
Filecoin Bellman/BLS Signatures Cryptography
Review
Protocol Labs
October 20, 2020 – Version 1.0

Prepared for
Friedel Ziegelmayer
Jonathan Victor

Prepared by
Eric Schorn
Paul Bottinelli
Javed Samuel

©2020 – NCC Group

Prepared by NCC Group Security Services, Inc. for Protocol Labs. Portions of this document and the
templates used in its production are the property of NCC Group and cannot be copied (in full or in part)
without NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of
the information contained herein. Use of NCC Group’s services does not guarantee the security of a
system, or that computer intrusions will not occur.

Executive Summary

Synopsis
In May 2020, Protocol Labs engaged NCC Group’s Cryptography Services team to conduct a cryptography review of
multiple Filecoin code repositories. Filecoin is a decentralized storage and content distribution network developed
by Protocol Labs. These repositories implement finite field and group arithmetic, cryptographic pairings, SHA2 via
intrinsics, BLS signatures and zk-SNARK operations. Taken together, these operations deliver the cutting-edge crypto-
graphic primitives which are central to the security of the Filecoin network. This network relies upon provable security
and authenticity to ensure user data is stored correctly and securely over time. The assessment was open-ended but
was time-boxed to eleven person-days of effort. Good communication was established through a kick-off call, a status
update call and over Slack. The assessment was followed by a brief retest of several findings in June 2020.

Scope
NCC Group’s evaluation included the following GitHub source code repositories comprising approximately 26k lines of
Rust. The latest commits were reviewed as noted and particular areas of focus are highlighted below.

• filecoin-project/ff commit 998ddb0
– Based on Zcash code, focus on assembly additions

• filecoin-project/group commit 57aa2e7
– Interface definitions

• filecoin-project/paired commit 7cc51a4
– Focus on implementation of hash-to-curve.

• filecoin-project/rust-sha2ni commit 29532da
– Dynamic feature detection, SHA intrinsics

– Full audit, specific focus on new code
• filecoin-project/bls-signatures commit 0ecd251
– Full audit, specific focus on new code and compli-

ance to draft specification
• filecoin-project/bellman commit 300b52d
– Comprehensive audit including a number of addi-

tions including the OpenCL GPU code.

Limitations
Included test cases relating to SHA2-intrinsics and (some) GPU functions were not run due to advanced hardware
requirements. While this is generally an out-of-scope task, it did marginally impact testing convenience and produc-
tivity, though it did not materially impact the resulting in-scope coverage. Additional inspection of the various build
flows/options is nevertheless recommended.

Key Findings
The target code repositories demonstrated a number of excellent design and implementation choices. These included
the use of Rust to avoid the many safety-related challenges of C and C++, a separation of concerns that keeps related
levels of cryptographic abstractions tightly coupled and modular, a solid set of test cases that enabled dynamic inspec-
tion during testing, and very advanced algorithms (particularly in hash-to-curve). The assessment did uncover several
issues, the most notable including:

• A lack of distinct messages enforcement in bls-signature verification that could allow a “rogue key” to forge an
aggregate signature.

• Two missed length checks related to input data validation. One may lead to a panic and the other could result in an
unanticipated public key.

• A missed opportunity to check for errors within randomness generation which may present an issue if the OS entropy
is exhausted or otherwise problematic.

• Slightly outdated and inconsistent dependency specifications that may increase the difficulty of debug.
• Missing and inconsistent compiler specification across repositories; Note that the compiler’s nightly channel is

required for code builds.

Retest Results
In June 2020, Protocol Labs undertook a retest of selected findings uncovered in the original assessment on an updated
filecoin-project/bls-signatures (commit 0ecd251) repository. Findings NCC-PRLB007-004, NCC-PRLB007-005, NCC-
PRLB007-006, NCC-PRLB007-007 and NCC-PRLB007-008 were reviewed to determine whether each was fully fixed,
partially fixed or not fixed. The detailed entry for each of these findings now includes a brief description of the retest

2 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://filecoin.io/
https://github.com/filecoin-project/ff/tree/998ddb0c852af74855acdae84a13fa293a2691f0
https://github.com/filecoin-project/group/tree/57aa2e74b045b4cfc4e339781f0ca98679a27d95
https://github.com/filecoin-project/paired/tree/7cc51a4cf6d1a5ba8acf2549d7a5fdb017047614
https://github.com/filecoin-project/rust-sha2ni/tree/29532da45a5b9f880434cfff35e31eed8ab50945
https://github.com/filecoin-project/bls-signatures/tree/0ecd251eb122c707b8f048c2631642c14de78de9
https://github.com/filecoin-project/bellman/tree/300b52ddbbbab9a1e7f0f831bc7e1448696db097
https://github.com/filecoin-project/bls-signatures/tree/25e8e4e4fad7227fcd087d54e282fc2eb737c668

observations and results. The overall retest results can be summarized as follows:

• Findings NCC-PRLB007-004, NCC-PRLB007-005, NCC-PRLB007-006, NCC-PRLB007-007 and NCC-PRLB007-008 have
been fully fixed.

The current status of each finding is also listed in the Table of Findings on page 5.

Strategic Recommendations
The in-scope code repositories follow secure coding practices and demonstrate careful attention to edge-cases. As
the code moves towards production deployment, NCC Group recommends prioritizing the following focus areas:

• Ensure all application input is validated as tightly as possible as early as possible.
• Periodically revisit and update all repository dependencies and compiler specifications.
• Consider opportunities to adopt constant time algorithms and secret clearing.
• Document the implemented algorithms more clearly (e.g. in hash-to-curve) via code comments.
• Consider following the draft specification for BLS signatures more closely with explanations for divergence.

