
Pentest-Report Whiteout.io 04.2015
Cure53, Dr.-Ing. Mario Heiderich, Dr. Jonas Magazinius, Franz Antesberger, Jann Horn

Index
Introduction
Scope
Identified Vulnerabilities

WO -03-002 Insecure Regexps usage on DOMPurify Sanitizer Output (High)
WO -03-003 Insecure File Download Method Fallbacks (Low)
WO -03-009 Image Loading Opt - in Protection can be bypassed (Low)
WO -03-011 No Reliable Sender Indication is implemented (Medium)
WO -03-012 Broken postMessage Origin - Check in Iframe - Resizer (Low)
WO -03-013 Lack of X - Frame - Options Header on Whiteout Server (Medium)
WO -03-014 Spoofing of Signed Messages and general UI Concerns (High)
WO -03-016 TOFU Behavior for Forge - based TLS (Medium)
WO -03-017 No Forward Secrecy for TLS Connection in Forge (L ow)
WO -03-018 Weak Passwords & Misleading Passphrase Strength Check (Low)
WO -03-019 Personal Data appearing in Debug Logs (Low)
WO -03-020 Insecure Default in Implementation of BCC Feature (Low)
WO -03-021 No Caching happening for Keyserver Responses (Medium)
WO -03-022 Mail Server Settings are not displayed by default (Low)
WO -03-023 STARTTLS Setting leads to opportunistic STARTSSL (High)
WO -03-024 Links can be opened in the message frame in MSIE 11 (High)
WO -03-027 Public - Key Verifier approves of unknown public Keys (Low)
WO -03-028 Spoofing of Return Address using malformed Reply - To Header (High)

Miscellaneous Issues
WO -03-001 Loss of Entropy in randomString () Method of crypto - lib (Low)
WO -03-004 Off - by - one Error in randomString () Method of crypto - lib (Low)
WO -03-005 Off - by - one Error in Prime Worker Code of Forge library (Low)
WO -03-008 No Origin Checks for postMessage Communication (High)
WO -03-015 Regex - based Certificate Verification prone to Bypasses (Medium)
WO -03-025 Unsafe Extraction of clearsigned Text (Low)
WO -03-026 Key ID Collisions can prevent Key Download from working (Low)

Conclusion

1/17

Introduction
“Whiteout Mail is the first email solution with end-to-end encryption based on open
standards that has a beautiful user interface and is easy to use. We support all major
platforms and form factors (Windows and Firefox coming soon).“

From https :// whiteout . io /# product

This penetration test and source code audit against several parts of the Whiteout.io
software portfolio was carried out by four senior testers of the Cure53 team. The test
was completed over the course of eight days. The audit was performed against a
specific version of the Whiteout software, specifically tagged as ready for testing by the
maintainers. The results of this test comprise eighteen security vulnerabilities of varying
severity, as well as several general weaknesses.

Prior to this test, Cure53 has since late 2013 accompanied the Whiteout team in their
work towards arriving at a secure yet user-friendly PGP-based mail client solution. This
penetration test report describes the last of numerous tests that took place at different
stages leading to the time when the Whiteout software reached the much anticipated
stable version 1.0.

The reported high severity vulnerabilities have been discussed with the Whiteout team
and fixed in accordance with the agreed discussions’ outcomes. This final report
describes the identified findings and gives insight into attack methodology, impact, and
fix recommendations. Some of the mentioned low-severity issues will be addressed in
the later versions, due to the fact that the resulting attack surface and connected risks
were deemed acceptable: they would require complex preconditions for successful
exploitation and can therefore await holistic handling through “Defense in Depth”.

Scope
• Concept-Review “PGP Key Management”

◦ https :// blog . whiteout . io /2015/02/06/ making - pgp - key - management - invisible - so -
johnny - can - encrypt /

• Penetration-Test against Whiteout.io 0.25

◦ https :// github . com / whiteout - io / mail - html 5/ tree / v 0.25.0

2/17

https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://github.com/whiteout-io/mail-html5/tree/v0.25.0
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://blog.whiteout.io/2015/02/06/making-pgp-key-management-invisible-so-johnny-can-encrypt/
https://whiteout.io/#product
https://whiteout.io/#product
https://whiteout.io/#product
https://whiteout.io/#product
https://whiteout.io/#product
https://whiteout.io/#product
https://whiteout.io/#product

Identified Vulnerabilities

The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact, which is simply given in brackets following the title
heading for each vulnerability. Each vulnerability is additionally given a unique identifier
(e.g. WO-03-00X) for the purpose of facilitating any future follow-up correspondence.

