
 

RandomX 
Security	Assessment 
May	28th,	2019 
 

 
 
 
 
 
 
 
 
Prepared	For:  
Sam	Williams		|			Arweave  
sam@arweave.org 
 
Howard	Chu		|			Monero 
hyc@symas.com 
 
Prepared	By:  
Paul	Kehrer		|			Trail	of	Bits 
paul.kehrer@trailofbits.com 
 
Will	Song		|			Trail	of	Bits 
will.song@trailofbits.com 
 
Evan	Sultanik		|			Trail	of	Bits 
evan.sultanik@trailofbits.com   

 

mailto:sam@arweave.org
mailto:hyc@symas.com
mailto:paul.kehrer@trailofbits.com
mailto:will.song@trailofbits.com
mailto:evan.sultanik@trailofbits.com


 
Executive	Summary 

Project	Dashboard 

Engagement	Goals 
Cryptography 
General	Security 

Coverage 
Cryptographic	Architecture 
General	Security	of	the	Implementation 

Recommendations	Summary 
Short	Term 
Long	Term 

Findings	Summary 
1.	Single	AES	rounds	used	in	AesGenerator 
2.	Insufficient	Testing	and	Validation	of	VM	Correctness 
3.	RandomX	configurable	parameters	are	brittle 

A.	Vulnerability	Classifications 

B.	Code	Quality 

C.	Randomness	Analysis 

D.	Bias	in	SuperscalarHash 

E.	Parameter	Selection 
Instruction	Frequency 

F.	Recommended	Parameters	for	Arweave 
   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	1 

 



Executive	Summary 
From	May	20	th		to	June	3	rd		2019	Arweave	engaged	Trail	of	Bits	to	assess	the	RandomX 
proof-of-work	(PoW)	algorithm	implemented	in	C++.	The		codebase		was	assessed	as	of	git 
commit		378d5de	,	corresponding	to		release 1.0.2	.	This	assessment	was	conducted	using	two 
engineers	over	two	person-weeks. 
 
During	the	week	of	May 20th,	2019,	Trail	of	Bits	began	its	assessment	of	the	RandomX 
algorithm,	using	a	single	engineer	and	focusing	on	the	identification	of	major	cryptographic 
flaws.	During	the	following	week	of	May	27th,	Trail	of	Bits	expanded	its	assessment	to 
include	non-cryptographic	attacks,	also	using		a	single	engineer. 
 
The	RandomX	algorithm	has	several	complex	and	novel	constructions	that	make	a	single 
week	of	review	insufficient	for	a	complete	cryptographic	analysis	of	the	system.	Trail	of	Bits 
focused	its	efforts	on	confirming	that	the	use	of	AES	in	the	algorithm	was	safe,	determining 
if	initial	entropy	input	to	the	system	was	preserved	throughout	the	transformations,	and 
determining	safe	alternate	configuration	values	for	Arweave’s	use. 
 
We	found	one	low-severity	issue	with	the	use	of	single	AES	rounds	in	RandomX	not 
providing	full	diffusion	of	input	bits	across	the	output.	We	also	documented	concerns 
around	bias	in	the	output	of	SuperscalarHash	when	used	in	conjunction	with	non-default 
parameters	in		Appendix	D	.	A	survey	of	configuration	parameters	and	which	ones	are	safe 
to	change	is	included	in		Appendix	E	.		Appendix	F		recommends	changes	for	Arweave. 
 
The	RandomX	codebase	lacks	sufficient	unit	and	regression	tests	to	validate	virtual 
machine (VM)	correctness.	The	security	implications	of	this	omission	depends	on	the	way 
RandomX	is	adopted,	as	well	as	the	way	RandomX	is	maintained	in	the	future.	If	this 
implementation	of	RandomX	is	used	for	mining	a	PoW	blockchain,	then	an	error	in	the	VM 
implementation	(	e.g.,	 a	deviation	from	the	specification)	will	be	irrelevant	as	long	as	the 
output	of	the	VM	is	deterministic.	However,	if	this	implementation	is	ever	updated	in	such	a 
way	that	the	VM	semantics	change,		or		if	a	cleanroom	implementation	of	RandomX	is	ever 
used	to	mine	blocks	on	the	same	blockchain,	then	this	can	lead	to	consensus	errors	and 
forking.	While	no	deviations	between	the	VM	implementation	and	the	specification	were 
discovered,	the	scope	of	this	engagement	was	insufficient	to	validate	that	no	latent	errors 
exist. 
 
In	addition	to	the	security	findings,	we	discuss	code-quality	issues	not	related	to	any 
particular	vulnerability	in		Appendix	B	.	One	such	issue	was	related	to	undefined	behavior	in 
a	test	edge	case.	An	analysis	of	the	randomness	of	RandomX	is	provided	in		Appendix C	. 
 
