CONSENSYS

Diligence

Orchid Network Protocol Audit

1T Summary Date November 2019
2 Audit Scope

3 System Overview

Lead Auditor Goncalo Sa

Co-auditors Steve Marx

4 Key Observations/Recommendations

5 Security Specification
o 5.7 Actors

o 5.2 Trust Model
o 5.3 Important Security Properties

6 Issues
o 6.1 Staking node can be inappropriately removed from the tree v Fixed

o 6.2 Verifiers need to be pure, but it's very difficult to validate pureness Medium
v Fixed

(¢]

6.3 Simplify the logic in OrchidDirectory.pull() Medium ¥ Fixed

(¢]

6.4 Remove unnecessary address payable Won't Fix

o

6.5 Use consistent staker , stakee orderingin OrchidDirectory
v Fixed

(o}

6.6 Use more descriptive function and variable names Won't Fix

(0]

6.7 In OrchidDirectory.step() and OrchidDirectory.lift() , use a signed

amount Won't Fix

(¢]

6.8 Document that math in OrchidDirectory assumes a maximum number of
tokens v Fixed

(0]

6.9 Unneeded named return parameter v Fixed
o 6.10 Improve function visibility v Fixed

e 7/ Tool-Based Analysis
o 7.1 MythX

o 7.2 Ethlint
o /.3 Surya

e 8 Surya’s Description Report
o 8.1 Files Description Table
o 8.2 Contracts Description Table
o 8.3 Legend

e Appendix 1 - Disclosure

1T Summary

ConsenSys Diligence conducted a security audit on Orchid Labs’ network protocol, more
specifically, the Ethereum smart contracts that are part of the bigger network protocol
codebase.

Orchid Labs was founded with a mission to create a more open and more accessible
internet. As part of this quest they created the Orchid network protocol, a truly
decentralized VPN service.

The way the Orchid network achieves true decentralization is by allowing anyone to join the
network as a bandwidth provider and anyone to use the service as an end user. This
permissionless environment is achievable with the usage of programmatic, probabilistic
micropayments on top of Ethereum, the focus of this audit.

2 Audit Scope

This audit covered the following files:

File SHA-1 hash
contracts/curator.sol 5eabc8374cec?289bcf4dfeladb3bb157cadbab74
contracts/directory.sol ~ 811ab3b049d570c4236ee965d76ed1a9f5¢ch929e
contracts/location.sol 1€a56960f41ca3a299c4fd35fab9ef1fdd494d5b
contracts/lottery.sol e63f3c86b3abba57d0a7e3ca36436bfee4d9actb

contracts/token.sol faf15f117ac160641adfe56c2a01ad14bffo31f3

The audit activities can be grouped into the following three broad categories:

1. Security: Identifying security related issues within the contract.

2. Architecture: Evaluating the system architecture through the lens of established
smart contract best practices.

3. Code quality: A full review of the contract source code. The primary areas of focus
include:
o Correctness

Readability

o

(o}

Scalability

(o}

Code complexity

(0]

Quality of test coverage
3 System Overview

Orchid network is comprised of two main on-chain components, OrchidDirectory and
OrchidLottery . They both play important roles in setting up the proper incentives for the
correct functioning of the bandwidth market of the VPN product.

OrchidDirectory keeps track of staked OXT tokens (Orchid’s native token). The staked
amounts are held in a binary tree that allows for easy weighted random selection by
clients. Clients then purchase bandwidth from the selected stakee.

OrchidLottery is animplementation of probabilistic micropayments. These are used to
stream payments to bandwidth providers.

These two components are completely independent of each other and meant to be used
for the VPN client in different stages of the product usage.

A rough outline of the usage flow pertaining to these on-chain components is as follows:

1. The VPN client starts by engaging with an Ethereum client that runs the selection
routine for the nodes by running code present in OrchidDirectory . This step can
remain fully trustless by asking the Ethereum client (which may be untrusted) for
merkle proofs of the selected storage blocks (and the blocks themselves). This
effectively makes OrchidDirectory.scan() , which performs the random weighted
selection, more of a reference implementation than a fundamental part of the staking
infrastructure.

2. After the traffic route is set up, clients need to be able to pay for packets of data as
they're being forwarded. This requires a payment system that enables low-cost
micropayments. This is made possible (i.e,, trustlessly enforced) by the

OrchidLottery smart contract, a probabilistic micropayments implementation.
OrchidLottery holds the end user’s funds that are meant to be disbursed to

bandwidth providers, as well as an escrow amount to be burned as a penalty in the
case of insufficient available payment funds.

