
Security Evaluation of Apple’s iPhone
Charlie Miller
Jake Honoroff
Joshua Mason

Independent Security Evaluators

{cmiller, jake, josh} AT securityevaluators.com

July 19, 2007

Executive Summary
The Apple iPhone was released to much fanfare on June 29, 2007. Because of the large
amount of personal information stored on these mobile devices, we decided to conduct a secu-
rity analysis of the iPhone. The iPhone's applications for surfing the web and checking emails
are potentially at risk to remote attacks. We wanted to determine exactly how well the software
on the iPhone was designed to resist such attacks.

The iPhone runs a stripped down and customized version of Mac OS X on an ARM processor.
Much of the device's claimed security is reliant on its restrictions against running third party ap-
plications. Only Javascipt code can be executed in the Safari web browser, ensuring that all
such code executes in a “sandbox” environment. Many of the features of Safari have also been
removed, such as the ability to use plug-ins such as Flash. Likewise, many filetypes cannot be
downloaded. These actions serve to reduce the attack surface of the device.

However, there are serious problems with the design and implementation of security on the
iPhone. The most glaring is that all processes of interest run with administrative privileges. This
implies that a compromise of any application gives an attacker full access to the device. Like the
desktop versions of Mac OS X on which its operating system is based, the iPhone also does not
utilize widely accepted practices, such as using address randomization or non-executable
heaps, to make exploitation more difficult. These weaknesses allow for the easy development of
stable exploit code once a vulnerability is discovered.

To demonstrate these security weaknesses, we created an exploit for the Safari browser on the
iPhone. We used an unmodified iPhone to surf to a malicious HTML document that we created.
When this page was viewed, the payload of the exploit forced the iPhone to make an outbound
connection to a server we controlled. The compromised iPhone then sent personal data includ-
ing SMS text messages, contact information, call history, and voice mail information over this
connection. All of this data was collected automatically and surreptitiously. After examination of
the filesystem, it is clear that other personal data such as passwords, emails, and browsing his-
tory could be obtained from the device. We only retrieved some of the personal data but could
just as easily have retrieved any information off the device.

Additionally, we wrote a second exploit that performs physical actions on the phone. When we
viewed a second HTML page in our iPhone, it ran the second exploit payload which forced it to
make a system sound and vibrate the phone for a second. Alternatively, by using other API func-
tions we discovered, the exploit could have dialed phone numbers, sent text messages, or re-
corded audio (as a bugging device) and transmitted it over the network for later collection by a
malicious party.

Apple was notified of these findings, including detailed technical documentation, on July 17th.
While this paper serves to highlight our findings, we will not release the remaining technical de-
tails until August 2nd. This delay is provided in order to give Apple sufficient time to produce
patches so that attackers cannot take advantage of these vulnerabilities.

Introduction
After months of anticipation, the iPhone was
finally released to long lines of customers on
June 29, 2007. Touted by some articles as
the most “successful product introduction of
the 21st century”, we felt it was important to
examine this device for its overall security
posture.

Mobile devices, such as the iPhone, are be-
coming ubiquitous in society. Individuals talk
to their friends, conduct business, shop on-
line, and listen to music, all from these small
portable computers. Some of these devices,
including the iPhone, provide data transmis-
sion over cellular communications and also
through WiFi connections when accessible.
These mobile devices are often used in cor-
porate settings and travel in and out of the
physical building, passing from outside the
firewall into the heart of the protected net-
work of enterprises. People store their ad-
dress books, passwords, email, and other
personal data on these devices. For these
reasons, it is important that these devices are
designed and implemented in as secure a
manner as possible.

In this paper, we examine the security of the
Apple iPhone. We highlight some strengths
in the design and point out some significant
problems. We demonstrate the security defi-
ciencies by producing an exploit which takes
advantage of a flaw in the MobileSafari appli-
cation to gain complete control over the de-
vice.

Public Developments
Prior to this work, there was a large amount
of work by independent researchers in an
effort to access and unlock the iPhone.
Much of this work was reported on the
#iphone-dev IRC channel. One of the first
discoveries was made by a noted researcher
Jon Lech Johansen, known as “DVD Jon”.
He figured out a way to access the WiFi ca-
pabilities of the iPhone without activating it.
Next, a tool was developed called iPhoneIn-

terface. This tool, using the same API func-
tions used by the iTunes player, was able to
access the small portion of the filesystem ac-
cessible to iTunes. The user of this program
could navigate through the file system and
retrieve and place files on the device. The
next step was a program developed called
jailbreak. This program modified the iPhone
in such a way that the entire filesystem could
be accessed through the iPhoneInterface ap-
plication. This did have the drawback that
syncing was impossible after using the tool.
One of the latest developments includes the
ability to activate the phone by only using
AT&T prepaid cards. Only in the last couple
of days did this group of researchers develop
the ability to produce binaries for the iPhone.
At the writing of this document, no one has
been able to unlock the phone.

