
1 of 31 GlitchSecure - Real-time Continuous Security Testing

Generated on 02 August 2023

Valid until 14 May 2024

In-depth Pentest Report

Prepared for Acme Co

Prepared by

Jade Null

Dirk Nyhof

Brad Bahls

https://glitchsecure.com/?utm_source=report_pdf

2 of 31 GlitchSecure - Real-time Continuous Security Testing

Table of Contents

Introduction

Executive Summary

Attack Narrative

Reconnaissance & Information Gathering

Identifying Technologies Used

Port Scanning & Service Identification

Subdomain Enumeration

Directory & File Enumeration

Automated Scanning

Manual Testing

Findings

Asset List

Vulnerability & Findings List

Vulnerability & Findings Details

#1041_1 - Account Compromise Through Password Reuse

#1041_2 - Email MFA bypass

#1041_3 - Username Enumeration

#1041_4 - Web Application Firewall Bypass

#1041_5 - Privilege Escalation

Conclusion & General Comments

Document Change Log

Completed Test Cases

https://glitchsecure.com/?utm_source=report_pdf

3 of 31 GlitchSecure - Real-time Continuous Security Testing

Introduction

Acme Co contracted GlitchSecure to conduct a In-depth Pentest of 3 externally facing web

assets. The evaluation, which formally began on 01 May 2023, and concluded on 15 May

2023, aimed to thoroughly assess the security posture of the organisation's online

presence.

ㅤ
Please note that the following report has been specifically prepared for demonstration and

illustrative purposes. Consequently, it may not provide an exhaustive account of the

technical particulars typically found within an authentic security assessment report.

Executive Summary

The primary objective of the evaluation was to identify potential security vulnerabilities

and issues within a specific subset of the Acme Co infrastructure, with the aim of

safeguarding the security and privacy of its users and overall system. To achieve this, a

black box penetration test was performed, simulating the actions and strategies of a real-

world adversary. By adopting this approach, the GlitchSecure team sought to gain

comprehensive insights into defence mechanisms and identify any exploitable

weaknesses.

ㅤ
All assessment activities were conducted in a manner that simulated an external malicious

actor engaged in a targeted attack. The ultimate goal was to identify and exploit any

existing security weaknesses that could allow a remote attacker to gain unauthorised

access to organisational and customer data and systems. This assessment adhered to the

recommendations and industry best practices outlined by The Open Web Application

Security Project (OWASP). OWASP's framework covers various aspects, including but not

limited to: input validation, session management, encryption, error handling, and secure

coding practices.

https://glitchsecure.com/?utm_source=report_pdf

4 of 31 GlitchSecure - Real-time Continuous Security Testing

Attack Narrative

Reconnaissance & Information Gathering

As with typical black box assessments, Acme Co provided minimal information regarding

the existing infrastructure and technologies employed. This approach aimed to closely

replicate a real-world attack where external actors lack internal knowledge. Information

gathered about the targets came from a variety of sources and focused on identifying the

software utilised, discovering open ports and services, and conducting file and directory

enumeration.

Identifying Technologies Used

Fingerprinting was performed using a combination of manual source code review and Open

Source tools.

Port Scanning & Service Identification

Port scanning was performed on all hosts within the scope with scanning covering a port

range of 1-65535 across TCP and UDP.

ㅤ
The follow targets showed open ports:

app.acme.tld port 443

Subdomain Enumeration

Throughout the course of the engagement, one additional subdomain was discovered. The

following subdomains were found to be active, and within scope for this assessment:

app.acme.tld

app-old.acme.tld

Directory & File Enumeration

Directory enumeration was performed on all assets using predefined and customised word

lists to help expand the scope and identify potentially sensitive information and additional

targets.

Automated Scanning

https://glitchsecure.com/?utm_source=report_pdf

5 of 31 GlitchSecure - Real-time Continuous Security Testing

Several automated scanning and testing tools were deployed on the previously found

hosts to help ensure any potential findings were not missed. Results from automated tools

were then processed and manually reviewed and tested to confirm the accuracy of the

findings.

Manual Testing

Manual testing was carefully conducted using various methodologies including those

outlined in the OWASP Application Security Verification Standard (ASVS).

https://glitchsecure.com/?utm_source=report_pdf

6 of 31 GlitchSecure - Real-time Continuous Security Testing

Findings

During the assessment, a total of 5 issues were identified. Of the findings,
2 are of high

severity,
2 are of medium severity,
1 is of low severity,
.

https://glitchsecure.com/?utm_source=report_pdf

7 of 31 GlitchSecure - Real-time Continuous Security Testing

Asset List

This table presents an overview of the assets that were targeted during this assessment,

along with the number of corresponding findings.

Asset # Asset Location Asset Type Environment Findings

ym3sai_1 app.acme.tld DOMAIN Production 5

ym3sai_2 13.55.55.37 IP ADDRESS Production 1

ym3sai_4 10.13.37.1 IP ADDRESS Development 0

Vulnerability & Findings List

The following lists contains summary information of vulnerabilities and findings identified

during the assessment.
Corresponding technical details can be found in the Vulnerability &

Findings Details section.