RandomX	is	an	intriguing,	novel	hash	function	specifically	designed	for	PoW	blockchains.	It 
should	not	be	used	as	a	general	purpose	keyed	cryptographic	hash.	Trail	of	Bits 
recommends	a	more	thorough	analysis	of	the	cryptographic	fundamentals	of	the	system	as 
well	as	improved	unit	and	regression	testing	for	VM	correctness.	This	should	provide 
additional	confidence	that	no	single	step	bias	can	be	propagated	across	multiple	steps	to 
allow	unwanted	optimizations.   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	2 

 

https://github.com/tevador/RandomX
https://github.com/tevador/RandomX/tree/1.0.2


Project	Dashboard 
Application	Summary 

Name  RandomX 

Type  Proof	of	work	algorithm 

Platforms  Cross-Platform	(C++) 
 
Engagement	Summary 

Dates  May	20	th		to	June	3	rd		2019 

Method  Whitebox 

Consultants	Engaged  2 

Level	of	Effort  2	person-weeks 
 
Vulnerability	Summary  

Total	High-Severity	Issues     

Total	Medium-Severity	Issues     

Total	Low-Severity	Issues  2  ◼◼ 

Total	Informational-Severity	Issues  1  ◼ 

Total	Undetermined-Severity	Issues     

Total  3    
 
Category	Breakdown 

Configuration  1  ◼ 

Cryptography  1  ◼ 

Data	Validation  1  ◼ 

Total  3   
   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	3 

 



Engagement	Goals 
RandomX	is	a	proof-of-work	hashing	algorithm	primarily	developed	for	use	by	the		Monero 
blockchain.	Its	design	goal	is	to	be	optimized	for	general	purpose	CPUs	(rather	than	ASICs 
or	GPU-based	execution)	while	remaining	a	secure	algorithm.	To	accomplish	this,	RandomX 
uses	a	variety	of	techniques,	including	aggressive	use	of	native	AES	instructions	for	data 
transformation,	randomized	execution	on	a	virtual	machine,	memory-hard	hashing 
functions,	and	more.	During	our	analysis	we	prioritized	the	following	areas: 

Cryptography 
● Are	there	methods	by	which	the	algorithm	could	be	significantly	accelerated? 
● Is	the	algorithm’s	use	of	AES	rounds	safe? 
● What	is	a	safe	set	of	parameters	to	use? 

General	Security 
● Are	there	inputs	that	can	cause	the	algorithm	to	crash? 
● Is	there	undefined	behavior	in	the	implementation? 
● Is	the	implementation	deterministic	and	guaranteed	to	terminate? 
● Does	the	implementation	adhere	to	the	RandomX	specification? 

   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	4 

 

https://www.getmonero.org/


Coverage 
In	this	section	we	highlight	some	of	the	analysis	coverage	we	achieved	during	this	effort, 
relative	to	the	areas	specified	by	Arweave	in	our	engagement	goals. 

Cryptographic	Architecture 
● The	design	and	specification	documentation	was	reviewed	to	fully	understand	the 

design	goals	of	the	algorithm. 
● The	random	program	generation	code	was	reviewed	to	confirm	that	the	generated 

programs	were	statistically	random. 
● The	security	properties	of	the	AesGenerator	and	AesHash	constructions	were 

scrutinized	to	determine	whether	their	unusual	use	of	AES	was	secure. 
● Trail	of	Bits	also	ran	the	complete	algorithm	on	many	test	inputs	and	examined	the 

results	for	their	randomness	properties,	as	well	as	examining	the	randomness 
within	the	context	of	VM	execution.	A	summary	of	our	efforts	can	be	found	in 
Appendix	B	. 

General	Security	of	the	Implementation 
● Constants	(	e.g.	, related	to	cryptographic	algorithms	like	AES)	were	compared	against 

their	associated	specifications. 
● Third-party	components	of	the	system	(	e.g.	, Argon2)	were	diffed	against	their	latest 

versions	to	check	for	missing	upstream	bugfixes	and	security	patches. 
● The	entire	codebase	was	manually	inspected	for	logical	errors,	undefined	behavior, 

denial	of	service,	and	memory-corruption	vulnerabilities. 
 
RandomX	neither	interacts	with	the	network	nor	the	filesystem,	nor	does	it	parse	complex 
user	input.	Therefore,	its	attack	surface	is	relatively	small. 
   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	5 

 



Recommendations	Summary 
This	section	aggregates	all	the	recommendations	made	during	the	engagement.	Short-term 
recommendations	address	the	immediate	causes	of	issues.	Long-term	recommendations 
pertain	to	the	development	process	and	long-term	design	goals. 

Short	Term 
✓ Increase	the	number	of	rounds	of	AES	used	in	AesGenerator.		AesGenerator	uses 

a	single	round	of	AES	to	create	a	pseudorandom	stream.	A	minimum	of	two	rounds 
is	needed	for	diffusion.	Insufficient	mixing	of	bits	due	to	single-round	operation 
could	allow	an	attacker,	in	combination	with	other	biases,	to	craft	inputs	that	could 
zero	bits	in	the	output.	This	issue	has	subsequently	been	resolved	in	the	code	base 
with	a	new		AesGenerator4R		that	performs	4	rounds.	(	TOB-ARW-001	) 

❏ Increase	test	coverage	of	the	VM	semantics	and	implement	regression	tests	to 
ensure	the	consistency	of	RandomX	output.		These	should	validate	that	the 
implementation	conforms	to	the	specification.	Without	such	assurances,	a 
cleanroom	implementation	of	the	algorithm	might	deviate	from	the	output	of	the 
RandomX	reference	implementation.	Also,	future	changes	to	the	implementation 
might	cause	changes	in	the	VM’s	behavior	and	therefore	result	in	a	blockchain	fork. 
(	TOB-ARW-002	) 

❏ Add	additional	comments	to	dangerous	configuration	variables.		Several 
configuration	options	may	weaken	the	security	of	the	system	or	compromise	its 
ASIC/GPU	resistance.	These	options	should	be	clearly	marked	as	dangerous	to	make 
it	easier	for	other	blockchains	to	adopt	RandomX	without	fear	of	compromising	its 
security.	(	TOB-ARW-003	) 

Long	Term 
❏ Formally	validate	the	VM	semantics	against	a	machine-readable	specification. 

