered by a malicious server when a client (using ntpq)
requests the restriction list from the server. This is due to a missing length check in the
reslist() function. It occurs whenever the function parses the server’s response and
encounters a flagstr variable of an extensive length. The string will be copied into a
fixed-size buffer, leading to an overflow on the function’s stack-frame.

NTP-01-012 NTPsec: Authenticated DoS via Malicious Config Option (High)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

A vulnerability found in the NTPsec server allows an authenticated remote attacker to
crash the daemon by sending an invalid setting via the :config function. The unpeer
option expects either a number or an address as argument. In case the value is “0”, a
segmentation fault occurs. An example is given in the following listing.

Configurating the server remotely:
ntpq> :config unpeer 0
Keyid: 1
MD5 Password:
localhost: timed out, nothing received
***Request timed out

The submission of the configuration crashes the NTPsec server right away. An
observation performed with the GDB demonstrates that the error occurs in ntp_config.c
and is due to a null pointer dereference.

Segmentation fault:
(gdb) r
[...]
Program received signal SIGSEGV, Segmentation fault.

Cure53, Berlin · 03.02.17 4/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

0x0000000000407c1e in config_unpeers (ptree=0x65c0b0)
at ../../ntpd/ntp_config.c:3042
3042 AF(&peeraddr) = curr_unpeer->addr->type;
(gdb) p *curr_unpeer
$1 = {link = 0x0, assocID = 0, addr = 0x0}

The unpeer configuration options are processed in the config_unpeers() function in
ntpd/ntp_config.c. The curr_unpeer struct contains the provided parameter which is
either a number or an address. While assocID holds numeric values, the addr is a
pointer to another struct for when the parameter is an address. If the curr_unpeer-
>assocID is zero, then the code expects curr_unpeer->addr. However, this is not
necessarily the case. Setting “unpeer 0” leads to a completely empty curr_unpeer struct
and thereby crashes the server.

Affected File:
ntpsec/ntpd/ntp_config.c

Affected Code:
config_unpeers(

config_tree *ptree
)

{
[...]

curr_unpeer = HEAD_PFIFO(ptree->unpeers);
for (; curr_unpeer != NULL; curr_unpeer = curr_unpeer->link) {

[...]
if (curr_unpeer->assocID) {

[...]
continue;

}

ZERO(peeraddr);
AF(&peeraddr) = curr_unpeer->addr->type;

Verifying the addr element in case the assocID is zero is a way towards mitigating this
issue properly.

Cure53, Berlin · 03.02.17 5/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

NTP-01-015 NTPsec: Regression in ctl_putdata() leads to Endless Loop (High)

Note: This issue affects NTPsec only and is a regression from a security fix.

Part of this assignment related to the verification process regarding the implementation
of fixes to the formerly reported problems proven to affect NTP. Checking how NTPsec
handles these matters revealed a highly important security patch suffering from
regression. More specifically, the original vulnerability tracked under CVE-2014-9295
was fixed by an initial patch1 on the 12th of December, 2014. However, the code in
question appears to have undergone changes and revisions on or around November
4th, 2016, which removed the fix. These can be seen in a subsequent commit2 from that
period. Strangely enough, the rewrite removes nearly the entire patch introduced to
prevent the original vulnerability. As a consequence, the code now introduces an
authenticated DoS. The affected code is displayed below.

Affected File:
ntpsec/ntpd/ntp_control.c

Affected Code:
static void
ctl_putdata(
const char *dp,

unsigned int dlen,
bool bin /* set to true when data is binary */
)

{
[...]

while (dlen + overhead + datapt > dataend) {
ctl_flushpkt(CTL_MORE);

}

memcpy(datapt, dp, dlen);
datapt += dlen;
datalinelen += dlen;
datasent = true;

}

The while-loop above runs endlessly in the current setup as long as dlen is so large that,
even when datapt points to the beginning of the buffer, the addition of dlen + overhead +
datapt points outside of the dataend. Given that ctl_flushpkt() only resets datapt and the

1 https://github.com/ntpsec/ntpsec/commit/7fd82020dfd501ee4510edbd61eaf1eb796d5db9
2 https://github.com/ntpsec/ntpsec/commit/1a545205529b17390a7ae93bfc069b5a517c95bc

Cure53, Berlin · 03.02.17 6/18

https://cure53.de/
https://github.com/ntpsec/ntpsec/commit/1a545205529b17390a7ae93bfc069b5a517c95bc
https://github.com/ntpsec/ntpsec/commit/7fd82020dfd501ee4510edbd61eaf1eb796d5db9
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

decrementation of dlen has been removed from the code, this condition can never
amount to false once the loop is entered for the initial time. This can be verified by
modifying the ntpq code to allow sending longer variables and receiving them back:

$./ntpq
ntpq> :config setvar a =
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAA
Keyid: 1
MD5 Password:
Config Succeeded
ntpq> rv 0 a
localhost: timed out, nothing received
***Request timed out
ntpq>

Because NTPsec resembles NTP in that it forks only during the startup process, this
issue signifies a permanent DoS where ntpd is required to be restarted to function
properly again. It is recommended to review the regression and possibly reintroduce the
fix to completely and consistently mitigate all issues resulting from overly long outgoing
packets.