Affected Asset Finding Severity

app.acme.tld Account Compromise Through Password Reuse HIGH

app.acme.tld Email MFA bypass HIGH

app.acme.tld Username Enumeration LOW

13.55.55.37,

app.acme.tld
Web Application Firewall Bypass MEDIUM

app.acme.tld Privilege Escalation MEDIUM

https://glitchsecure.com/?utm_source=report_pdf

8 of 31 GlitchSecure - Real-time Continuous Security Testing

Vulnerability & Findings Details

Account Compromise Through Password Reuse #1041_1 Reported by Jade Null

Category:

Sensitive Data Exposure -> Disclosure of Secrets

CWE(s):

CWE-654: Reliance on a Single Factor in a Security Decision
CWE-308: Use of Single-factor Authentication

CVSS 3.1 Base Score:

8.2
 (High) - CVSS3.1/AV:C/AC:V/PR:S/UI:S/S:3/C:1/I:A/A:V

Affected Assets

app.acme.tld

Overview

During testing, it was found that several employees at Acme Co were previously impacted by third-party data breaches

that publicly exposed their plaintext credentials on the dark web. The GlitchSecure team analysed this publicly available

breach data and utilised the information found to perform a targeted password stuffing attacks on the Acme web

application. In doing so, the team successfully compromised a director-level employee account.

Technical Details

The GlitchSecure team searched through publicly available breach data and identified the following plaintext

email/password combinations:

Username Password

laura@acme.tld hunter2

gary@acme.tld leosatec9

stefan@acme.tld stefan36

stella@acme.tld 1sammyy

stella@acme.tld stelstar100

Using the list above, the team performed a password stuffing attack against app.acme.tld using various permutations

of each password.

high resolved

https://glitchsecure.com/?utm_source=report_pdf
https://cwe.mitre.org/data/definitions/654.html
https://cwe.mitre.org/data/definitions/308.html
mailto:laura@acme.tld
mailto:gary@acme.tld
mailto:stefan@acme.tld
mailto:stella@acme.tld
mailto:stella@acme.tld

9 of 31 GlitchSecure - Real-time Continuous Security Testing

As demonstrated in this screenshot, the team was able to successfully login to the account of laura@acme.tld using

the credentials noted in the table above.

Severity Detail

Due to the increased access level of the compromised account, the impact to confidentiality is significant. The

compromised user is a director-level employee at Acme Co and had access to a large number of potentially confidential

Acme customer names and information.

Remediation Steps

Immediately reset the affected user's password.

Investigate logs for signs of suspicious successful login activity.

Implement internal employee training to advise against password reuse and encourage the use of password

managers.

Implement mandatory MFA for all privileged employee accounts.

Implement login notifications when user accounts are accessed from a new device or IP.

References

OWASP Credential Stuffing

OWASP Credential Stuffing Prevention Cheat Sheet

Have I Been Pwned?

OWASP Multifactor Authentication Cheat Sheet

Laura Person, Director at Acme Co (LinkedIn)

https://glitchsecure.com/?utm_source=report_pdf
https://owasp.org/www-community/attacks/Credential_stuffing
https://cheatsheetseries.owasp.org/cheatsheets/Credential_Stuffing_Prevention_Cheat_Sheet.html
https://haveibeenpwned.com/
https://cheatsheetseries.owasp.org/cheatsheets/Multifactor_Authentication_Cheat_Sheet.html
https://www.linkedin.com/in/glitchwitch/

10 of 31 GlitchSecure - Real-time Continuous Security Testing

Email MFA bypass #1041_2 Reported by Dirk Nyhof

Category:

Broken Authentication and Session Management -> Second Factor Authentication (2FA) Bypass

CWE(s):

CWE-302: Authentication Bypass by Assumed-Immutable Data

CVSS 3.1 Base Score:

7.1
 (High) - CVSS3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:N

Affected Assets

app.acme.tld

Affected Locations

/api/2fa

Overview

During the testing, it was discovered that it's possible to bypass email MFA and login to any account without confirming

the email verification code.

Additional testing of the TOTP-based MFA flow revealed this that only accounts utilising email based MFA were affected.

Technical Details

During the testing, the GlitchSecure team observed that when confirming the MFA email code, a POST request is sent to

the /api/mfa endpoint, which is different from the endpoint used for TOTP MFA.

To reproduce this bug follow the steps:

Login to an account that has email MFA enabled.

Setup the proxy tool to intercept the request and submit the random MFA code.

high resolved

https://glitchsecure.com/?utm_source=report_pdf
https://cwe.mitre.org/data/definitions/302.html

11 of 31 GlitchSecure - Real-time Continuous Security Testing

Intercept the response on the MFA submit request and change the response status code of 422 Unprocessable

Entity to the 200 OK.

https://glitchsecure.com/?utm_source=report_pdf

12 of 31 GlitchSecure - Real-time Continuous Security Testing

https://glitchsecure.com/?utm_source=report_pdf

13 of 31 GlitchSecure - Real-time Continuous Security Testing

Forward the rest of the requests and note you are now fully logged into the account and MFA has been bypassed.