3 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Dashboard
Target Metadata Engagement Data
Name Filecoin BLS Signatures Type Cryptography review
Type Cryptography Library Method Manual source inspection
Platforms Rust Dates 2020-05-13 to 2020-05-22
Environment Source code Consultants 2

Level of Effort 11 person-days

Targets
https://github.com/filecoin-project/ff Traits and utilities for working with finite fields
https://github.com/filecoin-project/group Elliptic curve group traits and utilities
https://github.com/filecoin-project/pairing Pairing-friendly elliptic curve library
https://github.com/filecoin-project/rust-sha2ni Dynamic feature detection, SHA intrinsics
https://github.com/filecoin-project/bls-signatures BLS signatures in Rust
https://github.com/filecoin-project/bellman zk-SNARK library

Finding Breakdown
Critical issues 0
High issues 0

Medium issues 1

Low issues 5

Informational issues 2
Total issues 8

Category Breakdown
Configuration 1

Cryptography 2

Data Exposure 1

Data Validation 3

Patching 1

Component Breakdown
Systemic 3

bls-signatures 5

Key
Critical High Medium Low Informational

4 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix A on page 20.

Title Status ID Risk
Distinct Messages not Enforced in Aggregate Verify Fixed 006 Medium
Outdated Dependencies and Inconsistent Compiler Specification Reported 001 Low
Secrets in Memory Not Cleared Reported 003 Low
Missing Error Check and Non-Crypto Randomness Generator Fixed 004 Low
Missing Length Check on Private Key Deserialization Fixed 005 Low
Missing Length==0 Validation Check Fixed 008 Low
Non Constant-Time Cryptography Implementation Reported 002 Informational
Private Key Generation not Compliant Fixed 007 Informational

5 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Finding Details
Finding Distinct Messages not Enforced in Aggregate Verify

Risk Medium Impact: Low, Exploitability: Medium

Identifier NCC-PRLB007-006

Status Fixed

Category Data Validation

Component bls-signatures

Location bls-signatures/src/signature.rs

Impact A specially crafted public key (commonly referred to as the “rogue” key) can potentially be used
to forge an aggregate signature.

Description The BLS signature scheme allows users to produce aggregate signatures, combinations of a
set of signatures, which can be verified more efficiently than the individual signatures sepa-
rately.

The draft specification defines three signature schemes for BLS: basic, message augmentation
and proof of possession. The difference between these variants lies in the way they protect
against rogue key attacks. In this context, a rogue key is a maliciously crafted public key
that can be used to forge aggregate signatures. The EUROCRYPT 2003 paper by Boneh,
Gentry, Lynn, and Shacham, entitled Aggregate and verifiably encrypted signatures from bilinear
maps,1 describes this attack in Section 3.2 under A potential attack on aggregate signatures and
proposes the distinct messages countermeasure in the following paragraph A simple defense
for aggregate signatures. A copy of the paper can be found in the archives of the conference
proceedings.2

In the basic scheme, which is what is implemented in the package bls-signatures, rogue
key attacks are handled by requiring all messages signed in an aggregate signature to be
distinct. This requirement is specified in Section 3.1. of the draft specification draft-irt
f-cfrg-bls-signature-023 and is enforced during signature verification by the function
AggregateVerify.

The code does not enforce that messages be different from one another, and as such is
vulnerable to rogue key attacks. The following code excerpt, taken from bls-signatures
/src/signature.rs shows the aggregate signature verification procedure. It is easy to see
that no check is performed regarding the distinctiveness of the hashes.

/// Verifies that the signature is the actual aggregated signature of hashes -
pubkeys.

/// Calculated by `e(g1, signature) == \prod_{i = 0}^n e(pk_i, hash_i)`.
pub fn verify(signature: &Signature, hashes: &[G2], public_keys: &[PublicKey]) ->

bool {
if hashes.len() != public_keys.len() {

return false;
}

let mut prepared: Vec<_> = public_keys
.par_iter()

1https://link.springer.com/chapter/10.1007%2F3-540-39200-9_26
2https://www.iacr.org/archive/eurocrypt2003/26560416/26560416.pdf
3https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-02#section-3.1

6 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://github.com/filecoin-project/bls-signatures/blob/0ecd251eb122c707b8f048c2631642c14de78de9/src/signature.rs
https://link.springer.com/chapter/10.1007%2F3-540-39200-9_26
https://www.iacr.org/archive/eurocrypt2003/26560416/26560416.pdf
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-02#section-3.1

.zip(hashes.par_iter())

.map(|(pk, h)| (pk.as_affine().prepare(), h.into_affine().prepare()))

.collect();

let mut g1_neg = G1Affine::one();
g1_neg.negate();
prepared.push((g1_neg.prepare(), signature.0.prepare()));

let prepared_refs = prepared.iter().map(|(a, b)| (a, b)).collect::<Vec<_>>();

if let Some(res) =
Bls12::final_exponentiation(&Bls12::miller_loop(&prepared_refs)) {
Fq12::one() == res

} else {
false

}
}

Additionally, it should be noted that the function CoreAggregateVerify defined in Section
2.9. of the draft specification, expects the messages themselves as arguments and not their
hashes. It is unclear whether this has a direct impact, but depending on the code path
followed and the provenance of this data, this might give unnecessary freedom to an attacker.

Recommendation Implement the function AggregateVerify as defined in section 3.1. of the draft specification.
This function should first ensure that all messages are distinct, before proceeding with the
aggregate signature verification. Additionally, this function should hash the messages instead
of expecting hashed data.

Retest Results The updated signature.rs source file was inspected to confirm the recommended addition
of logic on lines 106-112 corresponding to step 1 of the AggregateVerify procedure defined
in section 3.1.1 of the draft specification. This logic ensures that no two messages are equal
before proceeding with verification. As such, this finding has been marked as fixed.

7 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Finding Outdated Dependencies and Inconsistent Compiler Specification

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-PRLB007-001

Status Reported

Category Patching

Component Systemic

Location All six code repositories

Impact An attacker will attempt to identify and then utilize any vulnerabilities stemming from outdated
dependencies to exploit the application. Silently changing toolchain versions can introduce
instability and increase debug difficulty.