A probabilistic micropayment is a message, signed by the payer, that behaves very much
like a lottery ticket. It entitles the recipient of the message to a possible payment of a
certain amount with a given probability. This payment is enforced on-chain. Although each
payment is probabilistic, over a large number of such payments, the actual amount paid
trends towards the expected value.

Creating these probabilistic micropayments is done offline and is computationally
inexpensive, so it can be used to pay for a continuous stream of packets without disruption
or the need to wait for on-chain confirmations.

4 Key Observations/Recommendations

e The usage of the Ethereum blockchain within the Orchid network protocol is an
exceptional example of decentralized coordination with on-chain enforcement.

e The formal modeling of Orchid’s network market in the presented whitepaper is
impressively thorough and shows the amount of consideration and thought that went
into the product planning.

e The code lacks detailed documentation. The whitepaper explains the algorithms at a
high level, but there is no documentation that explains the code itself. A good start
would be clear variable and function names as well as explanatory code comments.

e A good test suite enables the early suppression of bugs and protection against future
bugs introduced by composability, i.e., adding new features to the code that breaks
some security assumption of a previously written section. The codebase is lacking in
tests.

e (Good code coverage helps immensely to catch control flow errors. While high code
coverage gives no guarantees of algorithmic correctness, a lack of coverage usually
allows for control flow bugs to exist. Two issues found during the audit would have
been discovered during development by measuring code coverage. The Diligence
team recommends integrating a code coverage tool and achieving 100% code
coverage.

5 Security Specification

This section describes, from a security perspective, the expected behavior of the system
under audit. It is not a substitute for documentation. The purpose of this section is to

identify specific security properties that were validated by the audit team.

5.1 Actors

The relevant actors are as follows:

e VPN users — Users find providers via the directory and purchase bandwidth from
those providers via micropayments.

o Bandwidth providers — Providers are advertised in the directory and sell bandwidth via
micropayments.

o Stakers — To mitigate certain kinds of attacks, the VPN software prefers bandwidth
providers with more Orchid tokens (OXT) at stake. Stakers stake their tokens to
increase the likelihood that a given bandwidth provider will be selected.

e Micropayment funders — Anyone can establish a fund for micropayments.

e Micropayment signers — Signers authorize micropayments. There are potentially
many signers for a given fund.

e Orchid — Orchid itself deploys the smart contracts but retains no special privileges.

5.2 Trust Model

In any smart contract system, it's important to identify what trust is expected/required
between various actors.

e None of the participants need to trust Orchid because Orchid retains no special
privileges after contract deployment.

e A micropayment funder authorizes certain signers to act on their behalf, and those
signers must be trusted by the funder to spend up to the total amount in the fund.

e Users and bandwidth providers need to trust each other very little. The risk for the
bandwidth provider is that they provide forwarding service but aren't properly paid, and
the risk for the user is that they pay but do not receive service. Because the
micropayments are very small, this risk is negligible.

Selecting a Bandwidth Provider

Selecting a bandwidth provider is an adversarial environment. The Orchid network protocol
is built in such a way that the client should not need to trust the nodes that traffic is routed
through.

The bandwidth consumer should be confident that when choosing a node, that node is
incentivized to behave well. The likelihood that a given bandwidth provider is chosen is

directly proportional to the amount of OXT staked on that provider’'s behalf. The built-in

withdrawal delay creates an opportunity cost for stakers. This disincentivizes malicious
staking behavior.

Since the method for node selection currently requires offloading the scan() routine to an
external Ethereum client, the client can verify correctness of the response by requiring
merkle proofs of storage lookups.

There is also a secondary filtering mechanism that the client can use after the initial pool
selection. This filtering is based on available metadata for each node (e.g., exit geolocation,
latency/ping, node whitelists, etc.). While this does introduce some variability in the
intended choosing probabilities, that variability is small enough to be ignored.

Probabilistic Micropayments

The probabilistic micropayments environment (a.k.a. the lottery) is adversarial as well.
There is no trust assumed between the two actors for the correct functioning of the
system.

Routing nodes (a.k.a. “bandwidth providers”) should have guarantees that the agreed upon
probability of the ticket is enforced by the system. A random number is chosen by
combining seeds from both the payer and the recipient. If that random number falls in a
certain range (ratio inthe code), the payment is transferred.

The protection against double spending and misbehavior from end users is enforced in the
way of a an escrow fund on the payer's side. The higher the escrow amount the bigger the
incentive against misbehavior. The slashed amount is irretrievably left in the smart
contract (i.e., “burned”).