This	will	provide	additional	assurances	and	protect	against	consensus	issues. 
(	TOB-ARW-002	) 

❏ Research	ways	to	improve	SuperscalarHash’s	output	distribution. 
Improvements	in	this	will	negate	the	need	for			carefully	tuned	parameters	for	initial 
register	values	and	Dataset	size,	and	make	the	algorithm	more	resistant	to 
problems	if	and	when	other	blockchains	choose	to	use	it	with	altered	initial	values. 
(	Appendix	D	) 

❏ Remove	or	hide	dangerous	configuration	variables.		Many	of	RandomX’s 
configurable	values	are	not	desirable	to	change	when	altering	the	parameters	for	a 
different	blockchain.	Consider	removing	them	as	configuration	options	entirely	or 
moving	their	values	to	a	separate	header	to	emphasize	the	importance	of	not 
changing	them	without	thorough	investigation.	(	TOB-ARW-003	) 

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	6 

 



 

Findings	Summary 
#  Title  Type  Severity 

1  Single	AES	rounds	used	in	AesGenerator  Cryptography  Low 

2  Insufficient	Testing	and	Validation	of	VM 
Correctness 

Data	Validation  Low 

3  RandomX	configurable	parameters	are 
brittle 

Configuration  Informational 

 
   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	7 

 



1.	Single	AES	rounds	used	in	AesGenerator	
Severity:	Low Difficulty:	High 
Type:	Cryptography Finding	ID:	TOB-ARW-001 
Target:		RandomX	
 
Description 
The	AES	encryptions	described	by	the	RandomX	specification	refer	to	a	single	round	of	AES, 
namely:	ShiftRows,	SubBytes,	MixColumns,	and	AddRoundKey.	RandomX	doesn’t	depend 
on	the	encryption	of	AES	for	its	security,	but	rather	as	a	CPU-biased	fast	transformation 
that	provides	diffusion	across	the	output.	However,	diffusion	of	bits	through	the	output	is 
dependent	upon	the	number	of	rounds	of	AES.	A	single	round	is	insufficient	to	fully	mix.  
 
The	severity	of	this	finding	is	“low”	because	taking	advantage	of	this	lack	of	diffusion 
requires	finding	additional	bias	in	almost	every	step	of	the	algorithm	and	crafting	an	input 
that	can	propagate	that	bias	through	the	entire	chain. 
 
Exploit	Scenario 
Insufficient	mixing	of	bits	due	to	single	round	operation	could	allow	an	attacker,	in 
combination	with	other	biases,	to	craft	inputs	that	could	zero	bits	in	the	output.	This	would 
potentially	allow	deliberate	generation	of	simpler	programs	to	simplify	ASIC	design	or 
accelerate	execution. 
 
Recommendation 
Use	additional	rounds	of	AES	for	these	transformations	to	ensure	that	input	diffuses	across 
the	entire	output	range.	Increase	to	a	minimum	of	two,	but	potentially	four	if	the	additional 
overhead	is	tolerable.	As	Joan	Daemen	and	Vincent	Rijmen,	the	authors	of	AES,	wrote	in		The 
Design	of	Rijndael		(Section	3.5): 
 

Two	rounds	of	Rijndael	provide	'full	diffusion'	in	the	following	sense:	every	state	bit 
depends	on	all	state	bits	two	rounds	ago,	or	a	change	in	one	state	bit	is	likely	to 
affect	half	of	the	state	bits	after	two	rounds.	Adding	four	rounds	can	be	seen	as 
adding	a	'full	diffusion	step'	at	the	beginning	and	at	the	end	of	the	cipher.	The	high 
diffusion	of	the	Rijndael	round	transformation	is	thanks	to	its	uniform	structure	that 
operates	on	all	state	bits. 

 
Subsequent	to	the	disclosure	of	this	finding,	the	RandomX	team	developed	a	new 
AesGenerator4R		function	that	performs	four	rounds.	This	functionality	has	been	merged 
into	RandomX	as	of		pull	request 46	.	Using	four	rounds	as	part	of	program	generation 
resolves	the	concerns	documented	in	this	issue. 
 