NTP-01-016 NTPsec: Denial of Service via Malformed Config (High)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

A vulnerability found in the NTPsec server makes it possible for an authenticated remote
user to crash the service via a malformed configuration. After submitting the config line in
the following snippet, the ntp daemon crashes after a couple of seconds.

Configuring the server remotely:
ntpq> :config server 10.0.0.1 mode 3735928559
Keyid: 1
MD5 Password:
Config Succeeded

Cure53, Berlin · 03.02.17 7/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

The exact reason for the crash can be derived from running the daemon in the GDB.
Here an invalid value in the %rax register leads to an invalid read operation and causes
a segmentation fault.

Segmentation fault:
(gdb) r
[...]
Program received signal SIGSEGV, Segmentation fault.
0x0000000000415f1f in peer_xmit (peer=0x654980 <init_peer_alloc+704>) at
../../ntpd/ntp_proto.c:2158
2158 sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl],

&xpkt, sendlen);
(gdb) x/i $rip
=> 0x415f1f <peer_xmit+480>: movzbl 0x658460(%rax),%eax
(gdb) p/x $rax
$1 = 0xdeadbeef
(gdb) p/x peer->ttl
$2 = 0xdeadbeef

The affected code is in the ntp_proto.c file of the peer_xmit() function. Peer is a struct
which contains several values, including the user-controlled peer->ttl variable. An invalid
value causes an invalid memory access.

Affected File:
ntpsec/ntpd/ntp_proto.c

Affected Code:
peer_xmit(

struct peer *peer /* peer structure pointer */
)

{
[...]

sendpkt(&peer->srcadr, peer->dstadr, sys_ttl[peer->ttl],
&xpkt, sendlen);

The core problem resides within the configuration parser where the parameters from the
configuration lines are stored in node structs. Setting the ttl value can be done in three
different ways (“ttl”, “subtype”, and “mode”) but only one of them investigates the
provided number for sanity. While invalid numbers are being ignored when “ttl” option is
used, no checks are performed for “mode”.

Affected File:
ntpsec/ntpd/ntp_config.c

Cure53, Berlin · 03.02.17 8/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Affected Code:
peer_node *
create_peer_node(

int hmode,
address_node * addr,
attr_val_fifo * options
)

{
[...]

case T_Ttl:
if (option->value.u >= MAX_TTL) {

msyslog(LOG_ERR, "ttl: invalid argument");
errflag = true;

} else {
my_node->ctl.ttl = (uint8_t)option->value.u;

}
break;

case T_Subtype:
case T_Mode:

my_node->ctl.ttl = option->value.u;
Break;

It was not possible to exploit this issue beyond achieving DoS. However, it is
recommended to resolve this problem by adding sanity checks to the subtype and mode
configuration options.

Cure53, Berlin · 03.02.17 9/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

NTP-01-001 NTPsec: Makefile does not enforce Security Flags (Low)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

One of the key realms reviewed quite early during almost every security test of a new
project encompasses studying the presence of hardening flags applied when the
software is built. This can be done with tools like checksec3 or PEDA4 once the software
has been compiled with the default options inside the makefile at hand:

$ gdb ./ntpd
Reading symbols from ./ntpd...done.
(gdb) checksec
CANARY : disabled
FORTIFY : disabled
NX : ENABLED
PIE : ENABLED
RELRO : Partial
(gdb)

From the GDB’s output it is apparent that the hardening flags are derived from the global
Linux distribution setting rather than forced from the makefile itself. From this follows that
certain hardening checks are missing. These include stack canaries, which ordinarily
protect the return address from buffer overflow vulnerabilities on the stack, as well as
FORTIFY_SOURCE.

It is important to set the necessary CFLAGS inside the makefile itself in order to directly
instruct the compiler to insert all of the security flags required. Once activated, the
exploitation of multiple kinds of memory corruption vulnerabilities becomes much more
difficult. This increase in security stems from two reasons: one having to do with
requiring additional information leaks from the program’s memory, and the other
revolving around establishing that the problems are mitigated by, for example, newly
introduced length checks.