Severity Detail

Failure to validate the email MFA verification code can result in authentication bypass and result in account takeover as

it defeats the last protection mechanism that guards the account.

Remediation Steps

Implement access control measures that prevents the users from using the application if email MFA has not been

successfully validated.

https://glitchsecure.com/?utm_source=report_pdf

14 of 31 GlitchSecure - Real-time Continuous Security Testing

Username Enumeration #1041_3 Reported by Brad Bahls

Category:

Broken Access Control (BAC) -> Username/Email Enumeration

CWE(s):

CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

CVSS 3.1 Base Score:

5.3
 (Medium) - CVSS3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Affected Assets

app.acme.tld

Affected Locations

/api/calendar/book?calendar=[ID]

Overview

During testing it was found that some usernames within the target web application could be enumerated from a publicly

accessible API endpoint using an insecure direct object reference (IDOR) attack. The information disclosed comprised of

full names, usernames, and user IDs.

Technical Details

The Acme Co web application allows users to create public facing calendar scheduling pages. These pages are

inherently public, however there is no central repository of this information.

The GlitchSecure team was able to utilise a publicly accessible API endpoint and submit a large number of GET requests

with sequentially increasing IDs in the calendar parameter. This allowed the team to create a detailed list of all user

calendars within the platform.

To demonstrate this, the team sent the following GET request with the [ID] parameters from 0 through 1000.

Request:

GET /api/calendar/book?calendar=[ID] HTTP/2

Host: cal.com

[...ommitted for brevity...]

As shown in the screenshot below, the team was able to compile a table with the information from the responses.

low unfixed

https://glitchsecure.com/?utm_source=report_pdf
https://cwe.mitre.org/data/definitions/200.html

15 of 31 GlitchSecure - Real-time Continuous Security Testing

Severity Detail

While the information exposed was limited to public usernames and details, the issue highlights an unintended

consequence of an IDOR vulnerability and the lack of rate limiting. A malicious attacker could utilise this vulnerability to

compile a targeted list of known users of the Acme Co calendar service. This information could be further utilised in

targeted attacks such as phishing and password stuffing.

Remediation Steps

Replace the use of sequential ID numbers with strongly randomised UUIDs.

Reduce the exposure of user controllable parameters when not needed.

References

OWASP: Insecure Direct Object Reference Prevention Cheat Sheet

https://glitchsecure.com/?utm_source=report_pdf
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

16 of 31 GlitchSecure - Real-time Continuous Security Testing

Web Application Firewall Bypass #1041_4 Reported by Dirk Nyhof

Category:

Server Security Misconfiguration -> Web Application Firewall (WAF) Bypass

CWE(s):

CWE-693: Protection Mechanism Failure

CVSS 3.1 Base Score:

7.6
 (High) - CVSS3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Affected Assets

13.55.55.37

app.acme.tld

Overview

During testing, it was found that a subdomain in scope, which uses the Cloudflare Web Application Firewall for site

protection, had it's IP addresses exposed via another subdomain discovered during the reconnaissance phase. By using

the IP address discovered from the secondary subdomain, it became possible to establish a direct connection to the

primary subdomain, bypassing the protection provided by the Web Application Firewall (WAF).

Technical Details

During testing, it was noted that app.acme.tld was utilising the Cloudflare web application firewall. Additionally, during

reconnaissance, the team discovered the subdomain app-old.acme.tld which was noted to resolve to the IP address

13.55.55.37.

Upon visiting app-old.acme.tld the user is redirect to https://app.acme.tld/

HTTP/2 302

server: nginx

date: Tue, 10 May 2023 18:27:53 GMT

content-type: text/html; charset=UTF-8

location: `https://app.acme.tld

x-httpd: 1

x-proxy-cache-info: DT:1

Using this information, the team attempted to connect to app.acme.tld through the context of the IP address disclosed,

with the expectation that the underlying server would be the same and would accept the request.

To perform this bypass of the Cloudflare Web Application Firewall, the team added the following to our host file.

13.55.55.37 app.acme.tld

Upon doing this action, the team discovered that they were able to directly connect to the impacted site, bypassing any

protection provided by the WAF.

medium unfixed

https://glitchsecure.com/?utm_source=report_pdf
https://cwe.mitre.org/data/definitions/693.html

17 of 31 GlitchSecure - Real-time Continuous Security Testing

Severity Detail

A Web Application Firewall (WAF) helps protect web applications by filtering and monitoring HTTP traffic between a web

application and the Internet. It typically protects web applications from attacks such as cross-site forgery, cross-site-

scripting (XSS), file inclusion, and SQL injection, among others.

The ability for an attacker to bypass the WAF means the protection provided is no longer in place, increasing the risk of

serious exploitation and reducing the insight into potential attacks.

Remediation Steps

To resolve this issue, we recommend the following steps be taken.

Disable the app-old.acme.tld DNS record that exposed the origin server's IP.