References 

● The	Design	of	Rijndael		by	Joan	Daemen	and	Vincent	Rijmen,	ISBN:	
978-3540425809	

● ./src/intrin_portable.h#124	

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	8 

 

https://github.com/tevador/RandomX/pull/46


● ./src/soft_aes.cpp#330	 	

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	9 

 



2.	Insu�ficient	Testing	and	Validation	of	VM	Correctness	
Severity:	Low Difficulty:	Low 
Type:	Data	Validation Finding	ID:	TOB-ARW-002 
Target:		RandomX	
 
Description 
The	RandomX	codebase	lacks	test	coverage	validating	the	semantics	of	the	virtual 
machine (VM).	Trail	of	Bits	devoted	half	of	this	engagement	(one	person-week)	to	assessing 
the	general	security	properties	of	the	algorithm	implementation.	However,	this	effort	was 
insufficient	to	validate	that	the	VM	implementation	is	without	semantic	errors. 
 
The	severity	of	this	finding	is	“low”	because	the	correctness	of	RandomX	is	irrelevant	as 
long	as:	(1) its	output	is	deterministic,	(2) its	output	is	cryptographically	random,	and	(3) its 
reference	implementation	is	the	sole	one	used	for	mining	in	a	blockchain.	However,	any 
discrepancy	between	the	specification	and	the	reference	implementation	can	lead	to 
consensus	issues	and	forks	in	the	blockchain. 
 
Exploit	Scenario 
A	third-party	cleanroom	implementation	of	the	RandomX	specification	becomes	popular 
on	a	blockchain	utilizing	RandomX	for	proof-of-work.	The	blockchain	will	fork—potentially 
at	some	distant	point	in	the	past—if	there	is	even	a	subtle	semantic	difference	between	the 
miners’	implementations. 
 
Recommendation 
Short	term,	increase	test	coverage	of	the	VM	semantics.	Also,	implement	regression	tests	to 
ensure	the	consistency	of	RandomX	output. 
 
Long	term,	consider	formally	validating	the	VM	semantics	against	a	machine-readable 
specification.   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	10 

 



3.	RandomX	configurable	parameters	are	brittle	
Severity:	Informational Difficulty:	Undetermined 
Type:	Configuration Finding	ID:	TOB-ARW-003 
Target:		RandomX	
 
Description 
RandomX	contains	47	configurable	parameters,	including	flags	for	parallelization,	memory 
consumption,	and	iterations	of	the	initial	KDF,	memory	size	of	the	dataset,	sizing	of	three 
levels	of	cache	for	the	virtual	CPU,	the	size	and	iteration	count	of	programs	executed	on 
the	VM,	and	cache	access/latency.	The	default	parameters	have	been	chosen	to	maximize 
CPU	advantage	for	the	algorithm.	However,	alternate	blockchains	interested	in	using 
RandomX	are	required	to	make	different	choices	for	some	subset	of	values	due	to	the 
threat	of	51%	attacks.	These	choices	must	be	made	without	clear	guidance	on	what	knobs 
should	be	twisted	and	which	ones	may	compromise	the	advantages	offered	by	the 
algorithm.	This	brittleness	will	potentially	impede	third	party	adoption. 
 
Exploit	Scenario 
Another	blockchain	chooses	to	utilize	RandomX	and	selects	alternate	parameters	with 
extremely	small	values	for	L1/L2/L3	scratchpad.	This	choice	immediately	impacts	the 
algorithm’s	CPU	advantage	negatively,	potentially	negating	the	resistance	to	GPU/ASIC	that 
RandomX	offers.  
 
Recommendation 
Short	term,	add	comments	next	to	the	more	dangerous	configuration	variables	that	advise 
potential	users	of	what	changing	them	can	mean.	Each	parameter	is	discussed	in	greater 
detail	in		Appendix	E	. 
 
Long	term,	remove	or	hide	more	dangerous	configuration	options	entirely. 
   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	11 

 



A.	Vulnerability	Classifications 
Vulnerability	Classes 

Class  Description 

Access	Controls  Related	to	authorization	of	users	and	assessment	of	rights 

Auditing	and	Logging  Related	to	auditing	of	actions	or	logging	of	problems 

Authentication  Related	to	the	identification	of	users 

Configuration  Related	to	security	configurations	of	servers,	devices	or	software 

Cryptography  Related	to	protecting	the	privacy	or	integrity	of	data 

Data	Exposure  Related	to	unintended	exposure	of	sensitive	information 

Data	Validation  Related	to	improper	reliance	on	the	structure	or	values	of	data 

Denial	of	Service  Related	to	causing	system	failure 

Error	Reporting  Related	to	the	reporting	of	error	conditions	in	a	secure	fashion 

Patching  Related	to	keeping	software	up	to	date 

Session	Management  Related	to	the	identification	of	authenticated	users 

Timing  Related	to	race	conditions,	locking	or	order	of	operations 

Undefined	Behavior  Related	to	undefined	behavior	triggered	by	the	program 

 
 

Severity	Categories 

Severity  Description 

Informational  The	issue	does	not	pose	an	immediate	risk,	but	is	relevant	to	security 
best	practices	or	Defense	in	Depth 

Undetermined  The	extent	of	the	risk	was	not	determined	during	this	engagement 

Low  The	risk	is	relatively	small	or	is	not	a	risk	the	customer	has	indicated	is 
important 

Medium  Individual	user’s	information	is	at	risk,	exploitation	would	be	bad	for 
client’s	reputation,	moderate	financial	impact,	possible	legal 

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	12 

 



implications	for	client 

High  Large	numbers	of	users,	very	bad	for	client’s	reputation,	or	serious 
legal	or	financial	implications 