Description Incorporating outdated dependencies is one of the most common, serious and exploited
application vulnerabilities. Unspecified toolchain versions will not insulate the application
and developer from silent changes that can introduce instability and greatly increase debug
difficulty.

The project incorporates several direct and transitive dependencies that are marginally out of
date. For example, output from the cargo outdated tool is shown below for the bls-signa
tures repository.

eschorn@ataraxy:~/work/filecoin/bls-signatures$ cargo outdated
Name Project Compat Latest Kind Platform
---- ------- ------ ------ ---- --------
base64 0.12.0 0.12.1 0.12.1 Development ---
base64-serde->base64 0.12.0 0.12.1 0.12.1 Normal ---
base64-serde->serde 1.0.106 1.0.110 1.0.110 Normal ---
fff_derive->proc-macro2 1.0.10 1.0.12 1.0.12 Normal ---
fff_derive->quote 1.0.3 1.0.5 1.0.5 Normal ---
fff_derive->syn 1.0.18 1.0.21 1.0.21 Normal ---
getrandom->libc 0.2.69 0.2.70 0.2.70 Normal cfg(unix)
groupy->thiserror 1.0.16 1.0.17 1.0.17 Normal ---
hermit-abi->libc 0.2.69 0.2.70 0.2.70 Normal ---
num_cpus->libc 0.2.69 0.2.70 0.2.70 Normal ---
paired 0.19.0 0.19.1 0.19.1 Normal ---
quote->proc-macro2 1.0.10 1.0.12 1.0.12 Normal ---
rand->libc 0.2.69 0.2.70 0.2.70 Normal cfg(unix)
serde 1.0.106 1.0.110 1.0.110 Development ---
serde->serde_derive 1.0.106 1.0.110 1.0.110 Normal ---
serde_derive->proc-macro2 1.0.10 1.0.12 1.0.12 Normal ---
serde_derive->quote 1.0.3 1.0.5 1.0.5 Normal ---
serde_derive->syn 1.0.18 1.0.21 1.0.21 Normal ---
serde_json 1.0.52 1.0.53 1.0.53 Development ---
serde_json->serde 1.0.106 1.0.110 1.0.110 Normal ---
syn->proc-macro2 1.0.10 1.0.12 1.0.12 Normal ---
syn->quote 1.0.3 1.0.5 1.0.5 Normal ---
thiserror 1.0.16 1.0.17 1.0.17 Normal ---
thiserror->thiserror-impl 1.0.16 1.0.17 1.0.17 Normal ---
thiserror-impl->proc-macro2 1.0.10 1.0.12 1.0.12 Normal ---
thiserror-impl->quote 1.0.3 1.0.5 1.0.5 Normal ---
thiserror-impl->syn 1.0.18 1.0.21 1.0.21 Normal ---

In addition, note that the in-scope repositories do not fully refer to the latest version of them-

8 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

selves. For example:

• The ff/Cargo.toml file declares this code to be version 0.2.2. However, the group, pairi
ng, bellman, and bls-signatures repositories specify version 0.2.0.

• The group/Cargo.toml file declares this code to be version 0.3.1. However, the pairing
and bls-signatures repositories specify version 0.3.0.

• The rust-sha2ni/Cargo.toml file declares this code to be version 0.8.5. However, the
bls-signatures repository specifies version 0.8.1.

Separately, the bellman, bls-signatures and pairing repositories each include a file named
rust-toolchain that specifies an exact compiler version. The first file specifies a different
compiler version than the latter two, specifically:

nightly-2020-01-08
nightly-2020-02-17

The ff, group and rust-sha2ni repositories lack this file altogether. As a result, it can
be difficult to determine the precise compiler version used on a particular build which may
then increase debug challenges. Note that the code requires the ‘nightly’ compiler which is
intended to change rapidly.

Recommendation Add a periodic gating milestone to the development process that involves reviewing toolchain
and all application dependencies for inconsistent, outdated or vulnerable versions. In the
first instance, working from the bottom of the dependency tree towards the top (e.g. from ff
towards bellman):

• Specify the same recent/latest version of the compiler in the rust-toolchain file.
• Update the Cargo.toml files to refer to the latest version of themselves.
• Update the Cargo.toml files to refer to the latest external dependencies via cargo update
• Confirm ‘freshness’ with a tool such as cargo outdated.

This would be a good opportunity to bump the version number of each repository for com-
pleteness.

Review the .circleci/config.yaml files to ensure they are picking up the expected code
and toolchain versions.

9 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Finding Secrets in Memory Not Cleared

Risk Low Impact: Medium, Exploitability: Undetermined

Identifier NCC-PRLB007-003

Status Reported

Category Data Exposure

Component Systemic

Location Systemic, starting with ff repository

Impact If regions of memory are accessed by an attacker, perhaps via a core dump or debugger, the
attacker may be able to extract sensitive secret values.

Description Typically, all of a function’s local variables remain in process memory after the function goes
out of scope, unless they are overwritten by new data. Data that is still stored on the stack or
heap but is no longer in scope is referred to as stale (or garbage) data. Stale data is vulnerable
to disclosure through means such as data leaks and debugging if the process is running with
low privileges. As a result, sensitive data should not remain in memory once it goes out of
scope.

For example, in the event of a program crash, stale data may be core dumped. If an attacker
has access to read a core dump, then they will be able to read any sensitive data that was not
zeroed-out before the crash.

Note that the ff-zeroize crate4 is a version of the ff crate that incorporates ‘zeroize’ fea-
tures.

Recommendation Consider incorporating the ff-zeroize library as a temporary substitute for ff and imple-
ment similar extensions to the other repositories. The ff-zeroize crate uses the Zeroi
ze trait to explicitly clear secret (or sensitive) values in memory when they are no longer
needed. This trait is provided by the zeroize crate5 which utilizes core::ptr::write_vola
tile and core::sync::atomic memory fences to automate zero-on-drop and guarantees
the operation will not be “optimized away”.