Enable IP allowlisting to only accept traffic from the WAF's known IP addresses, in this case: Cloudflare.

https://glitchsecure.com/?utm_source=report_pdf
https://www.cloudflare.com/ips/

18 of 31 GlitchSecure - Real-time Continuous Security Testing

Privilege Escalation #1041_5 Reported by Jade Null

Category:

Broken Authentication and Session Management -> Privilege Escalation

CWE(s):

CWE-250: Execution with Unnecessary Privileges
CWE-269: Improper Privilege Management
CWE-284: Improper Access

Control
CWE-274: Improper Handling of Insufficient Privileges

Affected Assets

app.acme.tld

Affected Locations

/v1/accounts/[org]/users/[user]

Overview

During testing the team identified a privilege escalation vulnerability that would allow any user with the user role to

upgrade their account to that of an admin. Doing so would allow the user account to take full ownership and control of

the parent organisation and subsequently bypass all access controls in place.

Technical Details

To demonstrate this flaw, you will need two accounts. One initial "Admin" account (created when signing up) and a

second invited user with the "User" role.

From the editor account, we first intercept any request within the application. This will show us that the account ID is

1337.

Next, we intercept a request to update the user's profile using the "Job" dropdown. This will submit a PATCH request to

/v1/users/2.

Using this information, the low-privileged user can now submit the following PATCH request to upgrade their account to

that of the admin role.

PATCH /v1/accounts/1337/users/2 HTTP/2

Host: app.acme.tld

[...omitted for brevity...]

{"role":"ADMIN"}

As shown above, we send a PATCH request to update the 1337 organisation's 2 user account and assign the role ADMIN.

Since no checks are in place, our underprivileged user now has full control of the account and can perform all actions

within it.

Severity Detail

Successful exploitation of this attack would result in complete account takeover and compromise. A user who is able to

escalate their privileges to that of an admin is able to bypass all access controls resulting in a complete lack of

confidentiality and integrity of the target. It's important to note, for successful exploitation, the attacker must already

have a user account within the target organisation, reducing the likelihood of attack. However when paired with the

previously reported leaked credentials and MFA bypass, the likelihood is increased.

medium resolved

https://glitchsecure.com/?utm_source=report_pdf
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/274.html

19 of 31 GlitchSecure - Real-time Continuous Security Testing

Remediation Steps

Ensure proper logic is in place to prevent users from changing their role to a role of greater permissions.

Implement access controls on the affected endpoint to ensure only administrative users can perform the reported

action.

References

OWASP: Authorization Cheat Sheet

https://glitchsecure.com/?utm_source=report_pdf
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

20 of 31 GlitchSecure - Real-time Continuous Security Testing

Conclusion & General Comments

Overall, the security level of the Acme Co application was deemed fair, exhibiting only a

limited number of vulnerabilities. However, it is strongly recommended that additional

testing of related assets should be conducted to identify similar potential issues.

Furthermore, it is advised to explore supplementary testing of pivot points into the

internal network.

Additionally, the following points should be considered:

Acme Co should continue to implement a consistent patch management cycle to

include plugins and third-party libraries in use on all sites and infrastructure.

Acme Co should provide public information for the desired point of contact and the

process of reporting future issues. The transparency helps foster a collaborative

environment and allows for the assistance of other potential researchers who find issues.

Acme Co should consider performing security testing on a regular basis.

Document Change Log

Version Date Comment

v1 16 May 2023 Initial Report

Note: Document change log does not reflect updates to finding statuses as these are rendered dynamicly when downloading the report.

This PDF was generated and downloaded from the GlitchSecure platform on 02 August 2023 00:18 UTC.

https://glitchsecure.com/?utm_source=report_pdf

21 of 31 GlitchSecure - Real-time Continuous Security Testing

Appendix - Coverage Checklist

As part of this assessment, GlitchSecure used the Application Security Verification

Standard 4.0.3 Level 1 to ensure full and
standardised coverage of the assets in scope.

Below you will find a list of all tests completed.

V2 Authentication

V2.1 Password Security

✔️ Verify that user set passwords are at least 12 characters in length (after multiple

spaces are combined).

✔️ Verify that passwords of at least 64 characters are permitted, and that passwords

of more than 128 characters are denied.

✔️ Verify that password truncation is not performed. However, consecutive multiple

spaces may be replaced by a single space.

✔️ Verify that any printable Unicode character, including language neutral characters

such as spaces and Emojis are permitted in passwords.

✔️ Verify users can change their password.

✔️ Verify that password change functionality requires the user's current and new

password.

✔️ Verify that passwords submitted during account registration, login, and password

change are checked against a set of breached passwords either locally (such as the

top 1,000 or 10,000 most common passwords which match the system's password

policy) or using an external API. If using an API a zero knowledge proof or other

mechanism should be used to ensure that the plain text password is not sent or used

in verifying the breach status of the password. If the password is breached, the

application must require the user to set a new non-breached password.

✔️ Verify that a password strength meter is provided to help users set a stronger

password.

✔️ Verify that there are no password composition rules limiting the type of characters

permitted. There should be no requirement for upper or lower case or numbers or

special characters.