3http://www.trapkit.de/tools/checksec.html
4https://github.com/longld/peda

Cure53, Berlin · 03.02.17 10/18

https://cure53.de/
https://github.com/longld/peda
http://www.trapkit.de/tools/checksec.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

The following snippet shows what CFLAGS are recommended for an addition to the
make process:

$ make CFLAGS='-Wl,-z,relro,-z,now -pie -fPIE -fstack-protector-all
-D_FORTIFY_SOURCE=2 -O1'
[...]
$ gdb ./ntpd
Reading symbols from ./ntpd...done.
(gdb) checksec
CANARY : ENABLED
FORTIFY : ENABLED
NX : ENABLED
PIE : ENABLED
RELRO : FULL
(gdb)

NTP-01-003 NTPsec: Improper use of snprintf() in mx4200_send() (Low)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

The function mx4200_send() uses the libc function snprintf()/vsnprintf() incorrectly. This
can lead to an out-of-bounds memory write due to an improper handling of the return
value of snprintf()/vsnprintf(). Said value returns the number of bytes it would have
written if there were no length restrictions in place.

The code in question takes the return value outlined above and increments an iterator by
its value. This iterator is supposed to point into the fixed-size buffer. However, since the
return value can be larger than the buffer’s size, it is possible for the iterator to point
somewhere outside of the allocated buffer space. This results in an out-of-bound
memory write in the snprintf() specified in this ticket. The reason behind the problem is
that the iterator is used as the destination pointer.

This behavior can be leveraged to overwrite a saved instruction pointer on the stack and
gain control over the execution flow. During the test it was not possible to identify any
malicious usage for this function, specifically no way for an attacker to exploit the issue
mentioned above was ultimately unveiled. However, this remains to be a problem
capable of introducing new vulnerabilities. The problems are likely to resurface when
new code that uses this function is added. In other words, it is necessary to fix this flaw
in advance.

Affected File:
ntpsec/ntpd/refclock_magnavox.c

Cure53, Berlin · 03.02.17 11/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Affected Code:
static void
mx4200_send(struct peer *peer, char *fmt, ...)
{
[...]
char buf[1024];
[...]

cp = buf;
*cp++ = '$';
n = vsnprintf(cp, sizeof(buf) - 1, fmt, ap);
ck = mx4200_cksum(cp, n);
cp += n;
++n;
n += snprintf(cp, sizeof(buf) - n - 5, "*%02X\r\n", ck);

In the above code, cp initially points to the beginning of the buffer. Once the vsnprintf()
returns, mx4200_cksum() is called for creating a checksum. This is done by iterating
over each byte of the buffer. However, the mx4200_cksum() uses the return value n from
vnsprintf() to determine the length of the buffer it needs to iterate over. Since n may be
larger than the buffer’s size, an out-of-bounds read can occur as a result of creating the
checksum.

It is recommended to check the return value of the vsnprintf()/snprintf() and ensure that it
does not exceed the size allowed for a buffer. Also, before calling snprintf(), it must be
ensured that at least five bytes are available, with the view to avoiding an overflow.

NTP-01-004 NTPsec: Potential Overflows in ctl_put() functions (Medium)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

For the purpose of formatting different kinds of response strings into each response
packet, Ntpd makes use of different wrappers around ctl_putdata(). For example,
ctl_putstr() is often used to send quoted system variables, while ctl_putuint() comes into
the fore when integer responses are being handled. All of these wrappers, however,
suffer from stack based buffer overflow vulnerabilities as soon as they are utilized
incorrectly. This is due to the fact that the length of the source variable is used on each
occasion when the data is being copied into a local buffer. This is highlighted in the
provided code.

Affected File:
ntpsec/ntpd/ntp_config.c

Cure53, Berlin · 03.02.17 12/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Affected Code:
ctl_putstr(

const char * tag,
const char * data,
size_t len
)

{
char buffer[512];
char *cp;
size_t tl;

tl = strlen(tag);
memcpy(buffer, tag, tl);

While this issue should be considered hard to exploit with the presence of the stack
canaries and is actually mitigated by FORTIFY_SOURCE, these functions nevertheless
pose a considerable threat as soon as they operate on values larger than the destination
size.

Although the current state of NTP appears not to permit setting tag lengths greater than
512 bytes (mainly because they all have static values), it is still recommended to fix all
ctl_put functions by limiting the source length

NTP-01-005 NTPsec: Off-by-one in Oncore GPS Receiver (Low)

Note: This issue affects both NTP and NTPsec and is present in both code bases.