5.3 Important Security Properties

OrchidDirectory

In the directory implementation we identified the following properties that should not be
violated:

e Node selection is properly randomized:

o A nodes likelihood of being chosen is directly proportional to the size of its
associated stake.

o Itisimpossible to otherwise influence the outcome of node selection.
o Node stakes can be withdrawn only after the built-in delay.

e There are no lock-up conditions:
o The tree cannot get so big that operations requiring tree traversable exceed block
gas limits.

o The algorithm never creates orphaned nodes or otherwise violates proper tree
structure.

e External actors cannot interfere with the system:
o No one aside from node stakers can remove a node from the tree.

o No external actor can affect the tree shape.

OrchidLottery

In the lottery implementation we identified the following properties that should not be
violated:

e The probabilities for ticket payout are correctly enforced by the smart contract.
e Only a winning ticket recipient can redeem funds.
e A winning ticket can only be redeemed once.

e Penalty escrows are only slashed in the case of legitimate payouts exceeding the
available funds.

e Payouts decay linearly according to their start and range parameters.
e Micropayment signers can only spend from funds they were authorized for.

e There are no lock-up conditions:
o The payout routine is not affected by how many lotteries exist.

o The payout routine is not affected by how many pots exist.

e External actors cannot interfere with the system:
o No one but the respective funder or signer can take funds out of a pot.

o No one but the respective funder can further fund a pot.
6 Issues

Each issue has an assigned severity:

e Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

e Medium issues are objective in nature but are not security vulnerabilities. These
should be addressed unless there is a clear reason not to.

e Major issues are security vulnerabilities that may not be directly exploitable or may
require certain conditions in order to be exploited. All major issues should be
addressed.

e Critical issues are directly exploitable security vulnerabilities that need to be fixed.

6.1 Staking node can be inappropriately removed from the tree

v Fixed

Resolution

This is fixed in
https://github.com/OrchidProtocol/orchid/commit/8c586f22c54c20d24a066caf4cOefadce16

Description

The following code in OrchidDirectory.pull() is responsible for reattaching a child
from a removed tree node:

code/dir-ethereum/directory.sol:L275-L281

if (name(stake.left_) == key) {
current.right_

stake.right_;

current.after_ stake.after_;

} else {
current.left_ = stake.left_;
current.before_ = stake.before_;
)

The condition name(stake.left_) == key can never hold because key is the key for
stake itself.

https://github.com/OrchidProtocol/orchid/commit/8c586f22c54c20d24a066caf4c0efa9ce1692da2

The result of this bug is somewhat catastrophic. The child is not reattached, but it still has
a link to the rest of the tree via its ‘parent_’ pointer. This means reducing the stake of that
node can underflow the ancestors’ before/after amounts, leading to improper random
selection or failing altogether.

The node replacing the removed node also ends up with itself as a child, which violates the
basic tree structure and is again likely to produce integer underflows and other failures.

Recommendation

As a simple fix, use if(name(stake.left_) == name(last)) as already suggested by the
development team when this bug was first shared.

Two suggestions for better long-term fixes:

1. Use a strict interface for tree operations. It should be impossible to update a node’s
parent without simultaneously updating that parent's child pointer.

2. As suggested in (issue 6.3), simplify the logic in pull() to avoid this logic altogether.

6.2 Verifiers need to be pure, but it's very difficult to validate pureness
Medium v Fixed

Resolution

This is addressed in
https://github.com/OrchidProtocol/orchid/commit/1b405fb1096f6fd18792269453f7dd8ae17
With this change, the contract checks that the verifier's code doesn't change (via

extcodehash). If the code does change, the contract “fails open” by skipping the
verifier and allowing all payments.

Because the code can no longer change, the server can use the (relatively) simple
method of executing the contract locally and only allowing a whitelist of opcodes that
don't depend on or modify state.

The server already has mitigations for denial of service attacks, including limiting the
amount of computing resources that can be used for validating code.

https://github.com/OrchidProtocol/orchid/commit/1b405fb1096f6fd18792269453f7dd8ae17f2d9b

Description

After the initial audit, a “verifier” was introduced to the OrchidLottery code. Each Pot
can have an associated OrchidVerifier . Thisis a contract witha good() function that
accepts three parameters:

code/lot-ethereum/lottery.sol:L28

function good(bytes calldata shared, address target, bytes calldata receipt) ¢

The verifier returns a boolean indicating whether a given micropayment should be allowed
or not. An example use case is a verifier that only allows certain target addresses to be
paid. In this case, shared (a single value for a given Pot)is a merkle root, target is (as
always) the address being paid, and receipt (specified by the payment recipient) is a
merkle proof that the target address is within the merkle tree with the given root.