✔️ Verify that there are no periodic credential rotation or password history

requirements.

✔️ Verify that "paste" functionality, browser password helpers, and external password

managers are permitted.

https://glitchsecure.com/?utm_source=report_pdf

22 of 31 GlitchSecure - Real-time Continuous Security Testing

✔️ Verify that the user can choose to either temporarily view the entire masked

password, or temporarily view the last typed character of the password on platforms

that do not have this as built-in functionality.

V2.2 General Authenticator Security

✔️ Verify that anti-automation controls are effective at mitigating breached credential

testing, brute force, and account lockout attacks. Such controls include blocking the

most common breached passwords, soft lockouts, rate limiting, CAPTCHA, ever

increasing delays between attempts, IP address restrictions, or risk-based restrictions

such as location, first login on a device, recent attempts to unlock the account, or

similar. Verify that no more than 100 failed attempts per hour is possible on a single

account.

✔️ Verify that the use of weak authenticators (such as SMS and email) is limited to

secondary verification and transaction approval and not as a replacement for more

secure authentication methods. Verify that stronger methods are offered before weak

methods, users are aware of the risks, or that proper measures are in place to limit

the risks of account compromise.

✔️ Verify that secure notifications are sent to users after updates to authentication

details, such as credential resets, email or address changes, logging in from unknown

or risky locations. The use of push notifications - rather than SMS or email - is

preferred, but in the absence of push notifications, SMS or email is acceptable as long

as no sensitive information is disclosed in the notification.

V2.3 Authenticator Lifecycle

✔️ Verify system generated initial passwords or activation codes SHOULD be securely

randomly generated, SHOULD be at least 6 characters long, and MAY contain letters

and numbers, and expire after a short period of time. These initial secrets must not

be permitted to become the long term password.

V2.5 Credential Recovery

✔️ Verify that a system generated initial activation or recovery secret is not sent in

clear text to the user.

✔️ Verify password hints or knowledge-based authentication (so-called "secret

questions") are not present.

✔️ Verify password credential recovery does not reveal the current password in any

way.

✔️ Verify shared or default accounts are not present (e.g. "root", "admin", or "sa").

✔️ Verify that if an authentication factor is changed or replaced, that the user is

notified of this event.

✔️ Verify forgotten password, and other recovery paths use a secure recovery

mechanism, such as time-based OTP (TOTP) or other soft token, mobile push, or

https://glitchsecure.com/?utm_source=report_pdf

23 of 31 GlitchSecure - Real-time Continuous Security Testing

another offline recovery mechanism.

V2.7 Out of Band Verifier

✔️ Verify that clear text out of band (NIST "restricted") authenticators, such as SMS or

PSTN, are not offered by default, and stronger alternatives such as push notifications

are offered first.

✔️ Verify that the out of band verifier expires out of band authentication requests,

codes, or tokens after 10 minutes.

✔️ Verify that the out of band verifier authentication requests, codes, or tokens are

only usable once, and only for the original authentication request.

✔️ Verify that the out of band authenticator and verifier communicates over a secure

independent channel.

V2.8 One Time Verifier

✔️ Verify that time-based OTPs have a defined lifetime before expiring.

V3 Session Management

V3.1 Fundamental Session Management Security

✔️ Verify the application never reveals session tokens in URL parameters.

V3.2 Session Binding

✔️ Verify the application generates a new session token on user authentication.

✔️ Verify that session tokens possess at least 64 bits of entropy.

✔️ Verify the application only stores session tokens in the browser using secure

methods such as appropriately secured cookies (see section 3.4) or HTML 5 session

storage.

V3.3 Session Termination

✔️ Verify that logout and expiration invalidate the session token, such that the back

button or a downstream relying party does not resume an authenticated session,

including across relying parties.

✔️ If authenticators permit users to remain logged in, verify that re-authentication

occurs both when actively used or after an idle period of 30 days.

V3.4 Cookie-based Session Management

✔️ Verify that cookie-based session tokens have the 'Secure' attribute set.

✔️ Verify that cookie-based session tokens have the 'HttpOnly' attribute set.

✔️ Verify that cookie-based session tokens utilize the 'SameSite' attribute to limit

exposure to cross-site request forgery attacks.

https://glitchsecure.com/?utm_source=report_pdf

24 of 31 GlitchSecure - Real-time Continuous Security Testing

✔️ Verify that cookie-based session tokens use the "__Host-" prefix so cookies are only

sent to the host that initially set the cookie.

✔️ Verify that if the application is published under a domain name with other

applications that set or use session cookies that might disclose the session cookies,

set the path attribute in cookie-based session tokens using the most precise path

possible.

V3.7 Defenses Against Session Management Exploits

✔️ Verify the application ensures a full, valid login session or requires re-

authentication or secondary verification before allowing any sensitive transactions or

account modifications.

V4 Access Control

V4.1 General Access Control Design

✔️ Verify that the application enforces access control rules on a trusted service layer,

especially if client-side access control is present and could be bypassed.

✔️ Verify that all user and data attributes and policy information used by access

controls cannot be manipulated by end users unless specifically authorized.