Note that the zeroize crate can be used to zero values from either the stack or the heap.
Further, the pin6 crate can be leveraged to ensure data kept on the stack isn’t moved.

4https://crates.io/crates/ff-zeroize
5https://docs.rs/zeroize/1.1.0/zeroize/
6https://doc.rust-lang.org/std/pin/struct.Pin.html

10 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://crates.io/crates/ff-zeroize
https://docs.rs/zeroize/1.1.0/zeroize/
https://doc.rust-lang.org/std/pin/struct.Pin.html

Finding Missing Error Check and Non-Crypto Randomness Generator

Risk Low Impact: Medium, Exploitability: Low

Identifier NCC-PRLB007-004

Status Fixed

Category Cryptography

Component bls-signatures

Location Line 88 of bls-signatures/src/key.rs

Impact An error condition that surfaces while generating random values, perhaps due to insufficient
entropy, may not be detected and may impact the characteristics of secret values.

Description When generating a secret key, it is imperative to draw from a cryptographically secure source
of entropy and pay particular attention to potential error conditions. Unusual (and/or unex-
pected) error conditions can stem from a wide variety of sources as suggested by the following
excerpt from the Ubuntu manual page for getrandom7:

GRND_RANDOM
If this bit is set, then random bytes are drawn from the random source … instead
of the urandom source. The random source is limited based on the entropy that
can be obtained from environmental noise. If the number of available bytes in the
random source is less than requested in buflen, the call returns just the available
random bytes. If no random bytes are available, the behavior depends on the
presence of GRND_NONBLOCK in the flags argument.

The generate() function implemented on PrivateKey in keys.rs shown below uses the
RngCore fill_bytes() method which does not explicitly return an error indicator. The ra
nd_core crate documentation8 indicates that the try_fill_bytes() method is a variant of
fill_bytes() method that does allow for explicit error detection and handling.

84 pub fn generate<R: RngCore>(rng: &mut R) -> Self {
85 // IKM must be at least 32 bytes long:
86 // https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-00#section-2.3
87 let mut ikm = [0u8; 32];
88 rng.fill_bytes(&mut ikm);
89 Self::new(ikm)
90 }

Note that there are two similar usages in test code, which are not a security issue.

• Line 586 of pairing/src/bls12_381/fq.rs (test code)
• Line 853 of pairing/src/bls12_381/ec/mod.rs (test code)

Separately, the trait rand_core::CryptoRng9 is used to indicate that an RngCore or Block-
RngCore implementation is supposed to be cryptographically secure. This is absent in the
above code.

Recommendation Utilize the try_fill_bytes() method along with logic to detect and handle errors. Utilize
the rand_core::CryptoRng trait to prevent users from inadvertently supplying a determin-

7http://manpages.ubuntu.com/manpages/bionic/man2/getrandom.2.html
8https://rust-random.github.io/rand/rand_core/trait.RngCore.html#tymethod.try_fill_bytes
9https://rust-random.github.io/rand/rand_core/trait.CryptoRng.html

11 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://github.com/filecoin-project/bls-signatures/blob/0ecd251eb122c707b8f048c2631642c14de78de9/src/key.rs#L88
http://manpages.ubuntu.com/manpages/bionic/man2/getrandom.2.html
https://rust-random.github.io/rand/rand_core/trait.RngCore.html#tymethod.try_fill_bytes
https://rust-random.github.io/rand/rand_core/trait.CryptoRng.html

istic random number generator.

Retest Results The updated key.rs source file was inspected to confirm the recommended use of the try_
fill_bytes() method (with expect clause) on lines 86-87 as well as the additional CryptoR
nd attribute on lines 8 and 82. As such, this finding has been marked as fixed.

12 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Finding Missing Length Check on Private Key Deserialization

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-PRLB007-005

Status Fixed

Category Data Validation

Component bls-signatures

Location bls-signatures/src/keys.rs

Impact Oversized key material provided to the deserialization function will have its trailing portion
ignored, which may result in an unexpected private key used in downstream logic.

Description All input should be aggressively validated for correctness as early and completely as possible
to reject incorrect values and reduce the complexity requirements placed on downstream
logic.

The from_bytes() function implemented for the Serialize trait of PublicKey in keys.rs
first checks the length of its raw bytes input for the correct size of G1Compressed::size().
This is very good practice, and the check is shown below.

177 if raw.len() != G1Compressed::size() {
178 return Err(Error::SizeMismatch);
179 }

However, the from_bytes() function implemented for the Serialize trait of PrivateKey
in keys.rs does not check the length of its raw bytes input. Note that there is an expected
correct length that can be checked. This function is shown below.

129 fn from_bytes(raw: &[u8]) -> Result<Self, Error> {
130 let mut res = FrRepr::default();
131 let mut reader = Cursor::new(raw);
132 let mut buf = [0; 8];
133

134 for digit in res.0.as_mut().iter_mut() {
135 reader.read_exact(&mut buf)?;
136 *digit = u64::from_le_bytes(buf);
137 }
138

139 Ok(Fr::from_repr(res)?.into())
140 }

If the function is provided with undersized raw bytes input, it will report an error on line 135.
If the function is provided with oversized raw bytes input, the trailing bytes are ignored. The
latter could become an issue if an attacker were able to prepend malicious data as the key
would then become controllable. In any event, the code should reject incorrectly sized input.

Note that the error portion of Result can be returned via the ? operator (e.g., line 135/
139) but is not otherwise explicitly set in this function. Thus, all errors are effectively passed-
through (which indicates minimal validation).

Recommendation Perform a check on the expected length of raw bytes input for the private key, similar to that
done on the public key.