A server providing bandwidth needs to know whether to accept a certain receipt. To do
that, it needs to know that at some time in the future, a call to the verifier's good()
function with a particular set of parameters will return true . The proposed scheme for
determining that is for the server to run the contract's code locally and ensure that it
returns true and that it doesn't execute any EVM opcodes that would read state. This
prevents, for example, a contract from returning true until a certain timestamp and then
start returning false . If a contract could do that, the server would be tricked into
providing bandwidth without then receiving payment.

Unfortunately, this simple scheme is insufficient. As a simple example, a verifier contract
could be created with the CREATE2 opcode. It could be demonstrated that it reads no
state when good() is called. Then the contract could be destroyed by calling a function
that performs a SELFDESTRUCT , and it could be replaced via another CREATE2 call with
different code.

This could be mitigated by rejecting any verifier contract that contains the SELFDESTRUCT
opcode, but this would also catch harmless occurrences of that particular byte.
https://gist.github.com/Arachnid/e8f0638dc9f5687ff8170a95c47eace attempts to find

SELFDESTRUCT opcodes but fails to account for tricks where the SELFDESTRUCT appears
to be data but can actually be executed. (See Recmo’s comment.) In general, this approach
is difficult to get right and probably requires full data flow analysis to be correct.

https://gist.github.com/Arachnid/e8f0638dc9f5687ff8170a95c47eac1e

Another possible mitigation is to use a factory contract to deploy the verifiers, guaranteeing

that they're not created with CREATE2 . This should render SELFDESTRUCT harmless, but
there’'s no guarantee that future forks won't introduce new vectors here.

Finally, requiring servers to implement potentially complex contract validation opens up
potential for denial-of-service attacks. A server will have to implement mitigations to
prevent repeatedly checking the same verifier or spending inordinate resources checking a
maliciously crafted contract (e.g. one with high branching factors).

Recommendation

The verifiers add quite a bit of complexity and risk. We recommend looking for an
alternative approach, such as including a small number of vetted verifiers (e.g. a merkle
proof verifier) or having servers use their own “allow list” for verifiers that they trust.

6.3 Simplify the logic in OrchidDirectory.pull() Medium v Fixed

Resolution

This was addressed in the following commits:

e https://github.com/OrchidProtocol/orchid/commit/0ad24846e4320cc22¢679d17¢7)239f
https://github.com/OrchidProtocol/orchid/commit/8b3e8217ea3a5a967f0965f291491d7
https://github.com/OrchidProtocol/orchid/commit/affbfo37c6b8414b63b63bTad76cf38:¢
https://github.com/OrchidProtocol/orchid/commit/e506c0f216¢752e64475bc8edab832:
https://github.com/OrchidProtocol/orchid/commit/f864e60f1aa58839133379ae46q¢777¢

Description

pull() isthe most complex functionin OrchidDirectory , due to its need to handle
removing a node altogether when its stake amount reaches 0.

The current logic for removing an interior node is roughly this:

e Given a node to be remove called old , walk down the tree, always stepping towards
the “heavier” (in terms of total stake) subtree, until you reach a leaf node (called
target).

https://github.com/OrchidProtocol/orchid/commit/0ad24846e4320cc22c679d17c7239ff53d7640a8
https://github.com/OrchidProtocol/orchid/commit/8b3e8217ea3a5a967f0965f291491d70baa748ac
https://github.com/OrchidProtocol/orchid/commit/affbf937c6b8414b63b63b1ad76cf38ab965e3a2
https://github.com/OrchidProtocol/orchid/commit/e506c0f216c752e64475bc8eda58327296a22da6
https://github.com/OrchidProtocol/orchid/commit/f864e60f1aa58839133379ae46c777dc5343b286

e |f target isadirectchild of old:
o Set target tobe achildof old.parent .

o Move the remaining child of old to be under target .

e |f target isnota directchildof old :
o Swap target and old inthe tree.
o Walk up the tree from old (now aleaf node)to target to subtract target 's
staked amount from the nodes in between.

o Detach old from the tree.

The code for this is fairly complex, and one serious bug (issue 6.1) was identified in this
code.

This logic can be simplified by combining the two cases (direct child and not) and thinking
of it as roughly a two-step operation of “detach leaf node” and “replace interior node with
leaf node”.

Given a node to be removed called old , walk the tree to find target as before.

Walk back up to old , subtracting target 's staked amount from the nodes in
between.

Detach target from the tree.

Replace old with target .
(Note that in the code, “old” above is called stake and “target”is called current .)

