
 1

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Table of Contents

Table of Contents 2

Assessment Information 4

Engagement Overview 5

Service Description 5

Engagement Objectives 5

Process and Methodology 6

Scoping and Rules of Engagement 7

Executive summary 8

Trinity Wallet Risk Rating 8

Overall Risk Rating: Low 8

Summary of Strengths 9

Summary of Weaknesses 9

Assessment Narrative 9

Local Data Storage 10

Network Communication 10

Authentication and Authorization 11

Interaction with the Operating System and Electron Security 12

Environmental Resilience and Code Integrity 13

Cryptography 16

User Interface Security 17

Repackaging Attacks 17

Vulnerability Overview 19

Vulnerability Findings and Recommendations 20

L1 - 2FA Enforced After Vault Decryption 20

L2 - Sandboxing and Context Isolation not enabled in Web Preferences 21

I1 - ASAR integrity is not verified on Windows 22

I2 - Linux AppImage does not include embedded GPG signature 23

I3 - iOS application allows screenshots 24

I4 - randomBytes called without max value compares against NaN 25

I5 - Checksums, GPG signature, and GPG key not easily available with binary downloads 26

 2

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

 ​ ​About SIXGEN

● SIXGEN cyber red teams provide

real-world attack emulation designed to
assess and improve the effectiveness of an
entire information security program.

● Our goal is for an organization to
understand and limit cybersecurity risk to
organizational operations, assets, and
individuals.

● Team members include veterans from the
world’s premier military and cybersecurity
organizations.

VETERAN-OWNED SMALL BUSINESS (VOSB)

CAGE: 677F0

DUNS: 079336791

TOP-SECRET Facilities Clearance

SIXGEN, Inc.

844 West St. | Ste 200

Annapolis, MD 21401

www.SIXGEN.io

Assessment Information

SIXGEN conducted a security assessment of the desktop and

mobile Trinity Wallet for the IOTA foundation from

02/18/19 to 03/15/19. The purpose of this testing was to

evaluate and test risk associated with the Trinity wallet by

emulating a real-world attacker.

Client Contact:
Mathew Yarger

Technical Lead and Security Specialist

Social Impact and Regulatory Affairs Team

The IOTA Foundation

+1 (443) 994-9110

mathew.yarger@iota.org

Lead Assessor:
Erik Hunstad

Adversary Emulation Lead

SIXGEN, Inc.

844 West St. | Ste 200

Annapolis, MD 21401

(443) 440-5034

erik@sixgen.io

 3

http://www.sixgen.io/

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Engagement Overview

SIXGEN conducts penetration tests, adversary emulation, and external exposure assessments. At

SIXGEN, we specialize in manual assessments that go beyond basic automated tests to identify real

attack vectors that can be used against your application or environment.

With decades of combined offensive experience, SIXGEN is at the forefront of application security,

cloud security, and penetration testing. With a veteran team of subject matter experts, we staff

experts that are authorities in their field.

Service Description

This security assessment focused on emulating real-world attacks using the same techniques as

malicious actors. The Trinity wallet security assessment focused on the most likely and most

dangerous attacks as well as a code review to identify any architectural weaknesses in the wallet.

Engagement Objectives

SIXGEN’s consultants used the results of automated scanning tools, paired with their expert

knowledge and experience to conduct a manual security analysis of the Trinity wallet. Our assessors

attempted to exploit and gain unauthorized access to data through misconfigurations and exploits.

The detailed results of the vulnerability scanning, manual testing, and code review are shown in this

report.

 4

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Process and Methodology

SIXGEN used a comprehensive methodology to provide a security review of the Trinity wallet on all

three major operating system (Windows, macOS, and Linux) as well as the mobile Trinity wallet on

both iOS and Android. This process begins with detailed scanning and research into the architecture

and environment, with automated testing for known vulnerabilities. Manual reconnaissance and

tailored exploitation of weaknesses followed.