13 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://github.com/filecoin-project/bls-signatures/blob/0ecd251eb122c707b8f048c2631642c14de78de9/src/key.rs

Retest Results The updated key.rs source file was inspected to confirm the addition of the recommended
length check for the supplied raw bytes on lines 129-132. As such, this finding has been
marked as fixed.

14 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Finding Missing Length==0 Validation Check

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-PRLB007-008

Status Fixed

Category Data Validation

Component bls-signatures

Location bls-signatures/src/signature.rs

Impact When supplied with operands of length 0, the verify() function progresses into the Miller
loop before panicking and potentially allowing for denial of service.

Description The verify() function in signature.rs shown below checks for inconsistent lengths be-
tween the supplied input hashes and public_keys. Inconsistent lengths return an imme-
diate false. However, when supplied with Vecs of length 0, this check passes and the code
progresses into the Miller loop near the end before panicking when attempting to reference
the operand (rather than returning false).

88 pub fn verify(signature: &Signature, hashes: &[G2], public_keys: &[PublicKey]) ->
bool {

89 if hashes.len() != public_keys.len() {
90 return false;
91 }
92

93 let mut prepared: Vec<_> = public_keys
94 .par_iter()
95 .zip(hashes.par_iter())
96 .map(|(pk, h)| (pk.as_affine().prepare(), h.into_affine().prepare()))
97 .collect();
98

99 let mut g1_neg = G1Affine::one();
100 g1_neg.negate();
101 prepared.push((g1_neg.prepare(), signature.0.prepare()));
102

103 let prepared_refs = prepared.iter().map(|(a, b)| (a, b)).collect::<Vec<_>>();
104

105 if let Some(res) =
Bls12::final_exponentiation(&Bls12::miller_loop(&prepared_refs)) {

106 Fq12::one() == res
107 } else {
108 false
109 }
110 }

Recommendation Adapt the length check to include a zero length condition.

Retest Results The updated signature.rs source file was inspected to confirm the addition of the recom-
mended length check condition (equal to zero) for the supplied hashes and public_keys
structures on lines 93-95. As such, this finding has been marked as fixed.

15 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://github.com/filecoin-project/bls-signatures/blob/0ecd251eb122c707b8f048c2631642c14de78de9/src/signature.rs

Finding Non Constant-Time Cryptography Implementation

Risk Informational Impact: Medium, Exploitability: Undetermined

Identifier NCC-PRLB007-002

Status Reported

Category Cryptography

Component Systemic

Location Systemic

Impact Many significant operations which handle sensitive data are not written to execute in constant
time. This may make timing and other microarchitectural attacks possible, leaking sensitive
data to an external attacker.

Description Timing side-channel attacks allow the extraction of information about secret data by measur-
ing the time required to perform operations involving the data. They were first described in
1996 in the context of RSA private key operations.10 In 2005, timing attacks were extended
into cache attacks,11 in which a secret-dependent memory access pattern is revealed through
timing measures made later on by the attacker. A variety of usage contexts allow attackers
to perform such measures with enough precision to enact private key recovery, e.g. when
the attacker can run his own code as an unprivileged process or another virtual machine
co-hosted on the same hardware. Even remote measurements over a network have been
demonstrated to be possible.12 Other relevant examples13, 14, 15 stem from OpenSSL’s bignum
non-constant time operations such as modular reduction, comparisons, and multiplication.
Even SGX enclaves have proven vulnerable16, 17 to timing side-channel attacks.

The Protocol Labs in-scope code repositories cannot provide constant time assurances. There
are several operations where execution time is dependent upon the supplied data. The foun-
dational ff repository performs a number of operations where execution time may depend
upon secret data, including computing the inverse via a variant of the Euclidean Algorithm.
The repository’s README.md file includes a constant-time disclaimer:

This library does not provide constant-time guarantees.

The foundational pairing library also performs a number of operations where execution time
may depend upon secret data, such as point arithmetic on a curve. The repository’s README.
md file also includes a constant-time disclaimer:

This library does not make any guarantees about constant-time operations, mem-
ory access patterns, or resistance to side-channel attacks.

As it is understood that timing side-channels are not part of Protocol Labs’ threat model, this
finding has been categorized as ‘Informational’.

Recommendation Unfortunately there are no readily-available libraries that deliver this functionality in constant
10https://www.paulkocher.com/TimingAttacks.pdf
11https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
12https://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
13https://www.nccgroup.trust/us/our-research/return-of-the-hidden-number-problem/
14https://eyalro.net/project/cat/
15https://eprint.iacr.org/2013/448.pdf
16https://arxiv.org/pdf/1703.06986.pdf
17https://people.cs.kuleuven.be/~jo.vanbulck/ccs18.pdf

16 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://www.paulkocher.com/TimingAttacks.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
https://www.nccgroup.trust/us/our-research/return-of-the-hidden-number-problem/
https://eyalro.net/project/cat/
https://eprint.iacr.org/2013/448.pdf
https://arxiv.org/pdf/1703.06986.pdf
https://people.cs.kuleuven.be/~jo.vanbulck/ccs18.pdf

time. Constant-time operation does appear to be a long-term goal for these libraries, but not
a high priority. Thus, be aware of these limitations in context of the application’s threat model.

17 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Finding Private Key Generation not Compliant

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-PRLB007-007

Status Fixed

Category Configuration

Component bls-signatures

Location bls-signatures/src/key.rs

Impact The private keys generated are not fully compliant with the draft specification. This could
prevent interoperability between different implementations. It could also potentially reduce
the security of the keys, since different inputs might result in the same private key generated.

Description In bls-signatures/src/key.rs, private keys are generated with the key_gen function, as
excerpted below. The function mostly follows the draft specification in that it uses HKDF
correctly in its Extract/Expand paradigm (the call to new implicitly calls extract).