Regardless of bugs inside the refclock drivers not posing high security risks, the Cure53
testing team discovered several coding errors worth reporting. One mistake was found in
the Oncore GPS Receiver of Motorola devices. The vulnerable code can be found
below.

Affected File:
ntpsec/ntpd/refclock_oncore.c

Affected code:
static void
oncore_receive(

struct recvbuf *rbufp
)

{
size_t i;
u_char *p;

Cure53, Berlin · 03.02.17 13/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

struct peer *peer;
struct instance *instance;

peer = rbufp->recv_peer;
instance = peer->procptr->unitptr;
p = (u_char *) &rbufp->recv_space;

[...]
i = rbufp->recv_length;
if (rcvbuf+rcvptr+i > &rcvbuf[sizeof rcvbuf])

i = sizeof(rcvbuf) - rcvptr; /* and some char will be lost */
memcpy(rcvbuf+rcvptr, p, i);
rcvptr += i;
oncore_consume(instance);

}

The highlighted length check above incorrectly sets the boundaries for the received
buffer by limiting to sizeof(rcvbuf). In this context, an alternative sizeof(rcvbuf) - 1 would
be correct because the size is used as an index. This creates an off-by-one buffer
overflow. Since rcvbuf is directly followed by another buffer, this issue is deemed nearly
impossible to exploit. Still, it should be viewed as a coding error and resolved
accordingly.

NTP-01-006 NTP: Copious amounts of Unused Code (Info)

Note: This issue affects NTP only and is not present in the NTPsec code.

Statically included external projects potentially introduce several problems and the issue
of having extensive amounts of code that is “dead” in the resulting binary must clearly be
pointed out. The unnecessary unused code may or may not contain bugs and, quite
possibly, might be leveraged for code-gadget-based branch-flow redirection exploits.

NTP-01-007 NTP: Data Structure terminated insufficiently (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

Calling strcpy() with an argument of string with additional null bytes actually only copies
a single terminating null character into the target buffer instead of relying on the required
double null bytes in addKeysToRegistry() function. As a consequence, a garbage registry
entry can be created and consist leaked memory contents.

Cure53, Berlin · 03.02.17 14/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

NTP-01-008 NTP: Stack Buffer Overflow from Command Line (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

Invoking strcat() blindly appends the passed string to stack buffer in the
addSourceToRegistry() function. The stack buffer is 70 bytes smaller than the buffer in
the calling main() function. Together with the initially copied Registry path, the
combination causes a stack buffer overflow and effectively overwrites the stack frame.

NTP-01-009 NTP: Privileged execution of User Library code (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

The Windows NT port has the added capability to preload DLLs defined in the inherited
global local environment variable PPSAPI_DLLS. The code contained within those
libraries is then called from the NTPD service, usually running with elevated privileges.

NTP-01-010 NTP: ereallocarray()/eallocarray() underused (Info)

Note: This issue affects NTP only and is not present in the NTPsec code.

NTP makes use of several wrappers around the standard heap memory allocation
functions that are provided by libc. This is mainly done to introduce additional safety
checks concentrated on several goals. The described function additionally ensures that
the later multiplication of size * nmemb does not create an integer overflow. In other
words, it is responsible for attesting to less memory than originally intended not being
allocated in a given case. The problem, however, is that the function in question is used
quite rarely, even though there are some places calling for it to be employed instead of
the usual emalloc.

NTP-01-011 NTP: ntpq_stripquotes() returns incorrect Value (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

The NTP client (ntpq) uses the function ntpq_stripquotes() to remove quotes and escape
characters from a given string. According to the documentation, the function is supposed
to return the number of copied bytes but due to incorrect pointer usage this value is
always zero.

Cure53, Berlin · 03.02.17 15/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

NTP-01-013 NTPsec: Inclusion of obsolete NTPclassic-dependent Script (Info)

Note: This issue affects NTPsec only and is not present in the NTP code.

The NTPsec project includes an inapplicable script dependent on the NTPclassic’s ntpq.
This inclusion is believed to be a mere oversight, which can be likely attributed to the
challenges of the repository conversion.

Affected File:
ntpsec/attic/ntpver

Affected Code:
ntpq -c "rv 0 daemon_version" $* | awk '/daemon_version/ { print $2 }'

It is recommend for the tool to be removed. An alternative dependency linked to the
NTPclassic shall be added or the script is to be replaced with an implementation using
ntpdig.

NTP-01-014 NTP: Buffer Overflow in DPTS Clock (Low)

Note: This issue affects NTP only and is not present in the NTPsec code.