1. Reconnaissance

The primary goal in this phase is to discover how the Trinity wallet processes and stores

sensitive data (e.g. the user’s seed) and how Trinity interacts with the operating system and

network. This information provides the foundation for a tailored security assessment.

Reconnaissance is carried out via automated scanners, dynamic analysis, and manual code

review.

2. Exploration and Verification

SIXGEN consultants use the results of the reconnaissance phase, paired with their expert

knowledge and experience to conduct a manual security analysis of the Trinity wallet. The

detailed results of this manual testing are shown in the tables in this report.

3. Assessment Reporting

Throughout the engagement, SIXGEN delivered detailed analysis and threat reporting to the

developers at the IOTA Foundation, including remediation steps. Our consultants set and

industry standard for clear and concise reports, prioritizing the highest risk vulnerabilities

first.

4. Remediation Assessment

SIXGEN provided remediation retesting for all vulnerabilities reported as they were

addressed. At the conclusion of the remediation testing the risk level determination for this

report was made and all issues in this report were remediated or were being tracked for

remediation.

 5

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Scoping and Rules of Engagement
While malicious actors have no limits on their actions, SIXGEN understands the need to scope

assessments to complete the assessment in a timely manner and protect third parties not

participating in the engagement.​ ​The following limitations were placed upon this engagement, as

agreed upon by the IOTA Foundation:

● The Trinity wallet on Windows, macOS, Linux, iOS, and Android was in scope

● Network communications made by the Trinity wallet were in scope (e.g. tampered IRI

responses)

● The IOTA network (e.g. iota.org and IRI nodes) was out of scope

● The IOTA ledger (“tangle”) and IOTA token were out of scope

 6

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Executive summary

SIXGEN conducted a security assessment of the Trinity wallet for the IOTA Foundation. This test was

performed to assess the defensive posture of the Trinity wallet and provide security assistance

through proactively identifying vulnerabilities, validating their severity, and providing remediation

steps to IOTA Foundation developers.

SIXGEN reviewed the security of the Trinity wallet and has determined a low risk of compromise

from external attackers, as shown by the vulnerabilities detailed in this report. The detailed findings

and remediation recommendations for these vulnerabilities may be found later in this report.

Trinity Wallet Risk Rating

SIXGEN calculates the risk to the Trinity wallet based on exploitation likelihood (ease of exploitation)

and potential impact (potential business impact to the environment).

Overall Risk Rating: ​__​ Low

KEY
__​ Informational
__​ Low
__​ Moderate
__​ High
__​ Critical

Exploitation
Likelihood

Potential Impact

 7

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Summary of Strengths

While SIXGEN was tasked with finding issues and vulnerabilities in the Trinity wallet, it is useful to

know when positive findings appear. Understanding the strengths of the Trinity wallet can reinforce

security best practices and provide strategy and direction toward a robust defensive posture. The

following traits were identified as strengths in the Trinity wallet:

1. Trinity utilizes modern cryptography (e.g. Argon2i, AES-GCM) which protects secrets from
brute force attacks.

2. Trinity is memory conscious, and clears secrets from memory when they are not needed to
perform operations.

3. Trinity implements user education when enabling convenience features that may expose
users to additional risks.

4. The Trinity development team considers security first when adding features to the wallet.

Summary of Weaknesses

SIXGEN discovered and investigated multiple low and informational level vulnerabilities during the

course of its assessment of the Trinity wallet. These vulnerabilities are categorized into general

weaknesses below, and the IOTA Foundation team has implemented mitigations for these

weaknesses or they are tracked for remediation.
1. Like all complex software projects, the Trinity wallet relies on software packages from

sources outside the IOTA Foundation. Due to the nature of the node.js software
ecosystem, if any of these packages were to be compromised without detection (a
“software supply chain” attack) all Trinity wallets could potentially be compromised.

2. The use of Electron introduces application integrity risks on some operating systems.
3. The use of convenience features such as deep links (e.g. links that begin with iota://)

potentially exposes a Trinity user to additional phishing schemes.
4. Running any cryptocurrency wallet on a computer or device that may be compromised is a

risk that needs to be understood by users.