WO-03-002 Insecure Regexps usage on DOMPurify Sanitizer Output (High)

Upon reviewing the usage of the XSS filter library DOMPurify, a problem was spotted
that results from attempting to manually filter out certain attributes from image elements
for privacy’s sake. The file mail-html5/src/js/controller/app/read-sandbox.js uses the
following code to sanitize HTML mails:

// sanitize HTML content: https://github.com/cure53/DOMPurify
html = window.DOMPurify.sanitize(html);
// make links open in a new window
html = html.replace(/<a /g, '<a target="_blank" ');

// remove sources where necessary
if (e.data.removeImages) {
 html = html.replace(/(<img[^>]+\b)src=['"][^'">]+['"]/ig, function(match,
prefix) {
 return prefix;
 });
}
document.body.innerHTML = html;

While DOMPurify outputs HTML code that is safe to assign to innerHTML, it does not
guarantee that the code is free of potentially problematic issues like single-quotes within
attribute values. In addition, a regular expression is being used against the resulting
HTML string, seeking to manipulate image elements - and the manipulation is done in an
unsafe way. Therefore the following attack is possible.

The attacker sends an HTML mail containing the code:

After going through DOMPurify, the code looks like this:

Then, if e.data.removeImages is enabled, the regular expression turns the code into this:

This is then parsed by the browser as the following HTML:

While it does not seem possible to use this for an attack in most browsers due to the
Content-Security-Policy header, it is vital that Internet Explorer 11 ignores that

3/17

header. Thus, in order to make CSP rules effective in this case, it is necessary to set the
X-Content-Security-Policy header.1 Combined with WO -03-008, the problem
described here indicates that any website can run arbitrary JS code in the context of the
user, just as long as the employed browser is Internet Explorer accompanied by code
like this:

<iframe src="https://mail.whiteout.io/tpl/read-sandbox.html#alert('this is
xss!\nlocation: '+location)" width="100%" height="100%"></iframe>
<script>
setTimeout(function() {
 frames[0].postMessage({html:'<img src="foo\'
onmouseover=eval(location.hash.slice(1))//" width="2000" height="2000">',
removeImages: true}, '*');
}, 3000);
</script>

Instead of manipulating the output of DOMPurify by means of regular expressions, it is
recommended to use DOMPurify hooks or implement a proper configuration object to
filter certain elements and attributes. The Hook API is predestined to be used with
special element and attribute modifications, which signifies its high capability in handling
this specific use case. Furthermore, it is recommended to set CSP rules for both the
Content-Security-Policy and the X-Content-Security-Policy headers.

Note: The issue has been addressed by the Whiteout-Team and was verified as fixed by
Cure53.

WO-03-003 Insecure File Download Method Fallbacks (Low)

In browsers failing to support the combination of the download attribute and Blob, as
well as lacking support for window.navigator.msSaveBlob() (a setup currently
appearing exclusively applicable to Safari), Download.prototype.createDownload()
falls back to navigating to a Blob or a Data URI with attacker-specified MIME type and
content.

Clearly, this is insecure because, since an attachment has a MIME type that causes the
browser to treat it as an HTML document and the user attempts to download it in a
browser like Safari, the HTML document will be opened with the Whiteout UI as origin. It
is recommended to restrict the MIME types for the fall-back methods to a known-safe
subset.

WO-03-009 Image Loading Opt-in Protection can be bypassed (Low)

Whiteout blocks the loading of images in HTML mails by filtering out the src attributes of
the embedded images. However, this only happens if images are detected in the mail
with the use of the following regex, which is applied to unsanitized HTML mail:

/<img[^>]+\bsrc=['"][^'">]+['"]/ig

1 http :// caniuse . com /# feat = contentsecuritypolicy

4/17

http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy
http://caniuse.com/#feat=contentsecuritypolicy

This means that the image loading opt-in can be bypassed through malformed HTML,
such as the one shown in the following HTML string sample:

Analogically, the following string bypasses the same regular expression:

" src="https://cure53.de/img/header.gif">

In hopes of eradicating this problem, it is recommended to detect the use of in a DOMPurify hook instead and only then report back to the main
document on whether the opt-in prompt should be shown. Alternatively, DOMPurify can
be called twice on the same string and an image-less as well as an image-enriched
version of the HTML string can be used on demand. It is also desirable to a have a
second sandbox URI added. It should work like the normal one but with more restrictive
CSP headers set to prevent leaks through images that are loaded via CSS, for instance.
Without user opt-in, emails should only be rendered in the locked-down iframe.

Please note that this topic was taken offline and a solution was drafted using DOMPurify
and a specially created configuration directive in combination with a hook. The
implemented mechanism attempts to eliminate the problem of HTTP leakage via images
and all other known HTML elements.

WO-03-011 No Reliable Sender Indication is implemented (Medium)

Whiteout neither has a reliable, usable way to identify the sender of a signed message,
nor a telling mechanism for determining if a message has at all been signed. To
illustrate, please note that a mail sent by “Foo Bar <foo @ example . org>” looks exactly
the same as a mail sent by “Foo Bar <evil @ example . org>”, a mail sent by
“foo @ example . org” looks identical to a message sent by “foo @ example . org <evil
@ example . org>”.