Recommendation

Replace this code:

code/dir-ethereum/directory.sol:L266-L297

bytes32 direct = current.parent_;
copy(pivot, last);
current.parent_ = stake.parent_;

if (direct == key) {
Primary storage other = stake.before_ > stake.after_ 7 stake.right_ : stal
if (!'nope(other))

stakes_[name(other)].parent_ = name(last);

if (name(stake.left_) == key) {

current.right_ = stake.right_;
current.after_ = stake.after_;

} else {
current.left_ = stake.left_;
current.before_ = stake.before_;

¥

} else {

if (!'nope(stake.left_))
stakes_[name(stake.left_)].parent_ = name(last);

if (!nope(stake.right_))
stakes_[name(stake.right_)].parent_ = name(last);

current.right_ = stake.right_;

current.after_ stake.after_;
current.left_ = stake.left_;
current.before_ = stake.before_;

stake.parent_ = direct;

copy(last, staker, stakee);

step(key, stake, -current.amount_, current.parent_);
kill(last);

with something like this code:

// Remember this key so we can update ‘pivot' later

bytes32 currentKey = name(last);

// Remove ‘current’' from the subtree rooted at ‘stake’
step(currentKey, current, -current.amount_, stake.parent_);
kill(last);

// Replace ‘'stake' with ‘current’

current.left_ = stake.left_;

if (!'nope(current.left_))
stakes_[name(current.left_)].parent_ = currentKey;

current.right_ = stake.right_;

if (!nope(current.right_))

stakes_[name(current.right_)].parent_ = currentKey;

current.before_ = stake.before_;

current.after_ = stake.after_;

current.parent_ = stake.parent_;

pivot.value_ = currentKey; // "pivot’ was parent's pointer to "stake’
6.4 Remove unnecessary address payable Won't Fix

Resolution

The development team decided to leave this as-is. address payable is simply
advisory. It marks a parameter as one that will have tokens transferred to it.

Description

The address payable type is only needed for transferring ether to an address. The
OrchidDirectory and OrchidLottery contracts work with tokens, not ether, so there's
no need for any parameters to be of type address payable .

Recommendation

Use simply address instead of address payable everywhere.

6.5 Use consistent staker , stakee orderingin OrchidDirectory
v Fixed

Resolution

This is fixed in

3659f7467766ff8d915be9dbd8d05c8e.

https://github.com/OrchidProtocol/orchid/commit/1cfef8881d36ef31258a7dbce2e6174

f5c3¢

Description

code/dir-ethereum/directory.sol:L156

https://github.com/OrchidProtocol/orchid/commit/1cfef8881d36ef31258a7dbce2e617cf5c3adede#diff-3659f7467766ff8d915be9dbd8d05c8e

function lift(bytes32 key, Stake storage stake, uint128 amount, address stakee

OrchidDirectory.lift() has aparameter stakee that precedes staker , while the
rest of the code always places staker first. Because Solidity doesnt have named
parameters, it's a good idea to use a consistent ordering to avoid mistakes.

Recommendation

Switch 1ift() to follow the “staker then stakee” ordering convention of the rest of the
contract.

6.6 Use more descriptive function and variable names Won't Fix

Resolution

This issue is about readability. Even though the audit team firmly believes that
improved readability would increase trust in Orchid from its clients, this is not a
correctness issue.

The Orchid team believes that making this change, particularly this late in their
development cycle, would be too risky. The development team is very familiar with the
current terminology, and bugs may accidentally be introduced with the change.

Description

Throughout OrchidDirectory and OrchidLottery , function and variable names are
quite obscure. This makes it harder for a reader to understand the code.

Examples

e OrchidDirectory :
o heft() returns the total staked for a given stakee (perhaps totalForStakee())

o Primary is a pointerto atree node (perhaps NodePointer), and its member
value_ could be named key

(o}

name() gives the key for a given (staker, stakee) pair ora Primary (perhaps
getkey ())

copy() writes a key to a node pointer (probably better to remove this and just do
pointer.key = ...)

kill() sets a node pointer to zero (probably better to just remove this and use

delete pointer)

nope() checks whether a node pointer exists (probably better to just do
pointer.key == 0)

have() returns the total number of staked tokens (perhaps totalStaked)

scan() finds a node, given a random 128-bit number (perhaps
selectNode(uint128 random))

turn() isonly used in one place and is likely better just inlined

step() walks up a subtree, adjusting before/after amounts along the way
(perhaps propagate() or bubbleUp())

1ift() updates the stake for a given node and then calls step() (perhaps
updateNodeStake())

more() is really just the body for push() , so it should probably be moved inside
push() instead

push() is the external method for staking (perhaps increaseStake() or just
stake())

wait() increases the withdrawal delay for the sender’s stake for a given stakee

(increaseDelay())