Assessment Narrative

This assessment included a source code review focused on code quality and exploit mitigation as well

as a mobile application and Electron application security review covering the following key areas:

● Local Data Storage

● Network Communication

● Authentication and Authorization

● Interaction with the Operating System and Electron Security

● Environmental Resilience and Code Integrity

● Cryptography

● User Interface Security

● Repackaging Attacks

 8

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

The assessment was conducted against the desktop wallet ​develop​ branch commit

9c6811a9033ebc61983a9adab12339776f13dd8e​ (February 21, 2019), desktop version 0.4.6 (for

integrity and signing verification), iOS Version 0.6.2 (42), and Android version 0.6.2 (49-1).

Throughout the assessment special consideration and focus was given to external attack vectors that

could potentially compromise the Trinity wallet. Specifically the following were thoroughly

investigated:

● Malicious SeedVaults

● Malicious Deeplinks/Deeplink Hijacking

● Seed Generation Randomness Issues

● Malicious IRI Responses

● Automatic Update Interception/Spoofing

● Application Modification

● Software Supply Chain Attacks

Local Data Storage

The secure storage of sensitive data such as user credentials or private keys is crucial to a wallet’s

security. Applications can accidentally expose sensitive data to cloud storage, backups, or the

keyboard cache. Additionally, due to their size and portability, mobile devices are easily lost or stolen

and an attacker may have physical access to a mobile device.

Trinity properly encrypts all sensitive locally stored data across all platforms. On macOS encrypted

data is managed by the Keychain, on Linux it is managed by the Secret Service API/libsecret, and on

Windows it is managed by Credential Vault. On iOS, trinity limits access to locally stored data with a

keychain security group, preventing other applications from accessing the encrypted data. On

Android, sensitive data was stored encrypted in a kdbx file.

Figure 1: Encrypted Trinity Keychain Data from a Jailbroken iPhone

The proper use of encryption and the use of key storage APIs provided by the operating systems

mitigates the risk of a malicious actor obtaining sensitive data store locally on a device.

Network Communication

End user devices, and mobile devices especially, communicate over a variety of networks, including

those potentially shared with malicious actors. This reality creates the opportunity for a malicious

actor to conduct a variety of network based attacks including man in the middle attacks where the

malicious actor is able to inspect and modify all network traffic from the application to any endpoint.

 9

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

All Trinity network communication is TLS encrypted on all platforms, which prevents interception and

man-in-the-middle attacks. To emulate a malicious node on the IOTA network the desktop Trinity

wallet was modified to disable TLS certificate checking and send all traffic through a local proxy.

Using this proxy, assessors modified responses from non-malicious endpoints in an attempt to

compromise the Trinity wallet. The Trinity wallet properly handled malicious traffic without issue and

switched nodes or repeated API requests until valid responses were returned.

This use of standard cryptographic protocols (i.e. TLS) that ensure the identity of the remote

endpoint and confidentiality of information passed over the network as well as proper error handling

and retransmission mitigates the risk of a malicious actor being able to intercept or modify network

traffic to affect the Trinity wallet.

Authentication and Authorization

Authentication and authorization are the foundation of most applications, and the Trinity wallet is no

different. In order to protect the user’s funds, the Trinity wallet forces a user to provide a wallet

password before being able to access the functionality of the application. If this authentication check

can be bypassed, a malicious actor could access user funds.

Trinity properly implements secure secret storage as well as secure coding practices that prevent

access to the wallet without the proper user supplied password. One low risk issue found with the

Trinity implementation of authentication is the way two factor authentication (2FA) works. Trinity

supports 2FA, but decrypts the user’s vault in memory before checking if 2FA is required (​L1​). This

effectively prevents a malicious actor with local access to Trinity and a user’s password from

accessing sensitive data, but would not prevent a sophisticated malicious actor who is able to extract

sensitive data from the Trinity processes’ memory using only the wallet password, even if 2FA is

enabled.