Overall Security Architec-
ture
The Apple iPhone runs a stripped down ver-
sion of the Mac OS X operating system
commonly found on Apple desktops and
servers. The major difference is that it runs
on an ARM processor instead of x86 or Pow-
erPC processor. ARM processors are com-
mon in mobile devices due to their lower
power consumption. The iPhone comes with
a version of the Safari web browser called
MobileSafari. This version of the browser is
very similar to the typical Safari application
and they share much of the same code base.
However, many of the features of Safari have
been removed in MobileSafari. Likewise,
MobileMail is the iPhone mail client and is a
stripped down version of the Mail program
found on Mac OS X. There are also pro-
grams to send SMS text messages, view
YouTube videos, and check stocks, among
others. The iPhone is capable of sending
and collecting data using the EDGE network
provided by AT&T wireless. Alternatively, it
can send data via WiFi connections and also
has Bluetooth capabilities. An iPhone is acti-
vating by communicating with the iTunes

program running on a computer over a USB
connection. This USB connection is also the
way the iPhone retrieves and syncs data
from desktop computers, allowing syncing
with Calendars, address books, mail settings,
etc. It also is the mechanism whereby music
and videos can be placed on the iPhone.

The security architecture of the iPhone can
best be described as one of reducing the at-
tack surface. This is accomplished by limit-
ing the number of applications on the device
and limiting the functionality of the existing
applications. The device does not even con-
tain common binaries such as bash, ssh, or
even ls. For an example of the reduced func-
tionality of the applications actually present,
consider MobileSafari. On a normal Mac OS
X computer, Safari comes with the ability to
display Flash, while MobileSafari does not
have this capability. Likewise, when down-
loading archives like dmg or zip files, Safari
will launch the appropriate helper applica-
tions, save them to disk, and then mount or
uncompress them. MobileSafari simply re-
fuses to download these file types. Similar
limitations are placed on MobileMail as many
attachment types supported on standard Mac
OS X installs are not supported by Mobile-
Mail. Likewise, the iPhone does not listen on
any TCP or UDP ports for incoming data.
This reduction of the type of data processed
by the device is an effective way to reduce
the exposure to potential vulnerabilities.

Continuing on this trend of reducing expo-
sure, the Apple iPhone does not allow third
party applications to run on the device. This
is accomplished by denying access to the file
system to the USB connection and not sup-
plying an appropriate SDK. Similarly, a tech-
nical difficulty exists in that there is no “tool-
chain” in which to build applications for Mac
OS X running on an ARM processor. That is,
no compiler exists outside of Apple which can
build applications which would run on the
iPhone, even if the file could be placed in the
file system. (Some of these considerations
have been changed by the progress of re-
searchers attempting to open these devices,

as discussed in the previous section). By not
allowing 3rd party applications, again the
number of opportunities for attackers is di-
minished.

Unfortunately, once an iPhone application is
breached by an attacker, very little prevents
an attacker from obtaining complete control
of the system. All the processes which han-
dle network data run with the effective user id
of 0, i.e. the superuser. This means that a
compromise of any application gives the abil-
ity to run code in the context of that applica-
tion which has the highest possible privilege
level. Additionally, no address randomization
was used in by the operating system. This
means that each time a process runs, the
stack, heap, and executable code is located
at precisely the same spot in memory. This
helps attackers write reliable exploit code by
allowing them to guess the layout of memory
from run to run of an application and even
from device to device. Most modern operat-
ing systems incorporate some sort of address
randomization. Additionally, the heap (and
possibly the stack) is executable. Again, this
has the effect of making exploit development
easier for an attacker as it allows them to
simply place their code on the heap and jump
to it once they have control of the program.
Had these precaution been taken, it would
have forced attackers to use more sophisti-
cated methods of exploitation such as return-
to-libc. Therefore, while precautions were
made to reduce the amount of code available
to a remote attacker, once a vulnerability is
located it is relatively easy for them to suc-
cessfully exploit and obtain complete control
of the device.

As briefly mentioned above, the iPhone de-
signers restricted access to the filesystem on
the device. While a USB connection to the
device is established for syncing with iTunes,
the filesystem cannot be mounted. Even
more, the filesystem accessible to iTunes is
chroot’ed such that only a small set of the
filesystem is visible over this connection.
This set of the filesystem does not include
the binaries or libraries available. This lim-

ited access to the filesystem doesn’t particu-
larly serve a security role from the perspec-
tive of a remote attacker. Instead, this serves
as an example of design intended to protect
the exclusivity of the iPhone to AT&T. If more
thought had gone into protecting the applica-
tions from remote attack and less on prevent-
ing the unlocking of the device, the overall
security of the device might have been im-
proved.

