
 www.ioactive.com

September 30, 2014
Bromium
20813 Stevens Creek Boulevard
Cupertino, CA 95014

Bromium VSENTRY v2.4 Assessment

In September 2014, IOActive performed an in-depth source code review, architecture audit,
and penetration test of Bromium vSentry v2.4. The goal of the assessment was to evaluate
the security of the system including its architecture and implementation, and to audit the
source code.

IOActive established the following properties of the system:

• Architectural Design: Secure

• Source Code: Secure

• Runtime Functionality: Secure

• Penetration Test Results: Secure

Overall Results: The Bromium vSentry v2.4 system architecture and code implementation
practices are sound, and no vulnerabilities were identified. Exhaustive penetration testing of
the vSentry environment failed to breach the containment of a micro-VM or permit an
attacker to compromise the Microvisor.

	

 www.ioactive.com

Source Code Review and Architecture Audit
Methodology: IOActive reviewed the source code and architecture of Bromium vSentry
v2.4 with the goal of identifying vulnerabilities in the logic of the source code that could
enable an attacker to compromise vSentry or the Windows desktop that vSentry protects.
Before starting the actual source code review, we performed an entry-point analysis looking
for trust boundaries between high-priority features by:

• Evaluating the system architecture in consultation with Bromium

• Evaluating threat model data flow diagrams (DFDs)

• Evaluating the vSentry source code

• Reviewing the system design documentation

• Discussing the architecture and implementation with Bromium developers

The results of the entry point analysis allowed IOActive to identify areas that warranted
deeper analysis. As we analyzed the system, we performed these types of checks:

• Developed a basic dataflow analysis

• Performed text and token matching on the code base, including comments

• Built on the entry-point analysis to map the attack surface

• Analyzed communication protocols

• Analyzed component use

• Evaluated configuration of applications and libraries

• Evaluated authorization logic

• Evaluated communication security

• Evaluated encryption-key management

• Evaluated input validation and sanitization

• Evaluated output encoding

• Evaluated how session management is implemented

• Reviewed logging subsystems for security, privacy, and data leakage

• Evaluated Operating System error notification routines for information leakage

• Verified that direct-object references are protected

• Identified issues that may pose a denial-of-service risk

Results: No significant vulnerabilities or errors were found in the source code or
architecture design.

 www.ioactive.com

Runtime Functionality and Penetration Testing
Concepts: IOActive identifies vulnerabilities as points where applications or network
components exhibit errors; the following list gives examples of the conceptual context in
which these errors are generally seen.

Concept Description

Authentication Confirming a user's identity or ensuring that a program can be
trusted

Access Controls Methods used to authenticate the identity of a user, such as
username and password combinations

Broken Authentication and
Session Management

Account credentials/session tokens are not protected properly,
so attackers compromise passwords or keys to assume
identities

Configuration How securely servers, devices, and software are chosen and
implemented or deployed

Cross-site Request
Forgery (CSRF)

A browser is forced to send a pre-authenticated request to a
vulnerable application, which then forces the browser to
perform a hostile action that benefits the attacker

Cross-site Scripting (XSS) When an application accepts user-supplied data and sends it to
a web browser without first validating or encoding that content

Cryptography and
Insecure Storage

Applications rarely use mathematical data protections properly;
attackers can conduct identity theft and credit card fraud

Data Validation Ensuring that a program operates on clean, correct, useful, and
secure data

Denial of Service Anything that makes a computer resource unavailable to its
intended users

Failure to Restrict URL
Access

When an application protects sensitive functionality by
preventing its display as opposed to restricting access

Information Leakage and
Improper Error Handling

When an application exposes information about its
configuration or internal function, or violates user privacy

Insecure Communication When an application fails to encrypt sensitive network traffic

Insecure Direct Object
Reference

When a reference to an internal implementation object (file,
directory, database record, key, URL, etc.) is exposed

Malicious File Execution Code that is vulnerable to remote file inclusion allows attackers
to include hostile code and data

Session Management The process of tracking a user's activity across sessions of
interaction with a computer system

 www.ioactive.com

Methodology: For the runtime review, IOActive consultants installed vSentry 2.4.0.11033
in a VMware Fusion® hosted Windows® 7 virtual machine.

Host Testing
After installing vSentry, IOActive reviewed the installed system files and examined the
system to understand communication paths between code isolated in a micro-VM and
the Microvisor, and code in a micro-VM and components of the vSentry system that run
on the protected desktop. IOActive used these paths in its attempts to attack the
Microvisor and the desktop. In addition, IOActive consultants attempted to bypass the
“Untrusted” file protections used by vSentry for untrusted document isolation.
Testing the Isolation of a micro-VM
An attacker that is exploring Bromium on their own system, may need to install a
vulnerable version of Internet Explorer, Adobe® Acrobat, Chrome, or other application
that processes untrusted content. In addition an attacker will need a method to deliver an
attack, such as a malicious file that spawns cmd.exe – for example from a malicious web
site. This is the method used by IOActive.

Results: Extensive testing showed that IOActive was unable to initiate communications
with the protected desktop from a micro-VM. The isolation of code contained within the
micro-VM functioned as designed. Efforts to bypass “Untrusted File” protections were also
unsuccessful.

	

Matt Rahman
Vice President of Business Development and Sales