It is important to discuss the impossible task of securing an application running on a potentially

compromised computing system. If a malicious actor is able to execute code on the same system a

cryptocurrency wallet is running, no defensive mechanisms will be able to fully protect the sensitive

data used by the wallet. Trinity stands out as taking many procations to ensure that even in the event

of a system compromise, sensitive data is protected as much as possible. When using or storing

significant amounts of cryptocurrency, a separate known-good system or hardware wallet where the

private key never leaves the devices and requires physical interaction to confirm transactions are the

best ways to keep funds secure.

Trinity has the ability to interface with the Ledger hardware wallet. This device generates and stores

the seed as well as signs transactions on the device itself. With no key material on the user’s

computer to steal, a malicious actor would have to exploit the Ledger device itself in order to access

cryptographic secrets and ultimately the user’s funds.

 10

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Interaction with the Operating System and Electron Security

The Trinity wallet is designed to work on multiple operating systems and while this feature allows for

maximum user reach, it presents unique security concerns depending on the user’s operating system.

For example, while iOS forces applications to run in a sandbox, the Trinity Electron desktop

application does not have that same base level of security provided by the operating system.

The Electron framework presents unique challenges where a Cross-Site Scripting (XSS) vulnerability

can quickly become a Remote Code Execution (RCE) vulnerability . The IOTA Foundation 1

understands the risks of the Electron framework, and ​nodeIntegration​ and ​auxclick​ have been

disabled for all webviews in Trinity. Trinity also disables the ​eval​ function globally, and has

implemented a whitelist of allowed hostnames that can be opened as part of URLs by Trinity. To

complete the security lockdown of Trinity, sandboxing and context isolation could be enabled in

webPreferences​ (​L2​).

Trinity has the ability to launch and auto-populate transaction when a user clicks a link that begins

with ​iota://​. This functionality is called “deep-linking” and adds convenience but can also be a target

for phishing attacks. Additionally, any application can register as the handler for a deep-link protocol.

When enabling deep-links, Trinity appropriately warns users of the risks.

1 ​https://statuscode.ch/2017/11/from-markdown-to-rce-in-atom

 11

https://statuscode.ch/2017/11/from-markdown-to-rce-in-atom

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Figure 2: Deep-link Risk Warning

Environmental Resilience and Code Integrity

The Trinity wallet may be used on a computer or mobile device that has been previously

compromised by a malicious actor. In order to maximize user trust, the Trinity wallet should provide

reasonable resilience against a malicious actor with access to the operating system.

The desktop Trinity wallet utilizes the Electron framework, which packages application code into an

asar​ archive. This archive contains all the application code, and if modified by a malicious actor could

compromise the integrity of the wallet.

Additionally, the IOTA Foundation signs each binary release of the Trinity wallet. A summary of asar

integrity verification and binary signing across the desktop operating systems can be seen below

 12

https://github.com/electron/asar

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

OS Binary Signed? ASAR Integrity
Verification?

Windows Yes No

macOS Yes Yes

Linux Yes, external Yes, external

Table 1: Binary Signing and ASAR Verification Status

On Windows, the Trinity binary is signed however there is no ASAR integrity verification. What this

means in practice is that even if a user checks the signature status of Trinity manually and it is valid,

there is no guarantee that the application has not been modified (​I1​). It is important to note that this

issue is not unique to Trinity, but is an ​issue​ with all applications created using the Electron

framework.

Figure 3: Binary Signing on Windows

On macOS, any modification to the asar will cause the application to fail to launch. This code signing

enforcement is built into the operating system. However, if a malicious actor can completely replace

Trinity with an unsigned malicious version, macOS will not prevent it from launching.

 13

https://github.com/electron/asar/issues/123

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Figure 4: Binary Signing Enforcement on macOS

The Linux Trinity binary is signed using a GPG signature file, which must be externally verified by the

user after importing the IOTA Foundation GPG key. Trinity is distributed as an AppImage on Linux,

which has the ability to include an embedded signature. At the time of this report, Trinity did not

include an embedded signature, but the IOTA Foundation was investigating adding one (​I2​).