 

Difficulty	Levels 

Difficulty  Description 

Undetermined  The	difficulty	of	exploit	was	not	determined	during	this	engagement 

Low  Commonly	exploited,	public	tools	exist	or	can	be	scripted	that	exploit 
this	flaw 

Medium  Attackers	must	write	an	exploit,	or	need	an	in-depth	knowledge	of	a 
complex	system 

High  The	attacker	must	have	privileged	insider	access	to	the	system,	may 
need	to	know	extremely	complex	technical	details	or	must	discover 
other	weaknesses	in	order	to	exploit	this	issue 

   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	13 

 



B.	Code	Quality 
The	below	issues	do	not	pose	a	direct	security	risk	to	RandomX,	but	can	still	be 
security-relevant	and	should	be	addressed. 
 

● The		dataset		variable	passed	to	the		randomx_create_vm		function	on		line 211	of 
src/tests/benchmark.cpp		will	be	uninitialized	if		--mine		is	not	passed	as	a 
command	line	argument.	This	does	not	appear	to	affect	the	validity	of	the	tests, 
though,	since		dataset		is	not	used	in	light	verification	mode. 
 

● It	is	generally	considered	good	practice	to	include	braces	around	every	if	block,	even 
if	the	block	contains	only	a	single	line	of	code.	This	practice	can	help	prevent 
vulnerabilities	like	Apple’s		infamous	“goto	fail”	bug	. 
 

● The	codebase	uses	namespaces	containing		constexpr	int	s	for	constant 
enumerations.	For	example,	in		instruction.hpp	: 

 
While	this	is	preferable	to	traditional	C++		enum	s,	RandomX	should	consider	using 
enum	class		instead,	wherever	possible.	Not	only	will	this	retain	all	of	the	same 
compiler	optimizations	provided	by		constexpr	int	,	but	it	enables	the	addition	of 
convenience	functions,	can	catch	certain	types	of	bugs	related	to	invalid	enum 
values,	and	enables	enhanced		switch		compiler	diagnostics.	Alternatively,	a	standard 
enum		can	be	wrapped	in	a	class	instead	of	a	namespace.	This	will	implicitly	require 
constexpr		values.   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	14 

 

https://github.com/tevador/RandomX/blob/1.0.2/src/tests/benchmark.cpp#L211
https://github.com/tevador/RandomX/blob/1.0.2/src/tests/benchmark.cpp#L211
https://www.imperialviolet.org/2014/02/22/applebug.html


C.	Randomness	Analysis 
The	final	output	of	RandomX	is	an	invocation	of	the		blake2b		hashing	function.	Blake2	is	a 
widely	respected	hash	function	with		multiple			papers		analyzing	its	security	properties	as	a 
cryptographic	hash.	To	learn	more	about	the	randomness	of	RandomX	we	instead	look	at 
the	source	of	entropy	provided	to	the	final	hash	to	gauge	whether	or	not	the	behavior	prior 
to	blake2b	is	random. 
 
Our	analysis	of	the	generation	of	initial	scratchpads	and	VM	instructions	suggests	that	they 
are	sufficiently	random.	The	execution	of	the	VM	will	modify	the	register	file	and 
scratchpad	according	to	the	randomly	generated	instructions	to	produce	a	random	state 
that	is	hard	to	pre-compute.	This	is	then	fed	into	the		AesHash		function,	which	perturbs	the 
output	utilizing	repeated	single-round	AES	operations	with	round	keys	obtained	from	the 
initial	state.	To	ensure	more	complete	diffusion	of	the	bits	throughout	the	output,	Trail	of 
Bits	recommends	increasing	the	number	of	rounds	(	TOB-ARW-001	). 
 
Trail	of	Bits	ran	statistical	tests	against	AesGenerator	by	performing	over	500	million 
executions	and	graphing	the	output.	Figure	1	displays	the	frequency	of	byte	occurrences 
with	respect	to	byte	value. 
 

 
Figure	1:			Byte	frequency	of	AesGenerator	given	random	seeds 

 
Zooming	in	to	see	the	variance	at	the	top	of	the	graph	(Figure	2)	we	can	see	that	the 
maximum	variance	between	the	most	and	least	represented	set	bit	is	less	than	0.02%,	with 
an	average	near	134.2	million	and	a	deviation	of	around	23	thousand	from	the	average. 
 

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	15 

 

http://blake2.net/
https://eprint.iacr.org/2013/467.pdf
https://eprint.iacr.org/2016/827.pdf


 
Figure	2:			Zoomed	in	byte	frequency	of	AesGenerator	output 

 
The	distribution	of	output	is	within	the	bounds	expected.	Note	that	while	checking	the 
distribution	is	important,	a	secure	PRNG	has	many	other	requirements.	This	algorithm 
should	not	be	treated	as	a	secure	PRNG	as	the	state	is	easily	reversible,	but	this	is	not	an 
issue	for	RandomX	since	the	initial	state	is	publicly	known. 
 
Trail	of	Bits	also	verified	that	the	default	instruction	frequency	constants	matched	what 
was	generated	in	over	500	million	executions.	The	results	appear	in	Figure	3. 
 