/// Hash a secret key sk to the secret exponent x'; then (PK, SK) = (g^{x'}, x').
fn key_gen<T: AsRef<[u8]>>(data: T) -> Fr {

let mut result = GenericArray::<u8, U48>::default();

// `result` has enough length to hold the output from HKDF expansion
assert!(Hkdf::<Sha256>::new(Some(SALT), data.as_ref())

.expand(&[], &mut result)

.is_ok());
Fr::from_okm(&result)

}

However, the function does not completely follow the draft specification for private key gen-
eration draft-irtf-cfrg-bls-signature-02,18 which is provided below for reference.

189 SK = KeyGen(IKM)
190 Inputs:
191 - IKM, a secret octet string. See requirements above.
192 Outputs:
193 - SK, a uniformly random integer such that 0 <= SK < r.
194 Parameters:
195 - key_info, an optional octet string.
196 If key_info is not supplied, it defaults to the empty string.
197 Definitions:
198 - HKDF-Extract is as defined in RFC5869, instantiated with hash H.
199 - HKDF-Expand is as defined in RFC5869, instantiated with hash H.
200 - I2OSP and OS2IP are as defined in RFC8017, Section 4.
201 - L is the integer given by ceil((3 * ceil(log2(r))) / 16).
202 - "BLS-SIG-KEYGEN-SALT-" is an ASCII string comprising 20 octets.
203 Procedure:
204 1. PRK = HKDF-Extract("BLS-SIG-KEYGEN-SALT-", IKM || I2OSP(0, 1))
205 2. OKM = HKDF-Expand(PRK, key_info || I2OSP(L, 2), L)
206 3. SK = OS2IP(OKM) mod r
207 4. return SK

More specifically, in step 1 of the Procedure above, a 0-byte should be appended to IKM

18https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-02#section-2.3

18 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://github.com/filecoin-project/bls-signatures/blob/0ecd251eb122c707b8f048c2631642c14de78de9/src/key.rs
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-02#section-2.3

during the Extract call. The key_gen function does not append this 0-byte during the call
to new. Additionally, in step 2, the draft specification requires appending the quantity L =

⌈(3⌈log2(r)⌉)/16⌉ encoded over two bytes. Again, the key_gen function does not append
this data during the expand call. The reason for adding L to the second argument is given in
the HKDF RFC,19 where Section 3.2 states that it is a way to “bind the key material to its length”.
Indeed, without providing this value, HKDF-Expand calls with different output lengths might
result in the same private key.

Note however that this is not a strict requirement in the draft specification. Namely, the
specification states the following:

Other key generation approaches meeting these requirements MAY also be used;
details of such methods are beyond the scope of this document.

Recommendation Add the appropriate fields for the computation of the key, namely one 0-byte after the secret
octet string IKM as well as L encoded over two bytes, as in the Procedure provided above.

Retest Results The updated key.rs source file was inspected to confirm the recommended modifications.
Specifically, it was noted:

• A zero byte is appended to the secret octet string on line 199.
• The call to hkdf expand() on line 205 now includes ‘L’ as &[0,48].

As such, this finding has been marked as fixed.

19https://tools.ietf.org/html/rfc5869

19 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://tools.ietf.org/html/rfc5869

Appendix A: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.

20 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Category
NCC Group categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

21 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

Appendix B: Audit Discussion Notes and Observations

1. Overview
This informational section highlights selected portions of the engagement methodology used, priority concerns inves-
tigated, and a few observations that do not warrant security-related findings but are worth discussion. The primary
strategy for this project relied heavily on manual source code inspection, supported by some execution of the included
test cases. Priority was given to the correctness of cryptographic algorithms and implementation, the specific focus ar-
eas highlighted in the executive summary, GPU and assembly-level optimizations, and general secure coding practices
that could potentially impact legitimate operation.

2. Related References
• IETF CFRG draft Hash to Curve specification at https://tools.ietf.org/pdf/draft-irtf-cfrg-hash-to-curve-07.pdf.
• IETF CFRG draft BLS Signatures specification at https://tools.ietf.org/pdf/draft-irtf-cfrg-bls-signature-02.pdf.
• “Fast and simple constant-time hashing to the BLS12-381 elliptic curve” at https://eprint.iacr.org/2019/403.pdf.

Pertinent to the osswu_map() logic in pairing/src/bls12_381/ec/g2.rs.
• “Efficient hash maps to G2 on BLS curves” at https://eprint.iacr.org/2017/419.pdf (clearing cofactor).
• Hash related code at https://github.com/algorand/pairing-plus/blob/master/src/bls12_381/osswu_map/g2.rs.

3. Initial Survey
The following primary code targets were cloned and briefly surveyed prior to the kick-off conference call.

• https://github.com/filecoin-project/ff
• https://github.com/filecoin-project/group
• https://github.com/filecoin-project/pairing

• https://github.com/filecoin-project/rust-sha2ni
• https://github.com/filecoin-project/bls-signatures
• https://github.com/filecoin-project/bellman

Dependencies were reviewed, resulting in finding NCC-PRLB007-001 on page 8. Each Cargo.toml was edited to
ensure builds utilized in-scope repositories (e.g. adapting version and adding path="../ff"). Repositories were
then built and test cases run.

Variable-time algorithms were found, resulting in finding NCC-PRLB007-002 on page 16. Secrets are not cleared after
use, resulting in finding NCC-PRLB007-003 on page 10.

4. Detailed Review, Functionality
Each repository was reviewed in detail, running from the bottom of the dependency tree towards the top.