Figure 5: External Binary Signing on Linux

Trinity on mobile operating systems is secured in part by the sandboxing and permission systems of

both iOS and Android. However, on jailbroken or rooted phones respectively, these security

boundaries are no longer effective. Trinity appropriately warns the user when run on a jailbroken or

rooted device that security may be negatively impacted.

 14

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Figure 6: Security Alert on a Jailbroken iPhone

Cryptography

The Trinity wallet holds a user’s private key, which in turn allows full access to a user’s IOTA tokens.

The proper generation (to ensure a malicious actor cannot generate the same private key as a

legitimate user on a separate device), and storage of private keys is vital to the success of the Trinity

wallet.

Trinity uses modern cryptography, specifically the Argon2i algorithm for password hashing and

AES-GCM for vault encryption. When creating a new seed, Trinity uses a cryptographically sound

pseudo-random number generator (PRNG) . 2

An informational level bug was found in the ​randomBytes​ function that when called without a ​max

value, there is a comparison of a number against ​NaN​ which always will evaluate false and produces

the intended behavior but may be confusing (​I4​).

Updates to Trinity are conducted over TLS, and old versions are blacklisted to help push users to

newer, potentially patched versions.

2 ​https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues

 15

https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Trinity makes explicit calls to the garbage collector after cryptographically sensitive data is no longer

needed, which clears it from memory. This practice limits the exposure of sensitive data and makes it

more difficult for a malicious actor to scrape program memory for a user’s seed, password, or other

sensitive data.

User Interface Security

A malicious actor with access to a device where the Trinity wallet is running should be limited from

extracting sensitive data from the user interface.

Trinity properly masks password input fields across all platforms. Additionally, Trinity pushes users to

store their seed in a SeedVault (kdbx file), which uses AES-GCM to protect the seed. This “secure

default” behavior is a positive security conscious user interface design choice.

An informational issue on iOS is the ability for a user to screenshot their wallet’s seed. If this image is

transferred to an insecure location (e.g. compromised icloud, Google photos, etc) the user’s funds

would be at risk (​I3​). On Android, screenshots were prevented when using normal functionality of the

phone itself or via an ​adb​ shell as the root user.

Repackaging Attacks

The Trinity wallet is distributed as both source code and a compiled binary. This presents the

opportunity for a malicious actor to copy the application, add malicious code, and present it as

authentic to users.

The IOTA Foundation distributes Trinity from ​https://trinity.iota.org​, which links to binary releases

hosted on github.com. Both sites use TLS to verify their authenticity and encrypt traffic. An

informational level issue with the distribution of Trinity is the lack of obvious checksums, signing keys,

or verification steps near the binary download buttons (​I5​). These items exist, and can be found by

searching the GitHub releases page and the trinity documentation, but presenting them up front with

the binaries will greatly increase the number of users that verify their binary downloads.

The IOTA Foundation uses automated build systems which incorporate ​Snyk​ and ​Dependabot​. These

products check Trinity software dependencies for vulnerabilities and keep them up to date. These

tools help mitigate the risk of a “software supply chain” attack.

Ultimately, a malicious actor can easily copy the Trinity source code, add malicious code, and

distribute an application that looks identical to the official Trinity release. The only way to prevent

such an attack is through user education. Users should be warned that trinity.iota.org is the only

official source for Trinity, and any other source should not be trusted.

Insiders at the IOTA Foundation could potentially be a threat if a single person could push an update

to end users. Currently, the process to push a release of Trinity involves opening a pull request on

Github which must be approved by another person before it can be merged and a build triggered. In

 16

https://trinity.iota.org/
https://snyk.io/
https://dependabot.com/

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

the event this processes is circumvented, the Trinity development team is monitoring Github releases

and would be able to take immediate action in the event of an unauthorized build being posted.

The use of automated build systems with published cryptographic material (hashes, signatures, and

public keys), dependency management, and user education help mitigate the risk of repackaging

attacks.