 
Figure	3:			VM	instruction	frequencies   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	16 

 



Comparing	to	the	expected	values,	per	256	instructions,	we	see	the	following	ratios	that 
continue	to	converge	as	additional	executions	are	performed. 
 

Instruction  Expected	(Per	256)  Observed  %	Difference 

IADD_RS	 25  24.99956  0.04% 

IADD_M	 7  7.00021  0.02% 

ISUB_R	 16  16.00041  0.04% 

ISUB_M	 7  7.00032  0.03% 

IMUL_R	 16  16.00131  0.13% 

IMUL_M	 4  4.00007  0.01% 

IMULH_R	 4  4.00015  0.01% 

IMULH_M	 1  0.99996  0.00% 

ISMULH_R	 4  4.00016  0.02% 

ISMULH_M	 1  0.99988  0.01% 

IMUL_RCP	 8  7.99997  0.00% 

INEG_R	 2  2.00006  0.01% 

IXOR_R	 15  15.00067  0.07% 

IXOR_M	 5  4.99930  0.07% 

IROR_R	 10  9.99988  0.01% 

IROL_R	 0  0.00000  0.00% 

ISWAP_R	 4  3.99985  0.02% 

FSWAP_R	 8  8.00004  0.00% 

FADD_R	 20  19.99887  0.11% 

FADD_M	 5  4.99991  0.01% 

FSUB_R	 20  19.99965  0.04% 

FSUB_M	 5  4.99970  0.03% 

FSCAL_R	 6  6.00015  0.01% 

FMUL_R	 20  20.00016  0.02% 

FDIV_M	 4  3.99969  0.03% 

FSQRT_R	 6  5.99905  0.10% 

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	17 

 



CBRANCH	 16  16.00065  0.06% 

CFROUND	 1  0.99998  0.00% 

ISTORE	 16  16.00039  0.04% 

NOP	 0  0.00000  0.00% 
 
   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	18 

 



D.	Bias	in	SuperscalarHash 
SuperscalarHash	is	a	custom	diffusion	function	used	as	part	of	the	RandomX	algorithm.	Its 
primary	purpose	is	to	consume	as	much	power	as	possible	in	a	short	period	of	time	by 
leveraging	the	superscalar	features	of	a	modern	general	purpose	CPU.	It	takes	a	64-byte 
argument	and	returns	a	64-byte	value.	Datasets	are	generated	by	a	process	that	combines 
multiple	invocations	of	SuperscalarHash	with	a	variety	of	other	techniques. 
 
To	ensure	that	every	key	has	a	high	probability	of	generating	a	unique	Dataset,	the 
SuperscalarHash	should	ideally	exhibit	a	strong	avalanching	effect.	That	is,	a	single	bit 
change	to	the	input	should	result	in	a	large	change	to	the	output	across	all	bits. 
 
Statistical	sampling	by	the	RandomX	authors	has	shown	that	uniqueness	in	bits	3–53	of	the 
input	registers	is	required	to	ensure	unique	output.	This	is	due	to	significant	output 
insensitivity	at	high	and	low	bits.	To	achieve	this,	the	RandomX	algorithm	uses	a	carefully 
chosen	set	of	initial	register	values	that	guarantee	unique	values	for	all	Dataset	item 
numbers. 
 
The	total	number	of	Datasets	is 
	

RANDOMX_DATASET_BASE_SIZE	+	RANDOMX_DATASET_EXTRA_SIZE 
 
in	bytes	divided	by	64.	This,	by	default,	is 
 

2,147,483,648	+	33,554,368	=	2,181,038,016	bytes	=	2080	MiB, 
 
which	corresponds	to	34,078,719	items.	The	initial	register	values	are	tuned	for	this	size, 
but	these	parameters	are	configurable	and	this	potentially	makes	the	construction	fragile. 
This	issue	is	partially	mitigated	because		RANDOMX_DATASET_BASE_SIZE		has	a	maximum 
allowed	value	of	4,294,967,296	bytes,	a	value	for	which	the	RandomX	team	also	confirmed 
no	collisions,	but	the	only	constraint	on		RANDOMX_DATASET_EXTRA_SIZE		is	that	it	must	be 
divisible	by	64. 
 
An	additional	mitigating	factor	for	this	issue	is	the	number	of	SuperscalarHash	invocations 
per	Dataset	item	generated.	Each	Dataset	is	produced	via	8	calls	and	this	significantly 
increases	the	probability	that	a	unique	output	will	be	generated	despite	the	presence	of 
bias. 
 
Trail	of	Bits	recommends	researching	ways	to	improve	SuperscalarHash’s	output 
distribution	such	that	carefully	tuned	parameters	for	both	Dataset	size	and	initial	register 
values	are	not	required	to	obtain	the	desired	result.   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	19 

 



E.	Parameter	Selection 
RandomX	contains	a	large	set	of	configurable	parameters.	The		default	parameters		are 
well-tuned	for	the	algorithm.	However,	since	Monero	already	intends	to	use	these	values, 
other	blockchains	wishing	to	use	RandomX	must	choose		different		values	to	prevent	51% 
attacks.	For	example,	if	two	blockchains	use	the	same	parameterization,	then	a	mining	pool 
from	the	larger	blockchain	could	maliciously	alter	the	smaller	blockchain	by	overwhelming 
its	own	miners. 
 