Suggested Improvements
The security design of the Apple iPhone con-
centrates all of its defenses on reducing the
device’s expose to vulnerabilities. However,
it does not provide any defense once an at-
tack has occurred. We recommend using a
layered approach to security. Based on the
findings of the security design and implemen-
tation of the device discovered, we recom-
mend the following changes to be made to
the iPhone.

• Install applications such that they run as an
unprivileged user. This would result in a
successful attacker only gaining the rights
of this unprivileged user.

• chroot the applications such that they can
not access the personal data needed ex-
clusively by the other applications. For ex-
ample, MobileSafari would not have access
to email or SMS messages. Likewise, Mo-
bileMail would not have access to browsing
history.

• Add heap and stack address randomiza-
tion. This will serve to make the develop-
ment of exploits for vulnerabilities more dif-
ficult.

• Use a memory protection scheme such that
no memory pages are both writable and
executable. Again, this serves to make ex-
ploit development much more difficult.

Vulnerability Analysis
In order to find vulnerabilities on the iPhone,
a few options are available to a researcher.
Using jailbreak and iPhoneInterface, the bi-
naries can be extracted from the device and
statically analyzed, using a disassembler.
Additionally, since the MobileSafari and Mo-
bileMail applications are based on the open
source WebKit project, a source code audit of
that package can be performed. Finally, dy-
namic analysis, or fuzzing, can be executed
against the device. This involves sending
malformed data to the device in an effort to
cause a fault and make it crash. Such fuzz-
ing can be performed against applications
such as MobileSafari or against the WiFi or
BlueTooth stack.

The vulnerability we discovered and exploited
was found in MobileSafari using fuzzing.

Attack Scenarios
There are at least a couple of vectors
whereby a MobileSafari exploit can be used
against the iPhone. The first is via email. A
link to a malicious site can be included in an
email sent to the victim. When the victim
clicks the link, they will be taken to the web-
server containing the malicious HTML and
the exploit will take control of their device.

A more subtle approach involves a man in
the middle attack. An attacker could set up
and advertise a free WiFi hotspot in a heavily
populated area. The iPhone will automati-
cally seek these out and ask the user to con-
nect to them. Once connected, all traffic from
the victim will pass through the attacker con-
trolled wireless router. The attacker can in-
tercept and change any HTTP traffic intended
for the victim. This traffic can invisibly be
modified to contain the iPhone exploit code.
Again, complete control will be obtained over
the iPhone. This time the only actions per-
formed by the victim include using an unsafe
WiFi connection and surfing to any website.
This last scenario is aided by the fact that
iPhones advertise their existence via HTTP

headers. In this manner the exploit code can
be delivered only to iPhones and not other
devices and browsers.

A similar attack can occur if an attacker con-
trols the DNS used by an iPhone user. In this
case, the attacker can point the iPhone to the
page containing the exploit whenever the the
iPhone attempts to go to a new page. This
method of attack requires no interaction from
the user, only that they are using the web
browser.

Blackbox Exploitation
Once a vulnerability has been identified, the
next step is developing a functioning exploit.
This is very difficult for a device such as the
iPhone since there is no way to run a debug-
ger against the target application in order to
view memory and discover the way the exe-
cution flows in the application. However, in
this case we were able to utilize the Mac OS
X crash reporter. This daemon runs and
monitors any programs for crashes. When
one is detected it records a log of the crash,
including relevant register values. These re-
ports can then be transported to a desktop
computer when syncing. The crash reports
can also be downloaded directly off the
iPhone using jailbreak and iPhoneInterface.

While the CrashReporter provides register
values and basic memory mapping informa-
tion, it does not include direct access to the
memory. In order to obtain this crucial infor-
mation, it is possible to modify the iPhone in
such a way that the applications will dump
core files when they crash. This is accom-
plished by adding the file /etc/lauchd.conf
containing the line

limit core unlimited

to the iPhone using iPhoneInterface. Core
files can be retrieved off the iPhone from the
/cores directory, again using iPhoneInterface.
These core files can be read by a debugger
like gdb. While standard gdb cannot display
the context information contained in the core

files, it can correctly access the virtual mem-
ory contained within it. Between the crash
reports and the core files, a complete snap-
shot of the the application when it crashed is
obtained.

In order to obtain data from the application
when it wasn’t crashing, such as at a particu-
lar instruction of interest, we needed to mod-
ify the application. To do this, we first ob-
tained the application being exploited off the
iPhone filesystem, using iPhoneInterface.
We then disassembled it, and modified it
such that it would crash at the instruction we
wanted to investigate. For example, we
could modify the instruction to set the pro-
gram counter to zero at that time. Placing
the binary back on the iPhone, sending data
to it, and finally collecting the crash report
and core file, gave all the information
needed. While tedious, this technique was
effective.