 17

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Vulnerability Overview

The following vulnerabilities were found within each risk level. It is important to note that the total

number of vulnerabilities is not a factor in determining risk level. Risk level depends upon the severity

of the vulnerabilities found.

Vulnerability ID - Description Risk Level

L1 - 2FA enforced after vault decryption Low

L2 - Sandboxing and Context Isolation not enabled in Web Preferences Low

I1 - ASAR integrity is not verified on Windows Informational

I2 - Linux AppImage does not include embedded GPG signature Informational

I3 - iOS application allows screenshots Informational

I4 - ​randomBytes​ called without ​max​ value compares against ​NaN Informational

I5 - Checksums, GPG signature, and GPG key not easily available with binary
downloads Informational

 18

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

Vulnerability Findings and Recommendations

L1 ​- 2FA Enforced After Vault Decryption

Risk Level: ​__​ Low

Description

When a user enables two factor authentication (2FA) in Trinity, their 2FA key is stored inside the

encrypted vault to protect it. However, in order to check the 2FA code, the vault must be decrypted.

Thus, the 2FA protection blocks the Trinity user interface from going forward without the correct

2FA code, but the user’s vault is decrypted regardless of a correct 2FA being provided. This presents

an issue of how to implement 2FA without a trusted third party having custody of a user’s seed, which

is not a good solution. A hardware device or mobile application that can implement universal second

factor (U2F) which uses challenge-response authentication using public key cryptography would be 3

a more secure solution than the current time based one time password 2FA used in Trinity. Is is

important to note that the current 2FA implementation does provide security against an

unsophisticated attacker that has gained access to Trinity and a user’s password, but not a user’s 2FA

device.

Remediation

Users should be aware of the limitations of the current 2FA implementation in Trinity. The IOTA

Foundation is actively investigating U2F as a 2FA solution for future versions of Trinity and for the

time being has removed 2FA until a more secure solution is found.

3 https://en.wikipedia.org/wiki/Universal_2nd_Factor

 19

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

L2 ​- Sandboxing and Context Isolation not enabled in Web Preferences

Risk Level: ​__​ Low

Description

Trinity desktop is an Electron framework application, which uses a chromium based browser to

render user interface elements. This framework can expose unique vulnerabilities usually limited to

web applications, and therefore has options to limit the capabilities of application windows. Trinity

properly implements most of the available restrictions available in the Electron framework, but could

increase its security posture by adding the following to ​webPreferences​:

sandbox: true 4

contextIsolation: true
5

Remediation

The additional security measures suggested above are designed to handle untrusted code, and while

Trinity currently does not load any untrusted resources, if these options can be added without

affecting the user experience they will further increase the security of the Trinity desktop wallet in

the event a ​BrowserWindow​ is compromised.

4 ​https://electronjs.org/docs/api/sandbox-option
5 ​https://electronjs.org/docs/tutorial/security#isolation-for-untrusted-content

 20

https://electronjs.org/docs/api/sandbox-option
https://electronjs.org/docs/tutorial/security#isolation-for-untrusted-content

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

I1​ - ASAR integrity is not verified on Windows

Risk Level: ​ ​__​ Informational

Description

This is an issue for all Windows applications built using the Electron framework , and not due to any 6

flaw in the code of the Trinity wallet. On windows, even when the Trinity wallet application binary is

signed, a malicious user can modify the application’s asar archive to add malicious code without

affecting the binary signature or its ability to run.

Remediation

Users should be aware that application signing does not protect the Trinity asar code archive on

Windows. Users should take care to never use Trinity with significant amounts of IOTA on a

computer that could potentially be compromised, regardless of code integrity checks. The IOTA

Foundation is monitoring this issue and will implement any changes necessary to verify asar integrity

on Windows when the issue with Electron is resolved.