✔️ Verify that the principle of least privilege exists - users should only be able to

access functions, data files, URLs, controllers, services, and other resources, for

which they possess specific authorization. This implies protection against spoofing

and elevation of privilege.

✔️ Verify that access controls fail securely including when an exception occurs.

V4.2 Operation Level Access Control

✔️ Verify that sensitive data and APIs are protected against Insecure Direct Object

Reference (IDOR) attacks targeting creation, reading, updating and deletion of

records, such as creating or updating someone else's record, viewing everyone's

records, or deleting all records.

✔️ Verify that the application or framework enforces a strong anti-CSRF mechanism to

protect authenticated functionality, and effective anti-automation or anti-CSRF

protects unauthenticated functionality.

V4.3 Other Access Control Considerations

✔️ Verify administrative interfaces use appropriate multi-factor authentication to

prevent unauthorized use.

✔️ Verify that directory browsing is disabled unless deliberately desired. Additionally,

applications should not allow discovery or disclosure of file or directory metadata,

such as Thumbs.db, .DS_Store, .git or .svn folders.

https://glitchsecure.com/?utm_source=report_pdf

25 of 31 GlitchSecure - Real-time Continuous Security Testing

V5 Validation, Sanitization and Encoding

V5.1 Input Validation

✔️ Verify that the application has defenses against HTTP parameter pollution attacks,

particularly if the application framework makes no distinction about the source of

request parameters (GET, POST, cookies, headers, or environment variables).

✔️ Verify that frameworks protect against mass parameter assignment attacks, or that

the application has countermeasures to protect against unsafe parameter

assignment, such as marking fields private or similar.

✔️ Verify that all input (HTML form fields, REST requests, URL parameters, HTTP

headers, cookies, batch files, RSS feeds, etc) is validated using positive validation

(allow lists).

✔️ Verify that structured data is strongly typed and validated against a defined

schema including allowed characters, length and pattern (e.g. credit card numbers,

e-mail addresses, telephone numbers, or validating that two related fields are

reasonable, such as checking that suburb and zip/postcode match).

✔️ Verify that URL redirects and forwards only allow destinations which appear on an

allow list, or show a warning when redirecting to potentially untrusted content.

V5.2 Sanitization and Sandboxing

✔️ Verify that all untrusted HTML input from WYSIWYG editors or similar is properly

sanitized with an HTML sanitizer library or framework feature.

✔️ Verify that unstructured data is sanitized to enforce safety measures such as

allowed characters and length.

✔️ Verify that the application sanitizes user input before passing to mail systems to

protect against SMTP or IMAP injection.

✔️ Verify that the application avoids the use of eval() or other dynamic code execution

features. Where there is no alternative, any user input being included must be

sanitized or sandboxed before being executed.

✔️ Verify that the application protects against template injection attacks by ensuring

that any user input being included is sanitized or sandboxed.

✔️ Verify that the application protects against SSRF attacks, by validating or sanitizing

untrusted data or HTTP file metadata, such as filenames and URL input fields, and

uses allow lists of protocols, domains, paths and ports.

✔️ Verify that the application sanitizes, disables, or sandboxes user-supplied Scalable

Vector Graphics (SVG) scriptable content, especially as they relate to XSS resulting

from inline scripts, and foreignObject.

✔️ Verify that the application sanitizes, disables, or sandboxes user-supplied scriptable

or expression template language content, such as Markdown, CSS or XSL stylesheets,

https://glitchsecure.com/?utm_source=report_pdf

26 of 31 GlitchSecure - Real-time Continuous Security Testing

BBCode, or similar.

V5.3 Output Encoding and Injection Prevention

✔️ Verify that output encoding is relevant for the interpreter and context required. For

example, use encoders specifically for HTML values, HTML attributes, JavaScript, URL

parameters, HTTP headers, SMTP, and others as the context requires, especially from

untrusted inputs (e.g. names with Unicode or apostrophes, such as ねこ or O'Hara).

✔️ Verify that output encoding preserves the user's chosen character set and locale,

such that any Unicode character point is valid and safely handled.

✔️ Verify that context-aware, preferably automated - or at worst, manual - output

escaping protects against reflected, stored, and DOM based XSS.

✔️ Verify that data selection or database queries (e.g. SQL, HQL, ORM, NoSQL) use

parameterized queries, ORMs, entity frameworks, or are otherwise protected from

database injection attacks.

✔️ Verify that where parameterized or safer mechanisms are not present, context-

specific output encoding is used to protect against injection attacks, such as the use

of SQL escaping to protect against SQL injection.

✔️ Verify that the application protects against JSON injection attacks, JSON eval

attacks, and JavaScript expression evaluation.

✔️ Verify that the application protects against LDAP injection vulnerabilities, or that

specific security controls to prevent LDAP injection have been implemented.

✔️ Verify that the application protects against OS command injection and that

operating system calls use parameterized OS queries or use contextual command

line output encoding.

✔️ Verify that the application protects against Local File Inclusion (LFI) or Remote File

Inclusion (RFI) attacks.

