
Paragon Initiative Enterprises Source Code Audit
NaclKeys 18 July 2015

I. Introduction

This document describes the security audit of the NaclKeys library by Paragon Initiative
Enterprises for Christian Hermann (bitBeans).

Our audit targeted git commit e19089397bb73cad4f11d4a2c038a3bc81867d7f, which was
committed on June 2, 2015.

This report was prepared by Scott Arciszewski, CDO, and reviewed by Robyn Terjesen, CEO.

Audit Results Summary

After a comprehensive code review of the NaclKeys project, we did not identify any security
vulnerabilities or non-exploitable security concerns.

II. Audit Scope

We have limited the scope of this audit to focus specifically on the contents of the NaclKeys
source code repository on Github.

We excluded the following from our scope (although, where appropriate, we did verify that
their features were being used safely):

• Base58Check
• The .NET bindings for libsodium
• Zxcvbn

III. Issues

No security vulnerabilities were discovered in the NaclKeys project.

https://github.com/bitbeans/NaclKeys
https://paragonie.com/
https://paragonie.com/

Paragon Initiative Enterprises Source Code Audit
NaclKeys 18 July 2015

IV. Other Findings
Note: The findings in this section are not necessarily vulnerabilities.

1. Checksum Calculation Can Be Optimized

The CalculateBytejailChecksum() method in NaclKeys.KeyGenerator calculates a
BLAKE2b hash (provided by libsodium) of the version and the public key, then calculates a
second hash and returns the first 4 bytes of the second hash:

 var hashRound1 = GenericHash.Hash(ArrayHelpers.ConcatArrays(version,
publicKey), null, 64);
 var hashRound2 = GenericHash.Hash(hashRound1, null, 64);

However, only the first 4 bytes of hashRound2 is returned by this method. The obvious patch
is to remove the 6, thus changing the second line to look like this:

 var hashRound2 = GenericHash.Hash(hashRound1, null, 4);

This results in a BytesOutOfRangeException being thrown. One of the decisions made in
the libsodium is to enforce a minimum output size of 16 bytes.

Consequently, we offered pull request #1 which changed this line to only return 16 bytes
instead of 64 bytes. However, due to how the hashing is implemented in libsodium, the
checksum this generates is not backwards compatible with the version that produced a full 32
byte output.

Given that there are no significant real-world performance implications for discarding 60 bytes
versus discarding 12 bytes, and it would break backwards compatibility, we do not strongly
recommend our pull request be merged.

2. Base58 Encoding Might Contain Side-Channels

We are not aware of any practical cache-timing attacks on base-N encoding at this time.

However, most implementations use an index lookup based on the raw bytes to construct an
encoded string, which leaks timing information about the binary data due to processor
caching. It is for this very reason that libsodium offers its own cache-timing-safe binary-to-
hexadecimal string and hexadecimal-to-binary string utilities.

More academic research is needed into the risk of cache-timing side-channels in encoding
functions before we consider them a valid security concern. For now, they bear mentioning
but no action is needed.

Paragon Initiative Enterprises Source Code Audit
NaclKeys 18 July 2015

V. Conclusion

After a thorough analysis of the NaclKeys library, we did not discover any security
vulnerabilities or other non-exploitable security concerns. We can attribute this result to two
factors:

1. All cryptographic operations (hashing, scrypt key derivation, generating a keypair from an
scrypt hash output, etc.) are handled by libsodium, which is designed to prevent
implementors from shooting themselves in the foot.

2. NaclKeys is a lightweight library that doesn't attempt to do too much. The code is
conservative and apparently consistent with the UNIX philosophy of doing one thing, and
doing it very well.

We can say with confidence that this library will not be the weak point of any project that
builds atop it.