Of course, this is a far cry from having a de-
bugger on the system, but it was enough to
successfully develop a successful attack
against this platform. Had the addresses
been randomized, it would have made a hard
job even more difficult.

Blackbox Shellcode De-
velopment
In order to generate valid opcodes for the
iPhone, we first installed a Linux x86 to ARM
cross compiler. This would compile our ARM
assembly to bytecode which we could then
extract into shellcode.

Besides not having a debugger, developing
iPhone shellcode also presented other chal-
lenges. Since we didn’t have access to an
ARM processor with a debugger, we had ab-
solutely no real way to test the shellcode be-
sides trying it and using the core files ob-
tained. This greatly increased our develop-
ment time.

Vulnerability Details
This section is temporarily omitted. Full de-
tails will be released on August 2nd. This
delay is provided so that Apple has time to
develop appropriate patches to mitigate
these vulnerabilities.

Conclusions
Due to the widespread attention paid to the
iPhone and the security implications of mo-
bile devices in general, we performed a secu-
rity evaluation of the new Apple iPhone.
While Apple takes some precautions to mini-
mize the amount of code accessible to re-
mote attackers, it did not take other basic
precautions in designing a robust security
solution for the device. While made more
difficult due to the closed nature of the de-
vice, with little effort we were able to find a
vulnerability in the iPhone. We were then
able to leverage this vulnerability and use it
to write an exploit which could extract per-
sonal information off the device without the
user ever knowing.

Acknowledgments
We’d like to thank the ISE management for
allowing us some time to look at these de-
vices. We’d also like to thank some of our
coworkers for their help on this project: Sam
Small, Adam Stubblefield, and Matt Green.

References
Mac OS X internals: A Systems Approach,
Amit Singh, Addison Wesley, 2006

Mac OS X Debugging Magic:
http://developer.apple.com/technotes/tn2004/
tn2124.html

CrashReporter:
http://developer.apple.com/technotes/tn2004/
tn2123.html

DTrace to be included in Next Mac OS X:
http://sun.systemnews.com/articles/102/2/ne
ws/16842

OS X Heap Exploitation Techniques
http://felinemenace.org/papers/p63-0x05_OS
X_Heap_Exploitation_Technqiues.txt

Hack a Mac, get $10,000
http://news.com.com/8301-10784_3-9710845
-7.html

Safari for Windows: Released and hacked in
a day
http://www.infoworld.com/article/07/06/11/Saf
ari-for-Windows-released-and-hacked-in-a-da
y_1.html

With Windows port, a bug-hunting Safari for
Apple
http://www.infoworld.com/article/07/06/12/Wit
h-Windows-port-a-bug-hunting-Safari-for-App
le_1.html

Mac OS X PPC Shellcode Tricks
http://uninformed.org/?v=1&a=1&t=pdf

Building and Testing gcc/glibc cross tool-
chains http://www.kegel.com/crosstool/

“Into my ARMS” Developing StrongArm/Linux
shellcode
http://isec.pl/papers/into_my_arms_dsls.pdf

Main Page - The iPhone Dev Wiki
http://iphone.fiveforty.net/wiki/index.php?title=
Main_Page

http://developer.apple.com/technotes/tn2004/tn2124.html
http://developer.apple.com/technotes/tn2004/tn2124.html
http://developer.apple.com/technotes/tn2004/tn2124.html
http://developer.apple.com/technotes/tn2004/tn2124.html
http://developer.apple.com/technotes/tn2004/tn2123.html
http://developer.apple.com/technotes/tn2004/tn2123.html
http://developer.apple.com/technotes/tn2004/tn2123.html
http://developer.apple.com/technotes/tn2004/tn2123.html
http://sun.systemnews.com/articles/102/2/news/16842
http://sun.systemnews.com/articles/102/2/news/16842
http://sun.systemnews.com/articles/102/2/news/16842
http://sun.systemnews.com/articles/102/2/news/16842
http://felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt
http://felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt
http://felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt
http://felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt
http://news.com.com/8301-10784_3-9710845-7.html
http://news.com.com/8301-10784_3-9710845-7.html
http://news.com.com/8301-10784_3-9710845-7.html
http://news.com.com/8301-10784_3-9710845-7.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://uninformed.org/?v=1&a=1&t=pdf
http://uninformed.org/?v=1&a=1&t=pdf
http://www.kegel.com/crosstool/
http://www.kegel.com/crosstool/
http://isec.pl/papers/into_my_arms_dsls.pdf
http://isec.pl/papers/into_my_arms_dsls.pdf
http://iphone.fiveforty.net/wiki/index.php?title=Main_Page
http://iphone.fiveforty.net/wiki/index.php?title=Main_Page
http://iphone.fiveforty.net/wiki/index.php?title=Main_Page
http://iphone.fiveforty.net/wiki/index.php?title=Main_Page