Pending could be called PendingWithdrawal
take() could be called completeWithdrawal()
stop() could be called cancelWithdrawal()
delay_ could be withdrawalDelay

pull() decreases stake and establishes a pending withdrawal (perhaps
decreaseStake() , unstake() or startWithdrawal())

Within pull() :
m pivot couldbe pointerToStake

last could be pointerTolLeaf

current could be leaf

direct could be leafParent

other couldbe sibling

e OrchidLottery :

(0]

(o}

(o}

o

(¢]

(¢]

Pot could perhaps be Fund
send() justemitsan Update event (perhaps log() or logUpdate())

Track is a struct that keeps track of a ticket that has already been redeemed to
prevent replay (perhaps RedeemedTicket)

kill() is overloaded to delete funds and used tickets (perhaps deleteFund()
and forgetTicket())

take() could be called transferTokens()
grab() redeems a winning ticket (perhaps redeem() or redeemTicket())

give() and pull() both transfer tokens from a given Pot , but one is used by
the signer and one by the funder. Perhaps better would be a single
transferFromPot(address funder, address signer, address target,
uint128 amount) with require(msg.sender == funder || msg.sender ==
signer) .

warn() could be startWithdrawal()

lock() could be cancelWithdrawal()

pull() could be completeWithdrawal()

Recommendation

Consider using longer, more descriptive names to make it easier to understand the code.
Where there's no particularly good name, add comments explaining the meaning.

6.7 In OrchidDirectory.step() and OrchidDirectory.lift() ,usea
sighed amount Won't Fix
Resolution

The variables in question are now uint256 s. The amount of type casts that would be
needed in case the recommended change was implemented would defeat the
purpose of simplification.

Description

step() and 1lift() bothaccepta uint128 parameter called amount . This amountis
added to various struct fields, which are also of type uint128 .

The contract intentionally underflows this amount to represent negative numbers. This is
roughly equivalent to using a signed integer, except that:

1. Unsigned integers aren't sign extended when they're cast to a larger integer type, so
care must be taken to avoid this.

2. Tools that look for integer overflow/underflow will detect this possibility as a bug. It's
then hard to determine which overflows are intentional and which are not.

Examples

code/dir-ethereum/directory.sol:L247
lift(key, stake, -amount, stakee, staker);
code/dir-ethereum/directory.sol:L296

step(key, stake, -current.amount_, current.parent_);

Recommendation

Use int128 instead, and ensure that amounts can never exceed the maximum int128
value. (This is trivially achieved by limiting the total number of tokens that can exist.)

6.8 Document that math in OrchidDirectory assumes a maximum
number of tokens v Fixed

Resolution

This is fixed in
https://github.com/OrchidProtocol/orchid/commit/f2efe427367970de88986af0e58f1fe¢h901
3659f7467766ff8d915be9dbd8d05¢c8e by using uint256 values everywhere. For a
compliant ERC20 token, the token's total supply cannot overflow a uint256 .

https://github.com/OrchidProtocol/orchid/commit/f2efe427367970de88986af0e58f1fecb901e1e4#diff-3659f7467766ff8d915be9dbd8d05c8e

Description

OrchidDirectory relies on mathematical operations being unable to overflow due to the
particular ERC20 token being used being capped at less than 2x%128 .

Examples

The following code in step() assumes that no before/after amount can reach 2*x128 :

code/dir-ethereum/directory.sol:L145-L148

if (name(stake.left_) == key)
stake.before_ += amount;
else
stake.after_ += amount;

The following code in 1ift() assumes that no staked amount (or total amount for a
given stakee) can reach 2%%128 :

code/dir-ethereum/directory.sol:L157-L164

uint128 local = stake.amount_;
local += amount;

stake.amount_ = local;

emit Update(staker, stakee, local);

uint128 global = stakees_[stakee].amount_;

global += amount;
stakees_[stakee].amount_ = global;

The following code in have() assumes that the total amount staked cannot reach
2%%128 :

code/dir-ethereum/directory.sol:L103

return stake.before_ + stake.after_ + stake.amount_;

Recommendation

Document this assumption in the form of code comments where potential overflows exist.

Consider also assert ing the ERC20 token's total supply in the constructor to attempt to
block using a token that violates this constraint and/or checking in push() that the total
amount staked will remain less than 2%x128 . This recommendation is in line with the
mitigation proposed for issue 6.7.

6.9 Unneeded named return parameter v Fixed

Resolution

Fixed in
https://github.com/OrchidProtocol/orchid/commit/21d56d5fc33cbba6838447231a57 5f

pe 541

Description

Inthe heft functioninthe OrchidDirectory contract, thereis an unused and unneeded
named return parameter (that actually instantiates a new variable in memory which is not
used).