Another potential issue inside the refclock drivers was found in the receiver for the
Datum Programmable Time Server. Here the packets are processed from the
/dev/datum device and handled in datum_pts_receive(). Since dpend simply holds the
length of the entire packet, the loop highlighted above will continue the process of
copying data into datum_pts->retbuf, even though there is only room for 8 bytes there.
This is a classic buffer overflow inside a data structure that is stored on the heap.

Cure53, Berlin · 03.02.17 16/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Conclusion
The joint nature of this January 2017 code audit, performed by the Cure53 team against
both the NTPsec and the NTP software components in scope, makes it that much
complex to issue an unambiguous verdict about all security-relevant aspects.

The bottom line is that four members of the Cure53 team, who assessed the products
over the course or thirty-two days, discovered sixteen individual findings in the code
base of both NTPsec and NTP. It should be noted, however, that the sole finding flagged
with a “Critical” severity concerned NTP. Breaking down the findings moreover indicates
that eight of the discoveries were exclusively tied to NTP entity, while a much smaller
array of two issues could be linked exclusively to the realm of NTPsec. This means that
six spotted problems were shared between the two code bases. In other words, the total
numbers of findings suggest a slightly lower number of eight native problems for NTPsec
compared to the fourteen issues affecting NTP.

The general outcome of this project is rooted in the fact that NTP’s code has been left to
grow organically and had aged somewhat unattended over the years. The overall
structure has thus become very intricate, while also yielding a conviction that different
styles and approaches were used and subsequently altered. The seemingly uncontrolled
inclusion of variant code via header files and complete external projects engenders a
particular problem. Most likely, it makes the continuous development much more difficult
than necessary. While the NTPsec project emphasizes cleaning up its ancestors’ flaws,
the difference regarding quality between the original code and the current
implementation was not as great as anticipated. The more recent project suffers from
having convoluted code and allowing for obsolete nooks and crannies to persist in the
code base.

On the one hand, much cruft has been removed successfully, yet, on the other hand, the
code shared between the two software projects bears tremendous similarities. The
NTPsec project is still relatively young and a major release has not yet occurred, so the
expectations are high for much more being done beforehand in terms of improvements.
It must be mentioned, however, that the regression bug described in NTP-01-015 is
particularly worrisome and raises concerns about the quality of the actions undertaken.

In sum, one can clearly discern the direction of the project and the pinpoint the
maintainers’ focus on simplifying and streamlining the code base. While the state of
security is evidently not optimal, there is a definite room for growth, code stability and
overall security improvement as long as more time and efforts are invested into the
matter prior to the official release of NTPsec.

Cure53, Berlin · 03.02.17 17/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Cure53 would like to thank Gervase Markham of Mozilla for his excellent project
coordination, support and assistance, both before and during this assignment. Cure53
would further like to extend gratitude to the NTPsec team, for their help during the
scoping phase of this assessment.

Cure53, Berlin · 03.02.17 18/18

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report NTPsec 01.2017
	Index
	Introduction
	Scope
	Test Coverage
	Identified Vulnerabilities
	NTP-01-002 NTP: Buffer Overflow in ntpq when fetching reslist (Critical)
	NTP-01-012 NTPsec: Authenticated DoS via Malicious Config Option (High)
	NTP-01-015 NTPsec: Regression in ctl_putdata() leads to Endless Loop (High)
	NTP-01-016 NTPsec: Denial of Service via Malformed Config (High)

	Miscellaneous Issues
	NTP-01-001 NTPsec: Makefile does not enforce Security Flags (Low)
	NTP-01-003 NTPsec: Improper use of snprintf() in mx4200_send() (Low)
	NTP-01-004 NTPsec: Potential Overflows in ctl_put() functions (Medium)
	NTP-01-005 NTPsec: Off-by-one in Oncore GPS Receiver (Low)
	NTP-01-006 NTP: Copious amounts of Unused Code (Info)
	NTP-01-007 NTP: Data Structure terminated insufficiently (Low)
	NTP-01-008 NTP: Stack Buffer Overflow from Command Line (Low)
	NTP-01-009 NTP: Privileged execution of User Library code (Low)
	NTP-01-010 NTP: ereallocarray()/eallocarray() underused (Info)
	NTP-01-011 NTP: ntpq_stripquotes() returns incorrect Value (Low)
	NTP-01-013 NTPsec: Inclusion of obsolete NTPclassic-dependent Script (Info)
	NTP-01-014 NTP: Buffer Overflow in DPTS Clock (Low)

	Conclusion