It is recommended to display status information pertaining to a received message having
been signed. For signed messages, it is recommended to display the email address of
the sender. It is crucial to ensure that the same email was used to perform the key
lookup and verify it was stored together with the name in the key. It is additionally
recommended to consider adding a way for users to mark certain keys as “known”,
which would e.g. be reflected in the color of the sender’s identity and in parallel aid in
preventing Homoglyph attacks.

Note: The issue has been addressed by the Whiteout-Team and was marked as
resolved by Cure53.

5/17

mailto:evil@example.org
mailto:evil@example.org
mailto:evil@example.org
mailto:evil@example.org
mailto:evil@example.org
mailto:evil@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:evil@example.org
mailto:evil@example.org
mailto:evil@example.org
mailto:evil@example.org
mailto:evil@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org
mailto:foo@example.org

WO-03-012 Broken postMessage Origin-Check in Iframe-Resizer (Low)

The iframe-resizer library uses the following origin check for cross-frame communication:

(''+origin !== 'null') && (origin !== remoteHost)

This allows any website to bypass the origin check by first navigating to a data URI or
so. The impact on Whiteout is that websites opened through a link in the Whiteout client
can open the “Reply” window inside the Whiteout UI with an arbitrary recipient.

It is recommended to ascertain the integrity of messages from the sandboxed iframe to
the parent by giving a random authentication token to the iframe when loading it (e.g. as
part of the URI). Subsequently, it should be verified that this token is part of all
messages from the client.

WO-03-013 Lack of X-Frame-Options Header on Whiteout Server (Medium)

The Whiteout webserver does not set X-Frame-Options, which makes it possible for
other websites to place the Whiteout UI in an iframe and trick the user into clicking on
elements of Whiteout’s UI that the user does not intend to click on (“Clickjacking”). For
example, a malicious website could, depending on whether it knows the UID of a
message in the user’s inbox, trick the user into deleting a mail with one or two clicks.

It is recommended to set the header “X-Frame-Options: DENY”, meaning the most
restrictive policy, for the main browser UI and all other resources. Similarly, “X-Frame-
Options: SAMEORIGIN” should be set for tpl/read-sandbox.html to allow framing by the
main UI.

Note: The issue has been addressed by the Whiteout-Team and was verified as fixed by
Cure53.

WO-03-014 Spoofing of Signed Messages and general UI Concerns (High)

Normally, when a signed message is displayed, the signed text is extracted and shown
to the user. During the process of message extraction, the armoring of the signature is
removed by deletion of the PGP signature block following the text.

An attacker can send a specially crafted message that allows him to append the text
after the signed text. This originates from a bug determining how the signed text is
extracted from the message. The application will delete the last signature block of the
message, which implies that if two signature blocks are present, the first one will be
validated by OpenPGP.js, while the second will be deleted by the application.

The attacker can append HTML that will render as an overlay above the original text of
the message. Thereby, although the signature will be interpreted as valid, the visible
message will be something entirely different. Keep in mind that there is no indication
whether a message was signed unless the signature was false. Therefore the impact of

6/17

the vulnerability is unclear, since an attacker could simply send an unsigned spoofed
email instead. Should an indicator confirming that an email was correctly signed
transpire in the future, the issue would have instantly gained criticality potential.

Proof of Concept:
Observe the following message:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

afaf
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)

iQEcBAEBAgAGBQJVLQ6cAAoJEJbmz9lpkvR2Nc4H/1IvB3YDCzCdT9rIqr5t018X
x3JABFbbhi4Oh4Z8WRAsuOHU9pdyeuuink+pWRhmsYo3e3MAKnUeJrQrV/jt5oX0
hnAhT5NolkkeZvCWYGbE9u36+2CtkT2GkiYh70bEEg5lu13KZ3PpHakYwhP+yK0h
kNiKw8qv+Xcv6jZdmJeKkJKmtR7Sdo2YPhTAJMxdQ93UKRbOd7Qi7cX4cSYRM1r7
v5xyEnO+f+Jg6q+v8cSmrBBEn1KgTwpS7GSMk7+T6kVjyetYIkOwLeSVpd3Ax58p
YA5Tb3WErPAKZV5rqblvkNjq7qqDOozRMiJD1DrB5eDaVPP4MDPdTxg2xYLDr78=
=yUYL
-----END PGP SIGNATURE-----

<div style="position:fixed;width:100%;height:100%;top:0;left:0;z-
index:1000;background-color:#ccc;">This text is (not) signed!</div>

-----BEGIN PGP SIGNATURE-----

-----END PGP SIGNATURE-----

Note that the above email will be interpreted as having a correct signature and rendered
as:

This text is (not) signed!

It is recommend to discuss the possibility of indicating the correctness of a signature. In
the process of doing so, it could turn out worthwhile to find a way that is safe from CSS
positioning attacks. Indicating the signature information in an area which is not prone to
overlapping is desirable, as it makes it out of reach for CSS rules applicable to HTML
inside the mail body. This might potentially be realized by using separate Iframes to
display the information in conjunction with the postMessage API.