Remediation

Change returns (uint128 amount) tO returns (uint128) .

6.10 Improve function visibility v Fixed
Resolution
Fixed in
https://github.com/OrchidProtocol/orchid/commit/68fb26acd9d3831616b69744967fb9

bh12a

Description

The following methods are not called internally in the token contract and visibility can,
therefore, be restricted to external ratherthan public . Thisis more gas efficient

https://github.com/OrchidProtocol/orchid/commit/21d56d5fc33cbba6838447231a575fee54f3aad7
https://github.com/OrchidProtocol/orchid/commit/68fb26acd9d3831616b69744967fb9512a24f9b5

because less code is emitted and data does not need to be copied into memory. It also
makes functions a bit simpler to reason about because there's no need to worry about the
possibility of internal calls.

e OrchidDirectory.heft()
e OrchidDirectory.scan()
e OrchidDirectory.push()
e OrchidDirectory.wait()
e OrchidDirectory.take()
e OrchidDirectory.stop()
e OrchidDirectory.pull()
e OrchidLocation.move()
e OrchidLocation.look()
e OrchidLottery.size()

e OrchidLottery.keys()

e OrchidLottery.seek()

e OrchidLottery.look()

e OrchidLottery.push()

e OrchidLottery.move()

e OrchidLottery.kill()

e OrchidLottery.grab()

e OrchidLottery.pull()

e OrchidLottery.warn()

e OrchidLottery.lock()

e OrchidLottery.pull()

e OrchidCurator.list()

e OrchidCurator.good()

e OrchidUntrusted.good()

Recommendation

Change visibility of these methods to external .

7 Tool-Based Analysis

Several tools were used to perform automated analysis of the reviewed contracts. These
issues were reviewed by the audit team, and relevant issues are listed in the Issue Details

section.

7.1 MythX

MythX is a security analysis API for Ethereum smart contracts. It
performs multiple types of analysis, including fuzzing and symbolic
execution, to detect many common vulnerability types. The tool was
used for automated vulnerability discovery for all audited contracts and

libraries. More details on MythX can be found at mythx.io.

The output of the MythX Pro vulnerability scan was reviewed by the audit team and no
vulnerabilities were identified as part of the process.

7.2 Ethlint

Ethlint is an open source project for linting Solidity code. Only
security-related issues were reviewed by the audit team.

Below is the raw output of the Ethlint vulnerability scan:

contracts/curator.sol

35:8

warning

ETHLINT

Provide an error message for require().

contracts/directory.sol

107:
141:
141:
176:
180:
202:
209:
211:
226:
226:

228:8
233:8

warning
error

error

warning
warning
warning
warning
warning
warning
warning
warning

warning

error—-reason

Provide an error message for require(). errc
"step": Avoid assigning to function parameters. secl
"step": Avoid assigning to function parameters. secl
Provide an error message for require(). errc
Provide an error message for require(). errc
Provide an error message for require(). errc
Provide an error message for require(). errc
Provide an error message for require(). errc
Provide an error message for require(). errc
Avoid using 'block.timestamp'. secl
Provide an error message for require(). errc
Provide an error message for require(). errc

https://mythx.io/
https://www.ethlint.com/

233:
244
245:
305:
306:

contracts/location.sol

38:2

contracts/lottery.sol

66:8
104:
111:
117:
131:
131:
140:
153:
156:
156:
157:
158:
163:
165:
166:
167:
167:
167:
168:
168:
169:
171
172:
175:
176:
182:
200:
214

35
8
8
8
26

4

0 00 ©C0 oo

12
12
12
12
12
28
12
12
12

212

20
64

22

215:8

215:

31

warning
warning
warning
warning

warning

warning

warning
warning
warning
warning
warning
warning
error
warning
error
warning
warning
warning
error
error
error
error
warning
warning
error
warning
error
error
error
warning
warning
warning
warning
warning
warning

warning

Avoid using 'block.timestamp'.

Avoid using 'block.timestamp'.

Provide an error message for require().
Provide an error message for require().
Provide an error message for require().

Avoid using 'block.timestamp'.

Provide an error message for require().
Provide an error message for require().
Provide an error message for require().
Provide an error message for require().
Provide an error message for require().

Avoid using 'block.timestamp'.

"take": Avoid assigning to function parameters.

Provide an error message for require().

"grab": Avoid assigning to function parameters.
Line exceeds the limit of 145 characters

Provide an error message for require().
Provide an error message for require().
Only use indent of 8 spaces.

Only use indent of 8 spaces.

Only use indent of 8 spaces.

Only use indent of 8 spaces.