• The ff repository was compared to the Zcash fork source, as well as reviewed holistically. The primary differences
centered on the ff->fff name change and asm/mul_4.S. This implements the mod_mul_4w() function by compos-
ing the mul_256 multiplication and red_256 Montgomery reduction macros. The function is ‘bound’ in src/asm.rs
and then incorporated on line 765 of ff_derive/src/lib.rs. The latter file also defines the add_assign_asm_i
mpl() function via intrinsics. Finally, the build.rs file selectively builds the assembly based upon target machine
architecture.
– Note that the constant on line 19/20 of ff/ff_derive/src/lib.rs is the (255-bit) BLS12-381 curve order (rather

than the field prime).
– Line 405 of ff/ff_derive/src/lib.rs seems repeated on second half of line 411. JetBrains Clion warns about

a number of unused variables (such as lines 405 and 411) primarily involving biguint_to_u64_vec(). Clippy
reports nothing.

– The assembly integration was reviewed. This gets picked up when field prime is set to BLS constant; it is not picked
up in bls-signatures (as this works with six limbs), but rather in bellman. This was also confirmed by perturbing
the code and re-running tests.

22 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://tools.ietf.org/pdf/draft-irtf-cfrg-hash-to-curve-07.pdf
https://tools.ietf.org/pdf/draft-irtf-cfrg-bls-signature-02.pdf
https://eprint.iacr.org/2019/403.pdf
https://eprint.iacr.org/2017/419.pdf
https://github.com/algorand/pairing-plus/blob/master/src/bls12_381/osswu_map/g2.rs
https://github.com/filecoin-project/ff
https://github.com/filecoin-project/group
https://github.com/filecoin-project/pairing
https://github.com/filecoin-project/rust-sha2ni
https://github.com/filecoin-project/bls-signatures
https://github.com/filecoin-project/bellman

– All code was reviewed in detail.
• The group repository was compared to the Zcash fork source, as well as reviewed holistically. Minor deltas were

observed related to naming and the GroupDecodingError enum. Code revolves around trait definitions for Curve
Projective, CurveAffine and EncodedPoint.
– Minimal logic is present, all code was reviewed in detail.

• The pairing repository was compared to the Zcash fork source, as well as reviewed holistically. This code has
significant changes, with key items including hash to curve/field, ec refactoring, cofactor clearing, some serialization/
deserialization helper functions, and supporting test cases. Large amount of code and changes are present.
– Regarding section 3 of draft-irtf-cfrg-hash-to-curve-07, the function encode_to_curve() on line 39 of
pairing/src/hash_to_curve.rs should be ‘dead code’. Line 40 of bls-signatures/src/signature.rs calls
the correct function. Note that commenting out a line of each function causes pairing tests to fail, but not
bellman tests (as expected).

– The osswu_map() on line 835 of pairing/src/bls12_381/ec/g2.rs corresponds to section 6.6.3, appendix C.3
and appendix D.2.1 (of aforementioned document) but the code does not match the algorithm. However, it does
match https://github.com/algorand/pairing-plus/blob/master/src/bls12_381/osswu_map/g2.rs.

– Similar code from Algorand is at https://github.com/algorand/pairing-plus. See above reference to “Fast and
simple constant-time hashing to the BLS12-381 elliptic curve”.

– Note that the spec implements a method to clear the cofactor as described by Budroni and Pintore. However,
the code implements a different algorithm where the comment notes “…used to clear cofactor compatibly with
Budroni-Pintore GLV-based method”. See the reference to “Efficient hash maps to G2 on BLS curves”. The function
chain_h2_eff() implements a mul/add chain.

– Note that the test data on line 1737 of pairing/src/bls12_381/ec/g2.rs matches that in Appendix G.10.1 on
page 147 of the draft specification (expected matches P.x and P.y). So we know that the input/output test vector
correspondence is solid.

– XNUM and associated constants do not match the spec. This may be due to Jacobian coordinates but the missing
heritage needs further investigation.

• The rust-sha2ni repository was compared to the fork RustCrypto source, as well as reviewed holistically. Addition-
ally, the sha256_intrinsics.rs source file was compared with the reference C implementation at https://github.c
om/noloader/SHA-Intrinsics/blob/master/sha256-x86.c. The objective of the repository is to deliver SHA2 function-
ality using x86 ‘intrinsics’ when available and a generic implementation otherwise. It appears to have redundant
functionality - namely, the source file sha256_intrinsics.rs, as well as pulling from sha2_asm crate.
– Minimal new logic is present, all code was reviewed in detail.
– Given the number of different SHA2 implementations, and as discussed with the Protocol Labs Team, it should be

ensured that the correct ones are being used.
• The bls-signatures was compared to the draft BLS signature specification https://tools.ietf.org/pdf/draft-irtf-cfrg

-bls-signature-02.pdf as well as reviewed holistically. The implementation does not strictly follow the draft reference.
Namely, the functions defined in the spec are not implemented as is. In order to assess compliance with the RFC,
we identified the following requirements and studied their conformance.

2.2.: H, a hash function that MUST be a secure cryptographic hash function, e.g., SHA-256. For security,
H MUST output at least ceil(log2(r)) bits, where r is the order of the subgroups G1 and G2 defined by the
pairing-friendly elliptic curve.

– Fulfilled; Conforming hash function used.
2.2.: When the signature variant is minimal-signature-size, this function (i.e., hash_to_point) MUST output
a point in G1. When the signature variant is minimal-pubkey size, this function MUST output a point in
G2. For security, this function MUST be either a random oracle encoding or a nonuniform encoding, as
defined in draft-irtf-cfrg-hash-to-curve-07.

– Fulfilled; minimal-pubkey-size variant is used (namely, public keys are points in G1). The function outputs a
point in G2 conforming to the draft specification, as can be seen in the following excerpt from bls-signatures/
src/signature.rs.

23 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

https://github.com/algorand/pairing-plus/blob/master/src/bls12_381/osswu_map/g2.rs
https://github.com/algorand/pairing-plus
https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-x86.c
https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-x86.c
https://tools.ietf.org/pdf/draft-irtf-cfrg-bls-signature-02.pdf
https://tools.ietf.org/pdf/draft-irtf-cfrg-bls-signature-02.pdf

pub fn hash(msg: &[u8]) -> G2 {
<G2 as HashToCurve<ExpandMsgXmd<sha2ni::Sha256>>>::hash_to_curve(msg, CSUITE)

}

2.3.: KeyGen uses HKDF instantiated with the hash function H. For security, IKM MUST be infeasible to
guess, e.g., generated by a trusted source of randomness. IKM MUST be at least 32 bytes long, but it MAY
be longer.