Note: The issue has been addressed by the Whiteout-Team and was verified as
successfully mitigated by Cure53.

7/17

WO-03-016 TOFU Behavior for Forge-based TLS (Medium)

When the Whiteout client connects to a server using Forge-based TLS for the first time,
it silently accepts and stores the server’s TLS certificate without indicating this to the
user, even if the certificate was not signed by a known Certificate Authority. This
behavior violates reasonable assumptions about the behavior of TLS clients.

Consequently, it is recommended to either check certificates when connections are
established or, if that is not attainable at this time for one or other reason, to at the very
least inform the users about this behavior and warn them about the potential
implications.
It is also recommended to block the transition from a CA-signed certificate to one that is
not CA-signed. From this follows that the user is either not permitted to override the
error, or, alternatively, he or she is only allowed to perform an override after having
accepted a warning message, which must be edited to be more direct, informative and
deterring than the one currently in place. The difference between a normal certificate
rotation and a MITM attack with a bogus certificate should be made obvious to the user.

WO-03-017 No Forward Secrecy for TLS Connection in Forge (Low)

When TLS connections are established using Forge, the client only offers the cipher
suites TLS_RSA_WITH_AES_{128,256}_CBC_SHA. These do not provide forward secrecy,
meaning that if an attacker manages to obtain the private key of the server in the future,
he can decrypt encrypted traffic captured in the past. It is recommended to implement a
cipher suite with Forward Secrecy.

WO-03-018 Weak Passwords & Misleading Passphrase Strength Check (Low)

In the file src/js/controller/app/set-passphrase.js, the method checkPassphraseQuality()
gives the user instant feedback on the quality of the PGP passphrase he has chosen.
Unfortunately, this password strength check is dangerously misleading, as, for example,
the password “passw0rd” gets a “Good” rating, and “qwerty123” is classified as “Strong”.
Both of these are not suitable as passwords anywhere, let alone in a PGP passphrase
context.

The password strength check assumes that a passphrase containing eight random
characters in the set [a-z0-9] is secure (“Strong”).

While the above rule may be true for login passwords that can typically be only cracked
online (as in, the attacker has to send a new login request to the service for every guess
he makes), it is clearly inadequate for a PGP passphrase. A password of the above
construction offers log2(368) 41≃ bits of security, to which the String-to-Key function used
by OpenPGP.js adds about 16 bits. This results in a total of around 57 bits of security. To
put this in perspective, one shall think about the existing Bitcoin mining hardware which
advertises, among others, a speed of 242hashes per second for hardware costs of 2299
USD (estimated). This translates to breaking a passphrase deemed “Strong” above
within around 4.5 hours on a device with this speed, and only as long as the passphrase

8/17

is indeed completely random. Evidently, though Bitcoin mining specialized hardware
cannot be used for password cracking in practice, its capabilities are probably a good
indication of what an adversary with a skill-set to make his own ASICs could achieve.

Especially given the lack of ability to check for common passwords such as “passw0rd”,
it is recommended to either replace or remove the password strength indicator. An
alternative solution is a proper verifier of the password quality is available for JavaScript
is the library zxcvbn2.

Note: The issue has been addressed by the Whiteout-Team and was verified as fixed by
Cure53.

WO-03-019 Personal Data appearing in Debug Logs (Low)

Whenever a task is unsuccessful, the Whiteout client suggests a submission of an auto-
generated bug report, which can be already found pre-filled in a new email. The
message that has been generated begins with the following statement:

“Below is the log. It includes your interactions with your email provider in an
anonymized way from the point where you started the app for the last time. Any
information provided by you will be used for the purpose of locating and fixing the
bug you reported. It will be deleted subsequently. However, you can edit this log
and/or remove log data in the event that something would show up.”

While login credentials are indeed scrubbed from the logs, folder names, message
subjects and attachment filenames remain visible there. It is recommended to reconsider
whether logging this information - especially subjects and filenames - is at all necessary.
If the answer is no, then it is recommended to scrub that information in the client.

Note: The issue has been addressed by the Whiteout-Team and was marked as
resolved by Cure53.

WO-03-020 Insecure Default in Implementation of BCC Feature (Low)

Whenever one wishes to send emails with hidden recipients (“BCC”), the Whiteout client
is not functional, as it currently disables encryption completely. This alteration is signaled
to the user by the changing the UI but it should be considered whether another
mechanism might be more suitable.

More specifically, wild-card Key IDs could be used. These all-zero Key IDs instruct
implementations which support the feature to attempt decryption with all available secret
keys, even when the Key IDs do not match. It should be noted that even with wild-card
Key IDs, the encrypted session key still leaks a small amount of information about the
hidden recipient, and it obviously reveals the presence and number of BCC recipients.
Therefore, this probably should not be done without informing the user. Enigmail seems

2 https :// github . com / dropbox / zxcvbn

9/17

https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn
https://github.com/dropbox/zxcvbn

to be using this method with a warning about compatibility. Another option would be to
simply send two differently encrypted copies of the otherwise same message.