6 ​https://github.com/electron/asar/issues/123

 21

https://github.com/electron/asar/issues/123

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

I2​ - Linux AppImage does not include embedded GPG signature

Risk Level: ​ ​__​ Informational

Description

Trinity is distributed to Linux users as an AppImage which is a single executable that contains all the 7

code required to run Trinity. This executable is signed by the IOTA Foundation using a GPG key and

external signature file. AppImages have the ability to embed signatures which streamlines the binary 8

verification process for the end user, and can optionally be validated every time the application is run

if the user is running ​appimaged​.

Remediation

The IOTA Foundation has incorporated the embedded signing of AppImage binaries into their

automated build infrastructure, but due to an issue with AppImage signing it is not enabled yet. 9

7 ​https://appimage.org/
8 ​https://docs.appimage.org/packaging-guide/signatures.html
9 ​https://github.com/AppImage/AppImageKit/issues/949

 22

https://appimage.org/
https://docs.appimage.org/packaging-guide/signatures.html
https://github.com/AppImage/AppImageKit/issues/949

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

I3​ - iOS application allows screenshots

Risk Level: ​ ​__​ Informational

Description

Trinity on iOS allows users to capture screenshots of their seed. An uninformed user may take a

screenshot of their seed which lacks the protections offered by the Trinity iOS app. This screenshot

may also be automatically uploaded to a user’s iCloud or similar service, which if compromised would

compromise the user’s IOTA wallet.

Remediation

The IOTA Foundation is investigating possible user interface design changes which make it more

difficult to screenshot a user’s seed on iOS.

 23

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

I4​ - ​randomBytes ​ called without ​max ​ value compares against ​NaN

Risk Level: ​ ​__​ Informational

Description

The ​randomBytes​ function when called without a ​max​ value compares each random byte against the

numeric type ​NaN​ (Not a Number). This comparison always returns False, which produces the

intended behavior of the function, but may be confusing for developers.

/**

 * Create random byte array

 * @param {number} Length - Random number array length.

 * @param {number} Max - Random byte max range

 * @returns {array} Random number array

 */

export​ ​const​ randomBytes = (size, max) => {
if​ (size !== ​parseInt​(size, 10) || size < 0) {

 ​return​ ​false​;
}

const​ rawBytes = ​new​ ​Uint8Array​(size);

const​ bytes = global.crypto.getRandomValues(rawBytes);

for​ (​let​ i = 0; i < bytes.length; i++) {
 ​while​ (bytes[i] >= 256 - 256 % max) { ​// Issue here
 bytes[i] = randomBytes(1, max)[0];

 }

}

return​ ​Array​.from(bytes);
};

Remediation

Setting a default value for ​max​ as 256 would not change the functionality of the function and add

clarity. This fix has been implemented. 10

10 ​https://github.com/iotaledger/trinity-wallet/commit/0438753a345a1fe4061e800fd1b4b30a174469cc

 24

https://github.com/iotaledger/trinity-wallet/commit/0438753a345a1fe4061e800fd1b4b30a174469cc

SIXGEN, Inc. | IOTA Foundation Trinity Wallet Security Assessment

I5​ - Checksums, GPG signature, and GPG key not easily available with binary

downloads

Risk Level: ​ ​__​ Informational

Description

Trinity binaries are available for download at ​https://trinity.iota.org​. On this page, there are no

checksums, GPG signature files, or the IOTA Foundation GPG key. All of these cryptographic items

are available on the GitHub releases page, but are not easy for users to find. Additionally, instructions

on how to verify the Trinity binary downloads for each operating system are not provided on the

same page as the downloads.

Remediation

Redesign the Trinity download page to clearly list the binary checksums, as well as any cryptographic

items needed to verify the integrity of Trinity. Additionally, provide instructions to users for each

major operating system Trinity supports on how to verify the Trinity binary. The IOTA foundation has

put a link adjacent to the download buttons that clearly explains how to verify the Trinity wallet 11

downloads across all desktop operating systems.

11 ​https://docs.iota.org/docs/trinity/0.1/how-to-guides/verify-trinity-desktop

 25

https://trinity.iota.org/
https://docs.iota.org/docs/trinity/0.1/how-to-guides/verify-trinity-desktop