Provide an error message for require().
Avoid using 'block.timestamp’.

Only use indent of 8 spaces.

Provide an error message for require().
Only use indent of 8 spaces.

Only use indent of 8 spaces.

Only use indent of 8 spaces.

Avoid using 'block.timestamp'.

Avoid using 'block.timestamp’.

Provide an error message for require().
Avoid using 'block.timestamp'.

Provide an error message for require().
Provide an error message for require().

Avoid using 'block.timestamp'.

SecCl
errc
errc
errc

Secl

security/no-block-memt

errc
errc
errc
errc
errc
secl
secl
errc
secl
max-
errc
errc
inde
inde
inde
inde
errc
secl
inde
errc
inde
inde
inde
secl
secl
errc
secl
errc
errc

secl

219:8 warning Provide an error message for require(). errc

% 12 errors, 38 warnings found.

7.3 Surya

Surya is an utility tool for smart contract systems. It provides a number of visual outputs
and information about structure of smart contracts. It also supports querying the function
call graph in multiple ways to aid in the manual inspection and control flow analysis of
contracts.

Below is a complete list of functions with their visibility and modifiers:

8 Surya's Description Report

8.1 Files Description Table

File Name SHA-1 Hash
contracts/curator.sol 5eabc8374cec?289bcf4dfeladb3bb157cadbab74
contracts/directory.sol ~ 811ab3b049d570c4236ee965d76ed1a9f5¢cb929%e
contracts/location.sol 1ea56960f41ca3a299c4fd35fab9ef1fdd494d5b
contracts/lottery.sol e63f3c86b3abba57d0a7e3cal36436bfee4d9acb

contracts/token.sol faf15f117ac160641adfe56c2a01ad14bffo31f3

8.2 Contracts Description Table

Contract Type Bases
L Function Name Visibility Mutability Modifiers
OrchidCurator Implementation
- <Constructor> Public 1 ®
- list Public ! ® NO !

-
=
O

e —

L good Public

Contract

OrchidUntrusted

L

I0rchidDirectory

L

OrchidDirectory

Type

Implementation

good

Interface

have

Implementation

Bases

Public

External !

|OrchidDirectory

NO I

NO

NO

NO

© 00

- <Constructor> Public !
L heft Public I
- name Public 1
L name Private @/
L copy Private @
- copy Private @
L kill Private &
L nope Private @
L have Public 1
- scan Public !
L turn Private &
L step Private @
- lift Private &
L more Private &
L push Public I
L wait Public 1
L take Public I
L stop Public I
L pull Public 1

OrchidLocation

Implementation

L BN NN VNN VNN VNN VNN NN)

NO 1

NO

NO

NO

NO

Contract

L

L

OrchidLottery

L

L

OrchidToken

L

Type
move

look

Implementation
<Constructor>
send
find
Kill
sSize
keys
seek
page
look
push
move
kil
kil
take
grab
give
pull
warn
lock

pull

Implementation

<Constructor>

Bases

Public

Public

Public

Private g
Private ‘&

Private ‘g

Public
Public
Public
Public
Public
Public

Public

Private ‘g

Public

Private g/

Public

Public

Public

Public

Public

Public

ERC20, ERC20Detailed

Public

L BN NN VNN VNN NN NN NN NN M M)

©

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO !

NO

ERC20Detailed

8.3 Legend

Symbol Meaning
® Function can modify state
6! Function is payable

Appendix 1 - Disclosure

ConsenSys Diligence (“CD") typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The
Reports may be distributed through other means, including via ConsenSys publications
and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and
the Reports do not guarantee the security of any particular project. This Report does not
consider, and should not be interpreted as considering or having any bearing on, the
potential economics of a token, token sale or any other product, service or other asset.
Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code, the business
model or proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Specifically,
for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD owes no duty
to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely
for Clients and published with their consent. The scope of our review is limited to a review
of Solidity code and only the Solidity code we note as being within the scope of our review
within this report. The Solidity language itself remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) — on
its website. CD hopes that by making these analyses publicly available, it can help the

blockchain ecosystem develop technical best practices in this rapidly evolving area of
innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other
computer links, gain access to web sites operated by persons other than ConsenSys and
CD. Such hyperlinks are provided for your reference and convenience only, and are the
exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are
not responsible for the content or operation of such Web sites, and that ConsenSys and CD
shall have no liability to you or any other person or entity for the use of third party Web
sites. Except as described below, a hyperlink from this web Site to another web site does
not imply or mean that ConsenSys and CD endorses the content on that Web site or the
operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports.
ConsenSys and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated
otherwise, by ConsenSys and CD.