WO-03-021 No Caching happening for Keyserver Responses (Medium)

When a mail is opened for viewing, the Whiteout client looks up the key of the sender
using the keyserver at https :// keys . whiteout . io /, regardless of whether the key might
have already been known. When the “Reply all” button is pressed, it even looks up the
keys of all recipients at once. Even though the usability motivation behind this decision is
recognizable, it might be a good idea to avoid leaking the recipient lists of mails to the
keyserver.

It is recommended to cache keyserver replies (positive and negative ones) locally for
some time, perhaps a day, while allowing the user to manually clear that cache as
necessary. It could also be made possible to refresh random sets of keys with random
sizes in random intervals. This will still reveal the identities of people the user
communicates with, but will nonetheless provide some degree of protection for the
timing and grouping of those people.

WO-03-022 Mail Server Settings are not displayed by default (Low)

During setup, the Whiteout client determines the mail server configuration to be used
based on the email address entered by the user employed for querying the URL
https://settings.whiteout.io/autodiscovery/{email}. Just like the Whiteout
server, an attacker with the ability to impersonate it, can potentially configure the client to
connect to, and therefore send the password to an arbitrary server and with arbitrary
security settings. By default, the server settings are only shown to the user if the
Whiteout server signals that it is unsure about the configuration - a state a rogue server
would never enter of course.

While it is already possible to inspect the mail server configuration before it is used by
clicking “Show Options”, it is recommended to always show it to the user and display a
security warning for cases when the encryption method used is not TLS (but
opportunistic STARTTLS or None). Moreover, it is recommended to verify that the
hostnames only contain ASCII characters that are respectively valid in hostnames (and
no Unicode homoglyphs).

WO-03-023 STARTTLS Setting leads to opportunistic STARTSSL (High)

If the user uses the STARTTLS setting for connection security, the Whiteout client
interprets that as a recommendation to “opportunistically use STARTTLS if available”.
This means that an active Man-in-the-Middle attacker between the user and the mail
server can perform a downgrade attack by modifying the server’s response to indicate
that it is not capable of using STARTTLS. The Whiteout client will then send the user’s
login credentials over an insecure connection.

10/17

https://keys.whiteout.io/
https://keys.whiteout.io/
https://keys.whiteout.io/
https://keys.whiteout.io/
https://keys.whiteout.io/
https://keys.whiteout.io/
https://keys.whiteout.io/
https://keys.whiteout.io/

The current behavior essentially means that the Whiteout client renegotiates whether to
use encryption or not for every new connection. It is recommended to instead let the
user configure whether STARTTLS should be used or not. Only then, as the user
actively opts for using this setup, connections without it should be disallowed.

Note: The issue has been addressed by the Whiteout-Team and was verified as fixed by
Cure53.

WO-03-024 Links can be opened in the message frame in MSIE11 (High)

The Whiteout client attempts to enforce a policy that links can only be opened in new
tabs. There are two mechanisms important for discussion here. The first one is that
using a regular expression, the attribute target="_blank" is added to <a> tags. This
can be circumvented by using an image map, which only requires the tags , <map>
and <area> for the purpose of creating a link. Together with the image display opt-in
bypass WO -03-009, an image map looks like this:

<map name="map">
 <area href="https://var.thejh.net/wofo_VugIbeffeuv4.html" shape="rect"
coords="0,0,972,93">
</map>

The second mechanism that would prevent this is Content Security Policy. Whiteout sets
the default-src directive, which implicitly sets frame-src, and in turn prevents loading
arbitrary sites into the frame. However, as described in WO -03-002, this protection does
not work in IE11.

Clicking on the image in IE11 will cause the link target to be opened within the message
frame. If the user then opens another message, the decrypted message body is sent to
the existing iframe without an origin check (with the origin for postMessage() set to
'*'), meaning that the iframe can set a message event handler on its window to gain
access to the user’s mail:

<script>
 window.onmessage = function(event) {
 alert('got your message!\n'+JSON.stringify(event.data));
 }
</script>

Because the user can’t see the location of the iframe, it would be possible to perform this
attack without making it obvious to the user that something is actually happening.

It is recommended to filter links using a DOMPurify hook, as shown in the demo folder of
the tool, where this exact problem has already been covered3. Like for WO -03-002, it is
recommended to add the X-Content-Security-Policy header. Because loading

3 https :// github . com / cure 53/ DOMPurify / blob / master / demos / hooks - target - blank - demo . html

11/17

https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html
https://github.com/cure53/DOMPurify/blob/master/demos/hooks-target-blank-demo.html

multiple messages into the same sandboxed iframe somewhat reduces the security
benefits of sandboxing, it is recommended to, whenever a new message is opened,
destroy the old iframe and create a new one prior to the loading of the message body.