This	section	describes	each	parameter	and	whether	it	is	safe	to	change.	Many	of	these 
parameters	interact	with	each	other	in	subtle	ways	so	care	must	be	taken	even	when 
altering	values	Trail	of	Bits	believes	are	safe	to	change. 
 

Parameter  Description 
Safe	to 
Change  Notes 

RANDOMX_ARGON	
_MEMORY	

The	amount	of	memory	the 
initial	argon2d	derivation 
should	consume.	Used	in 
Cache	initialization. 

✓ Yes 
Increasing	this	value	will	increase	the 
minimum	memory	requirement	for	light 
mode. 

RANDOMX_ARGON	
_ITERATIONS	

The	number	of	argon2d 
iterations	that	should	be 
performed.	Used	in	Cache 
initialization. 

✓ Yes 
This	controls	the	time	cost	of	the	initial 
derivation.	Higher	numbers	will	take 
longer. 

RANDOMX_ARGON_LANES	

The	parallelization	factor	of 
argon2d.	This	does	not 
speed	up	the	algorithm,	but 
increases	the	number	of 
parallel	threads	executing. 
Used	in	Cache	initialization. 

✓ Yes 

This	value	should	be	chosen	based	on 
the	expected	hardware	the	algorithm 
will	run	on.	Multiple	threads	makes 
sense	if	multiple	CPU	cores	are 
expected	to	be	present. 

RANDOMX_ARGON_SALT	
The	salt	provided	to	argon2d. 
Used	in	cache	initialization. 

✓ Yes  Any	consumer	should	change	this	value 
to	a	unique	string	specific	to	their	use. 

RANDOMX_CACHE	
_ACCESSES	

The	number	of	Cache 
accesses	per	Dataset	item 
generated. 

✓ Yes 
Higher	numbers	increase	memory 
bandwidth	consumption.	The	minimum 
value	allowed	by	the	code	is	2. 

RANDOMX_SUPERSCALAR	
_LATENCY	

This	value	controls	the 
maximum	number	of	virtual 
CPU	cycles	a	call	to 
generateSuperscalar	will 
continue	to	execute. 
However,	in	general 
saturation	of	the	execution 
ports	of	the	CPU	will	cause 
loop	termination	before	this 
value	is	reached	so	it	serves 
as	a	limit	to	guarantee	loop 
termination	and	nothing 

✗  No 

This	value	was	selected	to	match	the 
clock	speed	and	DRAM	latency	of 
modern	computers.	Additionally,	it 
potentially	interacts	with 
RANDOMX_SUPERSCALAR_MAX_SIZE	as 
a	large	maximum	size	may	cause	this 
value	to	be	used. 

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	20 

 

https://github.com/tevador/RandomX/blob/1.0.2/src/configuration.h


else. 

RANDOMX_SUPERSCALAR	
_MAX_SIZE	

The	maximum	number	of 
instructions	a 
SuperscalarHash	program 
can	execute. 

✓ Yes, 
but… 

Do	not	set	this	value	lower	than	the 
default	(512). 

RANDOMX_DATASET	
_BASE_SIZE	

The	base	size	of	the	Dataset. 
This	value	must	be	a	power 
of	2	and	cannot	be	more 
than	4,294,967,296	bytes. 

✓ Yes, 
but… 

Keep	this	value	as	high	as	your	usage 
allows.	This	affects	both	the	behavior	of 
SuperscalarHash	(	Appendix	D	)	as	well	as 
the	light	versus	fast	mode	memory 
ratios. 

RANDOMX_DATASET	
_EXTRA_SIZE	

Additional	size	to	store	more 
Dataset	items.	This	value 
must	be	divisible	by	64	but	is 
otherwise	unbounded. 

✓ Yes, 
but… 

Keep	this	value	very	small	compared	to 
RANDOMX_DATASET_BASE_SIZE	.	It	should 
be	used	only	as	a	value	to	slightly 
increase	the	total	memory	consumed. 
For	example,	if	base	size	is	1GiB	this 
might	appropriately	be	set	to 
approximately	16MiB.	This	value	affects 
both	the	behavior	of	SuperscalarHash 
(	Appendix	D	)	as	well	as	the	light	versus 
fast	mode	memory	ratios. 

RANDOMX_PROGRAM	
_SIZE	

The	number	of	instructions 
in	a	RandomX	program 
executed	on	the	virtual 
machine. 

✓ Yes, 
but… 

Do	not	set	this	value	lower	than	the 
default	(256).	Significantly	larger	values 
may	also	fail	to	fit	in	a	CPU’s	L1 
instruction	cache,	resulting	in	slower 
than	expected	operation. 

RANDOMX_PROGRAM	
_ITERATIONS	

The	number	of	times	a 
program	is	looped	during 
virtual	machine	execution.  ✓ Yes, 

but… 

Do	not	set	this	value	lower	than	the 
default	(2048).	Programs	perform 
memory	writes,	so	lower	values	may 
affect	randomness	of	intermediate 
steps. 

RANDOMX_PROGRAM	
_COUNT	

The	number	of	chained 
virtual	machine	executions 
per	RandomX	hash.  ✓ Yes, 

but… 

Do	not	set	this	value	lower	than	the 
default	(8).	Chained	execution	is	a 
means	of	preventing	attackers	from 
gaining	an	advantage	by	only	executing 
“easy”	programs. 