✔️ Verify that the application protects against XPath injection or XML injection attacks.

V5.5 Deserialization Prevention

✔️ Verify that serialized objects use integrity checks or are encrypted to prevent

hostile object creation or data tampering.

✔️ Verify that the application correctly restricts XML parsers to only use the most

restrictive configuration possible and to ensure that unsafe features such as resolving

external entities are disabled to prevent XML eXternal Entity (XXE) attacks.

✔️ Verify that deserialization of untrusted data is avoided or is protected in both

custom code and third-party libraries (such as JSON, XML and YAML parsers).

✔️ Verify that when parsing JSON in browsers or JavaScript-based backends,

JSON.parse is used to parse the JSON document. Do not use eval() to parse JSON.

V6 Stored Cryptography

https://glitchsecure.com/?utm_source=report_pdf

27 of 31 GlitchSecure - Real-time Continuous Security Testing

V6.2 Algorithms

✔️ Verify that all cryptographic modules fail securely, and errors are handled in a way

that does not enable Padding Oracle attacks.

V7 Error Handling and Logging

V7.1 Log Content

✔️ Verify that the application does not log credentials or payment details. Session

tokens should only be stored in logs in an irreversible, hashed form.

✔️ Verify that the application does not log other sensitive data as defined under local

privacy laws or relevant security policy.

V7.4 Error Handling

✔️ Verify that a generic message is shown when an unexpected or security sensitive

error occurs, potentially with a unique ID which support personnel can use to

investigate.

V8 Data Protection

V8.2 Client-side Data Protection

✔️ Verify the application sets sufficient anti-caching headers so that sensitive data is

not cached in modern browsers.

✔️ Verify that data stored in browser storage (such as localStorage, sessionStorage,

IndexedDB, or cookies) does not contain sensitive data.

✔️ Verify that authenticated data is cleared from client storage, such as the browser

DOM, after the client or session is terminated.

V8.3 Sensitive Private Data

✔️ Verify that sensitive data is sent to the server in the HTTP message body or

headers, and that query string parameters from any HTTP verb do not contain

sensitive data.

✔️ Verify that users have a method to remove or export their data on demand.

✔️ Verify that users are provided clear language regarding collection and use of

supplied personal information and that users have provided opt-in consent for the

use of that data before it is used in any way.

✔️ Verify that all sensitive data created and processed by the application has been

identified, and ensure that a policy is in place on how to deal with sensitive data.

V9 Communication

https://glitchsecure.com/?utm_source=report_pdf

28 of 31 GlitchSecure - Real-time Continuous Security Testing

V9.1 Client Communication Security

✔️ Verify that TLS is used for all client connectivity, and does not fall back to insecure

or unencrypted communications.

✔️ Verify using up to date TLS testing tools that only strong cipher suites are enabled,

with the strongest cipher suites set as preferred.

✔️ Verify that only the latest recommended versions of the TLS protocol are enabled,

such as TLS 1.2 and TLS 1.3. The latest version of the TLS protocol should be the

preferred option.

V10 Malicious Code

V10.3 Application Integrity

✔️ Verify that if the application has a client or server auto-update feature, updates

should be obtained over secure channels and digitally signed. The update code must

validate the digital signature of the update before installing or executing the update.

✔️ Verify that the application employs integrity protections, such as code signing or

subresource integrity. The application must not load or execute code from untrusted

sources, such as loading includes, modules, plugins, code, or libraries from untrusted

sources or the Internet.

✔️ Verify that the application has protection from subdomain takeovers if the

application relies upon DNS entries or DNS subdomains, such as expired domain

names, out of date DNS pointers or CNAMEs, expired projects at public source code

repos, or transient cloud APIs, serverless functions, or storage buckets (autogen-

bucket-id.cloud.example.com) or similar. Protections can include ensuring that DNS

names used by applications are regularly checked for expiry or change.

V11 Business Logic

V11.1 Business Logic Security

✔️ Verify that the application will only process business logic flows for the same user

in sequential step order and without skipping steps.

✔️ Verify that the application will only process business logic flows with all steps being

processed in realistic human time, i.e. transactions are not submitted too quickly.

✔️ Verify the application has appropriate limits for specific business actions or

transactions which are correctly enforced on a per user basis.

✔️ Verify that the application has anti-automation controls to protect against

excessive calls such as mass data exfiltration, business logic requests, file uploads or

denial of service attacks.

https://glitchsecure.com/?utm_source=report_pdf

29 of 31 GlitchSecure - Real-time Continuous Security Testing

✔️ Verify the application has business logic limits or validation to protect against likely

business risks or threats, identified using threat modeling or similar methodologies.

V12 Files and Resources

V12.1 File Upload

✔️ Verify that the application will not accept large files that could fill up storage or

cause a denial of service.

V12.3 File Execution

✔️ Verify that user-submitted filename metadata is not used directly by system or

framework filesystems and that a URL API is used to protect against path traversal.

✔️ Verify that user-submitted filename metadata is validated or ignored to prevent the

disclosure, creation, updating or removal of local files (LFI).