WO-03-027 Public-Key Verifier approves of unknown public Keys (Low)

During the signup process, the Whiteout server sends a verification mail with a link
containing a UUID to the user. This is automatically sent back to the server by the client
to confirm that the key really belongs to an account in question. However, this mail does
not contain any information about the public key, meaning that the client has no way to
differentiate between legitimate verification requests and confirmation mails that were
sent because of the actions devised and executed by an attacker. Furthermore, the
message contains no text that would discourage a user from manually clicking the link
containing the UUID.

It is recommended to add the fingerprint of the user’s public key to the verification mail
and let the client check it. Moreover, it is recommended to put the UUID into the mail in a
form that ensures that the user will not accidentally click it (by adding an explanation and
not sending the UUID as part of a link).

WO-03-028 Spoofing of Return Address using malformed Reply-To Header (High)

When conceiving a response to an email, the “Reply-To” email header, if specified, is
naturally used to determine the recipient of the message. A problem here emerges from
the way in which the “Reply-To” address is parsed. Essentially, the email might be sent
to a different address than the one visible in the address field. An attacker can send an
email that has a “Reply-To” set to "evil@attacker.com"@victim.com, which would
display as such in the address field, but cause the response to be sent to
evil@attacker.com instead of the expected address @victim.com.

The issue seems to be related to how email addresses are handled when sending
emails. To mitigate the issue it is recommended that reply-to addresses are constrained
to a more strict format, which would ensure no ambiguity or discrepancies in terms of
what the user sees and what is actually being used.

Note: The issue has been addressed by the Whiteout-Team and was verified as fixed by
Cure53.

12/17

Miscellaneous Issues

This section covers those noteworthy findings that did not lead to an exploit but might aid
attackers in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

WO-03-001 Loss of Entropy in randomString() Method of crypto-lib (Low)

The function randomString() in the file util.js, part of the crypto-lib that is being developed
by Whiteout as well, is used for encrypting a private key before uploading it. However, a
bug was found in the following line of code:

result += chars[Math.round(binaryString.charCodeAt(i)
/ 255 * (chars.length - 1))];

What happens here is a conversion of one byte to one character of the alphabet string
‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’ (an alternative alphabet string
could have been passed in, but within the mail-html5 context this default was used). That
means that the origin value that was once [0..255] is now matched to a value from the
range [0..35]. The rest of the entropy is wasted, in spite of it being a precious resource.

Let’s now have a look on the usage within the code published by mail-html5. The
randomString() method is used in the file ./controller/login/login-privatekey-upload.js at
line 15 within the LoginPrivateKey- UploadCtrl constructor function:

$scope.code = util.randomString(24);

This code property is used to encrypt the private key before uploading it to the server.
The $scope.code property does not have 24 * 8 = 192 bits of entropy but only
Math.log(36) / Math.LN2 / 8 * 24 *8 which amounts to about 124 bits. This is fair enough
but definitely less than it could be. So the interface of randomString(resultLength) is
misleading, because it makes a statement about the length of the resulting length rather
than about the quality of the outcome. It is recommended to preferentially use the
generated binaryString value and base64-encode it. In that scenario the length would be
ambiguous but the quality of randomness predefined and reliable.

Note: The issue has been addressed by the Whiteout-Team and was marked as
resolved by Cure53.

WO-03-004 Off-by-one Error in randomString() Method of crypto-lib (Low)

The same line as in WO -03-001 distributes the incoming bytes from binaryString
uniformly to the characters in chars. Still, due to inaccuracy, the distribution is not as
uniform as it could be:

result += chars[Math.round(binaryString.charCodeAt(i) / 255 * (chars.length -
1))];

13/17

The first and the last character of the chars string has only half of the frequency than the
other character. This can be correctly by using the following code:

result += chars[Math.floor(binaryString.charCodeAt(i) / 256 * chars.length)];

Note however that if the issue WO -03-001 is fixed properly via the use of base64-
encoding instead of the currently used conversion, the fix suggested above becomes
obsolete.

Note: The issue has been addressed by the Whiteout-Team and verified as fixed by
Cure53.

WO-03-005 Off-by-one Error in Prime Worker Code of Forge library (Low)

In the file forge/js/jsbn.js the method bnGetPrng() is present, tasked with generating a
pseudo-random big number. This method is used during RSA key generation in the
Miller Rabin pseudo-prime test. The following line gets a random number and converts it
as uniformly distributed into a byte ([0..255]):

x[i] = Math.floor(Math.random() * 0xFF);

Unfortunately the value of 255 will never be reached because Math.random() generates
a value between 0 inclusive and 1 exclusive. This results in a subtle weakness in the
Miller-Rabin pseudoprime test. It should be corrected to the following code:

x[i] = Math.floor(Math.random() * 0x0100);

Note that here the astonishingly often despised call to Math.random() is acceptable
because bnGetPrng() is only called to create the “witness” in the Miller Rabin test. If
Math.random() was used for key creation, it would constitute a critical issue instead.