RANDOMX_JUMP_BITS	

The	number	of	consecutive 
bits	that	must	be	zero	to 
execute	the	jump. 

✓ Yes, 
but… 

The	performance	characteristics	of 
RandomX	include	deliberate	low 
probability	branching	to	provide 
advantage	in	speculation	execution	so 
modification	of	this	value	should	be 
small.	A	higher	value	leads	to	less 
jumps,	a	lower	value	leads	to	more 
jumps.	Setting	this	to	10	would	cause	a 
branch	in	1	in	1024	(2	10	)	where	the 
default	of	8	branches	1	in	256	(2	8	).	The 
sum	of		RANDOMX_JUMP_BITS		and 
RANDOMX_JUMP_OFFSET		must	be	less 
than	or	equal	to	16. 

RANDOMX_JUMP_OFFSET	

The	offset	to	apply	to 
determine	changes	to	the 
jump	condition. 

✓ Yes, 
but… 

The	value	helps	calculate	an	offset	that 
is	used	to	modify	bits	in	a	random	value. 
The	sum	of		RANDOMX_JUMP_BITS		and 
RANDOMX_JUMP_OFFSET		must	be	less 

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	21 

 



than	or	equal	to	16. 

RANDOMX_SCRATCHPAD	
_L3	

The	RandomX	virtual 
machine’s	level	3	cache	size. 

✗  No 

The	cache	sizes	for	the	virtual	machine 
were	chosen	to	provide	specific 
performance	characteristics	with	regard 
to	the	way	a	general	purpose	CPU	will 
cache	the	data.	Alteration	of	these 
values	is	not	advised. 

RANDOMX_SCRATCHPAD	
_L2	

The	RandomX	virtual 
machine’s	level	2	cache	size. 

✗  No 

The	cache	sizes	for	the	virtual	machine 
were	chosen	to	provide	specific 
performance	characteristics	with	regard 
to	the	way	a	general	purpose	CPU	will 
cache	the	data.	Alteration	of	these 
values	is	not	advised. 

RANDOMX_SCRATCHPAD	
_L1	

The	RandomX	virtual 
machine’s	level	1	cache	size. 

✗  No 

The	cache	sizes	for	the	virtual	machine 
were	chosen	to	provide	specific 
performance	characteristics	with	regard 
to	the	way	a	general	purpose	CPU	will 
cache	the	data.	Alteration	of	these 
values	is	not	advised. 

 

Instruction	Frequency 
In	addition	to	these	defaults,	RandomX	also	allows	alteration	of	the	frequency	of 
instructions	in	programs	generated	for	the	virtual	machine.	These	defaults	are	shown	in 
Figure	4. 

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	22 

 



 
Figure	4:			Instruction	frequency 

 
The	default	frequencies	were	chosen	to	provide	a	mix	of	operations,	including	memory 
writes	and	reads,	that	strongly	benefit	modern	superscalar,	speculative,	and	out-of-order 
execution.	Trail	of	Bits	does	not	recommend	changing	these	frequencies	without 
conducting	significant	statistical	analyses	to	confirm	that	any	altered	values	preserve	the 
security,	performance,	and	ASIC/GPU	resistance	advantages. 

   

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	23 

 



F.	Recommended	Parameters	for	Arweave 
The	cryptographic	analysis	conducted	in	this	report	is	predicated	on	the	default	values, 
especially	related	to	our	statistical	analyses	of	randomness.	To	preserve	the	properties 
observed	while	breaking	compatibility	with	other	blockchains	using	the	same	algorithm, 
Trail	of	Bits	suggests	that	Arweave	alter	the	following	values: 
 

Parameter  Default	Value  Suggested	Value 

RANDOMX_ARGON_ITERATIONS	 3	 5	

RANDOMX_ARGON_LANES	 1	 2	

RANDOMX_ARGON_SALT	 "RandomX\x03"	 "RandomX-Arweave\x01"	

RANDOMX_PROGRAM_SIZE	 256	 248	

RANDOMX_PROGRAM_COUNT	 8	 9	

Table	1:			Alternate	Parameter	Recommendations 
 
These	suggested	parameters	are	conservative	choices	that	should	provide	security 
equivalent	to	the	default	parameters	while	ensuring	that	systems	built	expecting	the 
default	parameters	will	not	trivially	interoperate.	The	values	themselves	are	not	special 
beyond	a	slight	increase	in	some	places	(and	a	slight	decrease	in	one)	to	ensure	the 
algorithm’s	assumptions	are	not	weakened	while	preserving	similar	performance. 
However,	making	certain	that	they	differ	from	the	default	is	critical	to	avoid	potential	51% 
attacks	by	other	blockchains	that	utilize	the	same	parameters. 
 
Parameters	related	to	the	virtual	CPU	(such	as	scratchpad	size)	can	significantly	affect 
performance,	as	these	defaults	were	carefully	chosen	to	match	the	characteristics	of 
existing	general-purpose	CPUs.	They	should	not	be	changed. 

 

©	2019	Trail	of	Bits  Arweave	RandomX	Assessment	|	24 

 