– Partially Fulfilled; See finding NCC-PRLB007-007 on page 18 for discussions around the use of the HKDF.
Additionally, it should be noted that the possibility exists to generate a key directly from bytes. This should be used
only for testing, or provided a good source of randomness, as per the draft RFC.
/// Generate a deterministic private key from the given bytes.
///
/// They must be at least 32 bytes long to be secure.
pub fn new<T: AsRef<[u8]>>(msg: T) -> Self {

PrivateKey(key_gen(msg))
}

2.4.: SK MUST be indistinguishable from uniformly random modulo r (Section 2.2) and infeasible to guess,
e.g., generated using a trusted source of randomness.

– Fulfilled if using the generate function; Additionally, finding NCC-PRLB007-004 on page 11 describes some short-
comings around the usage of fill_bytes.

/// Generate a new private key
pub fn generate<R: RngCore>(rng: &mut R) -> Self {

// IKM must be at least 32 bytes long:
// https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-00#section-2.3
let mut ikm = [0u8; 32];
rng.fill_bytes(&mut ikm);

Self::new(ikm)
}

3.3.: All public keys used by Verify, AggregateVerify, and FastAggregateVerify MUST be accompanied by a
proof of possession, and the result of evaluating PopVerify on the public key and proof MUST be VALID.

– Not applicable since this variant is not implemented.
3.3.1.: For security, this function (i.e., hash_pubkey_to_point) MUST be domain separated from the
hash_to_point function. In addition, this function MUST be either a random oracle encoding or a nonuni-
form encoding, as defined in draft-irtf-cfrg-hash-to-curve-07.

– Not applicable since this variant is not implemented.
4.1.: SC_TAG is a string indicating the scheme and, optionally, additional information. The first three
characters of this string MUST chosen as follows: “NUL” if SC is basic, ….

– Fulfilled; the ciphersuite (CSUITE) is defined as BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_ in signatu
re.rs.

4.1.: hash_to_point: a hash from arbitrary strings to elliptic curve points. hash_to_point MUST be defined
in terms of a hash-to-curve suite draft-irtf-cfrg-hash-to-curve-07.

– Fulfilled; discussed above.
4.1.: hash_pubkey_to_point MUST be defined in terms of a hash-to-curve suite draft-irtf-cfrg-hash
-to-curve-07. The hash-to-curve domain separation tag MUST be distinct from the domain separation
tag used for hash_to_point.

– Not applicable in basic variant
5.1.: All algorithms in Section 2 and Section 3 that operate on public keys require first validating those
keys. For the basic and message augmentation schemes, the use of KeyValidate is REQUIRED.

– Partially fulfilled; while the function KeyValidate is not explicitly defined, this validation is enforced during creation
of the different objects. For example, the trait CurveProjective in group/src/lib.rs is defined as follows:

24 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

/// Projective representation of an elliptic curve point guaranteed to be
/// in the correct prime order subgroup.
pub trait CurveProjective:

5.2.: This check (i.e., the signature_subgroup_check invocation in CoreVerify) is REQUIRED of conforming
implementations.

– Partially fulfilled; while the function signature_subgroup_check is not explicitly defined, this validation is en-
forced during creation of the different objects.

5.4.: The IKM input to KeyGen MUST be infeasible to guess and MUST be kept secret. Secret keys MAY
be generated using other methods; in this case they MUST be infeasible to guess and MUST be indistin-
guishable from uniformly random modulo r.

– Fulfilled; see discussion above.
5.5.: The security analysis models hash_to_point and hash_pubkey_to_point as random oracles. It is crucial
that these functions are implemented using a cryptographically secure hash function. For this purpose,
implementations MUST meet the requirements of draft-irtf-cfrg-hash-to-curve-07. In addition,
ciphersuites MUST specify unique domain separation tags for hash_to_point and hash_pubkey_to_point.
The domain separation tag format used in Section 4 is the RECOMMENDED one.

– Fulfilled; since hash_pubkey_to_point is not used in the basic variant and the tag used is the ciphersuite.
• The bellman repository was compared to the Zcash fork source, as well as reviewed holistically.
– Key changes revolve around gpu, particularly around fft, multiexp and some groth.
– Parallelism/build options were implemented: rayon, crossbeam, futures-cpupool, and ocl.
– Relatively more (necessary) unsafe logic.
– Note that .circleci/config.yaml picks up a Ubuntu 16.04 image.
– The '% 32' on lines 153 and 171 of src/gadgets/uint32.rs is nice in that it does not generate an error, and is

not-nice for the same reason. Trivia.
– The temp_path() function on lines 8-12 of src/gpu/locks.rs would benefit from a check to prevent directory

traversal, but this function is just a trivial helper at the moment.

5. Additional Spot Checks
In addition to the different considerations listed above, the NCC Group team also paid particular attention to specific
areas traditionally known to be sources of security vulnerabilities. These areas are the following:

• Randomness generation, error detection and handling
• Deserialization (particularly length checks) and opportunities to tamper with the data
• Public parameters review (mostly around BLS12-381) and key generation steps
• Code dependencies (particularly around outdated dependencies)
• Non-constant time algorithms and the potential introduction of oracles (that could be leveraged for side-channel

attacks)

25 | Filecoin Bellman/BLS Signatures Cryptography Review NCC Group

	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Retest Results
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Finding Field Definitions
	Audit Discussion Notes and Observations
	1. Overview
	2. Related References
	3. Initial Survey
	4. Detailed Review, Functionality
	5. Additional Spot Checks