Note: The issue has been addressed by the Whiteout-Team and was verified as fixed by
Cure53.

WO-03-008 No Origin Checks for postMessage Communication (High)

The JS code running under /tpl/read-sandbox.html does not verify the origin of
message events. When Whiteout is accessed over an HTTPS website, this allows any
website to frame the sandbox page (without setting the sandbox attribute) and pass
arbitrary JSON objects to DOMPurify.sanitize().

Under the slightly altered conditions of Whiteout not using the most recent DOMPurify
version and the html = html.replace(/<a /g, '<a target="_blank" '); line
(which causes an error if the value of html is not a string), this vulnerability would lead to
XSS, allowing any website to run arbitrary JS code in the context of the Whiteout
webinterface. A standing consequence of this issue, however, is that any webpage that

14/17

was opened by clicking on a link can overwrite the contents of the sandbox iframe - not
just for the current message, but also for future ones - using window.opener.
postMessage().

It is recommended to verify the origin of messages in the message event handler in read-
sandbox.js to prevent other windows from loading arbitrary content into the sandbox and
avoid sending data with unexpected types.

Note: The issue has been addressed by the Whiteout-Team and was marked as
resolved by Cure53.

WO-03-015 Regex-based Certificate Verification prone to Bypasses (Medium)

In the tcp-socket project, more specifically in the file src/tcp-socket-tls.js, the function
verifyCertificate() is used to check the server certificate. This takes place when the user
connects to the server for the first time in an environment where the connection has to
be proxied through the Whiteout server. This function attempts to transform the
“Common Name” and the “Subject Alternative Names” into regular expressions, against
which the hostnames are then matched. This is performed as follows:

cnRegex = new RegExp(cn.value.replace(/\./g, '\\.')
 .replace(/*/g, '.*'), 'i');

if (cnRegex.test(host)) {
 return true;
}

However, this does not take into account that the test() method also returns true if
only a substring matches the regex. This means that if someone can obtain a valid
certificate for the domain “example.co”, he can impersonate the domain “example.com” -
and both “co” and “com” are existing TLDs. This issue could be fixed by adding a prefix ^
and a suffix $ to the regex, but given the risk that someone might obtain a valid
certificate for a name like foo|bar.example.org, it is recommended not to use regular
expressions for this purpose.

Note: The issue has been addressed by the Whiteout-Team and was verified as fixed by
Cure53.

WO-03-025 Unsafe Extraction of clearsigned Text (Low)

This issue is being flagged with very low severity rating because Whiteout currently does
not have any indicators for whether a message is signed. When a clearsigned email is
viewed, the method PGP.prototype.verifyClearSignedMessage() in js/crypto/pgp.js
calls into verifyClearSignedMessage() in OpenPGP to verify the integrity of the
clearsigned message. However, only the signatures property of the returned result
object is used, the text property is discarded. This means that if a message contains

15/17

dash-escaped text4, an attacker can insert dashes that will be shown to the user in front
of arbitrary lines without affecting the validity of the signature. In the following message
the dash was inserted after the signature was created without affecting the validity of the
clearsigned OpenPGP message:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

This is
- a test
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iQEcBAEBAgAGBQJVMT9CAAoJEPasYGZHTO8I89EH/2UiGzlswqvFI4BX2NBphOzY
P7PlVa+PLBrZlL94E5ZkWPB7ts0OjPb9N9CFbUnazpk/cSwStEK5ucSxgSxPgfxO
ZN9/6XxzWGeI347QLwZsOquolCR+Fx4kAdN5gNR9eiYRN9E6IlUy/KGe0Ituyb3T
G6iFMyY/1gp+37cs+rzMHFruwsH1eTbxML4oOM41bezh6C5sV5zCh1zrN9hUCUVN
wieCv1t5KZGodm7FsO0sfCh71wxlxHFW0W+fUh9LhE1zjbRRy/z+zZivNHNToCj+
NX3LxLYll1KzIGHHamfZHPyxNIlbWL4xKr0b3VmWRt2P0GjAoFPztmSmc9E7T7U=
=YXx6
-----END PGP SIGNATURE-----

It is recommended to use the text returned by verifyClearSignedMessage() instead of
keeping the original one.

Note: The issue has been addressed by the Whiteout-Team and was verified as fixed by
Cure53.

WO-03-026 Key ID Collisions can prevent Key Download from working (Low)

If an attacker sends Alice a message from his email address, for which a crafted key is
stored on the keyserver that has the same key ID as Bob’s key, and then Bob sends
Alice a message for the first time, the Whiteout client will not download Bob’s key.
Generating a key with a given key ID is relatively easy if the targeted client accepts V3
keys (and OpenPGP.js does).