✔️ Verify that user-submitted filename metadata is validated or ignored to prevent the

disclosure or execution of remote files via Remote File Inclusion (RFI) or Server-side

Request Forgery (SSRF) attacks.

✔️ Verify that the application protects against Reflective File Download (RFD) by

validating or ignoring user-submitted filenames in a JSON, JSONP, or URL parameter,

the response Content-Type header should be set to text/plain, and the Content-

Disposition header should have a fixed filename.

✔️ Verify that untrusted file metadata is not used directly with system API or libraries,

to protect against OS command injection.

V12.4 File Storage

✔️ Verify that files obtained from untrusted sources are stored outside the web root,

with limited permissions.

✔️ Verify that files obtained from untrusted sources are scanned by antivirus scanners

to prevent upload and serving of known malicious content.

V12.5 File Download

✔️ Verify that the web tier is configured to serve only files with specific file extensions

to prevent unintentional information and source code leakage. For example, backup

files (e.g. .bak), temporary working files (e.g. .swp), compressed files (.zip, .tar.gz,

etc) and other extensions commonly used by editors should be blocked unless

required.

✔️ Verify that direct requests to uploaded files will never be executed as

HTML/JavaScript content.

V12.6 SSRF Protection

https://glitchsecure.com/?utm_source=report_pdf

30 of 31 GlitchSecure - Real-time Continuous Security Testing

✔️ Verify that the web or application server is configured with an allow list of

resources or systems to which the server can send requests or load data/files from.

V13 API and Web Service

V13.1 Generic Web Service Security

✔️ Verify that all application components use the same encodings and parsers to

avoid parsing attacks that exploit different URI or file parsing behavior that could be

used in SSRF and RFI attacks.

✔️ Verify API URLs do not expose sensitive information, such as the API key, session

tokens etc.

V13.2 RESTful Web Service

✔️ Verify that enabled RESTful HTTP methods are a valid choice for the user or action,

such as preventing normal users using DELETE or PUT on protected API or resources.

✔️ Verify that JSON schema validation is in place and verified before accepting input.

✔️ Verify that RESTful web services that utilize cookies are protected from Cross-Site

Request Forgery via the use of at least one or more of the following: double submit

cookie pattern, CSRF nonces, or Origin request header checks.

V13.3 SOAP Web Service

✔️ Verify that XSD schema validation takes place to ensure a properly formed XML

document, followed by validation of each input field before any processing of that

data takes place.

V14 Configuration

V14.2 Dependency

✔️ Verify that all components are up to date, preferably using a dependency checker

during build or compile time.

✔️ Verify that all unneeded features, documentation, sample applications and

configurations are removed.

✔️ Verify that if application assets, such as JavaScript libraries, CSS or web fonts, are

hosted externally on a Content Delivery Network (CDN) or external provider,

Subresource Integrity (SRI) is used to validate the integrity of the asset.

V14.3 Unintended Security Disclosure

✔️ Verify that web or application server and application framework debug modes are

disabled in production to eliminate debug features, developer consoles, and

unintended security disclosures.

https://glitchsecure.com/?utm_source=report_pdf

31 of 31 GlitchSecure - Real-time Continuous Security Testing

✔️ Verify that the HTTP headers or any part of the HTTP response do not expose

detailed version information of system components.

V14.4 HTTP Security Headers

✔️ Verify that every HTTP response contains a Content-Type header. Also specify a

safe character set (e.g., UTF-8, ISO-8859-1) if the content types are text/*, /+xml and

application/xml. Content must match with the provided Content-Type header.

✔️ Verify that all API responses contain a Content-Disposition: attachment;

filename="api.json" header (or other appropriate filename for the content type).

✔️ Verify that a Content Security Policy (CSP) response header is in place that helps

mitigate impact for XSS attacks like HTML, DOM, JSON, and JavaScript injection

vulnerabilities.

✔️ Verify that all responses contain a X-Content-Type-Options: nosniff header.

✔️ Verify that a Strict-Transport-Security header is included on all responses and for all

subdomains, such as Strict-Transport-Security: max-age=15724800;

includeSubdomains.

✔️ Verify that a suitable Referrer-Policy header is included to avoid exposing sensitive

information in the URL through the Referer header to untrusted parties.

✔️ Verify that the content of a web application cannot be embedded in a third-party

site by default and that embedding of the exact resources is only allowed where

necessary by using suitable Content-Security-Policy: frame-ancestors and X-Frame-

Options response headers.

V14.5 HTTP Request Header Validation

✔️ Verify that the application server only accepts the HTTP methods in use by the

application/API, including pre-flight OPTIONS, and logs/alerts on any requests that are

not valid for the application context.

✔️ Verify that the supplied Origin header is not used for authentication or access

control decisions, as the Origin header can easily be changed by an attacker.

✔️ Verify that the Cross-Origin Resource Sharing (CORS) Access-Control-Allow-Origin

header uses a strict allow list of trusted domains and subdomains to match against

and does not support the "null" origin.

https://glitchsecure.com/?utm_source=report_pdf