However, Alice can fix this rather easily by searching for the key with the colliding Key ID
and removing it. Thereby, allowing colliding Key IDs to exist in an OpenPGP client can
become rather complicated. It is recommended to add an error message to
Keychain.prototype.getUserKeyPair(), informing the user about any Key ID
collisions. Alternatively, the code could be altered to identify keys by a fingerprint
implemented in place of Key ID, but such a change might introduce additional
complexity.

4 https :// tools . ietf . org / html / rfc 4880# section -7.1

16/17

https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1
https://tools.ietf.org/html/rfc4880#section-7.1

Conclusion
There is a certain stance that Whiteout takes as a powerful yet user friendly tool.
Importantly, it is standards-compliant and fully PGP-compatible, thus enabling secure
and convenient mail encryption. Unlike in many other approaches in the field of mail and
communications encryption, Whiteout does not attempt to establish a novel
cryptographic scheme, but rather aims for maximum compatibility with the existing PGP-
based mail clients. When this is taken into account, one must note that Whiteout offers
good integration patterns into the existing communication architectures, and, by doing
so, it presents its significant real world value. Whiteout further approaches key
synchronization and management to leverage disadvantages of having to perform many
tedious tasks that a PGP user faces. Previously, a rather high expertise required could
be blamed for hindering the technically less savvy users’ involvement with encryption
standards in their daily life communications.

Cure53 has followed the Whiteout team over the years, providing thorough security
advice and in-depth audit. Keep in mind that the first tests and discussion started in late
2013 and continued fruitfully until this day. Cure53 is therefore in a position to have
watched the software grow into the current shape of the long-anticipated version 1.0. In
the current state of development, Whiteout has mastered mitigation of a large range of
security issues. It has matured to a level, where an attacker can only (if at all) revert to
social engineering attacks in hopes of meeting his or her goals. Only minor issues
remain capable of causing limited damage to the user-base and their encrypted
communications.

Providing a secure yet usable mail encryption software is not an easy task and requires
consideration of a multitude of attacks, as well as a well-balanced security defense
deployed across many levels. It begins on the lower layers of mail reception, mail body
parsing and key management, and then moves all the way to the high up handling of the
application stack, where a safe, secure and comprehensible UI is required to ensure that
the user makes the right decisions. Over the mentioned time period a close collaboration
of the Whiteout team with Cure53 was marked by several code audits, concept reviews,
discussions and design considerations. Eventually, the software in scope reached the
necessary level of maturity, allowing for it to be labeled a 1.0 version without false
pretense or an overly quick jump to the first stable major release.

Cure53 would like to thank Tankred Hase, Felix Hammerl, Oliver Gajek and the entire
Whiteout.io Team for this exciting project, as well as the outstanding support and
assistance during this assignment. We hereby praise your perseverance in handling our
often overly paranoid requests and remarks about safety and security on various levels.

17/17

	Pentest-Report Whiteout.io 04.2015
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	WO-03-002 Insecure Regexps usage on DOMPurify Sanitizer Output (High)
	WO-03-003 Insecure File Download Method Fallbacks (Low)
	WO-03-009 Image Loading Opt-in Protection can be bypassed (Low)
	WO-03-011 No Reliable Sender Indication is implemented (Medium)
	WO-03-012 Broken postMessage Origin-Check in Iframe-Resizer (Low)
	WO-03-013 Lack of X-Frame-Options Header on Whiteout Server (Medium)
	WO-03-014 Spoofing of Signed Messages and general UI Concerns (High)
	WO-03-016 TOFU Behavior for Forge-based TLS (Medium)
	WO-03-017 No Forward Secrecy for TLS Connection in Forge (Low)
	WO-03-018 Weak Passwords & Misleading Passphrase Strength Check (Low)
	WO-03-019 Personal Data appearing in Debug Logs (Low)
	WO-03-020 Insecure Default in Implementation of BCC Feature (Low)
	WO-03-021 No Caching happening for Keyserver Responses (Medium)
	WO-03-022 Mail Server Settings are not displayed by default (Low)
	WO-03-023 STARTTLS Setting leads to opportunistic STARTSSL (High)
	WO-03-024 Links can be opened in the message frame in MSIE11 (High)
	WO-03-027 Public-Key Verifier approves of unknown public Keys (Low)
	WO-03-028 Spoofing of Return Address using malformed Reply-To Header (High)
	Miscellaneous Issues
	WO-03-001 Loss of Entropy in randomString() Method of crypto-lib (Low)
	WO-03-004 Off-by-one Error in randomString() Method of crypto-lib (Low)
	WO-03-005 Off-by-one Error in Prime Worker Code of Forge library (Low)
	WO-03-008 No Origin Checks for postMessage Communication (High)
	WO-03-015 Regex-based Certificate Verification prone to Bypasses (Medium)
	WO-03-025 Unsafe Extraction of clearsigned Text (Low)
	WO-03-026 Key ID Collisions can prevent Key Download from working (Low)
	Conclusion

