
Paragon Initiative Enterprises Source Code Audit
ByteJail Backend 20-21 June 2015

I. Introduction

This document describes the security audit of the TahoeSmart and TahoeWorker projects of 
Bytejail by Paragon Initiative Enterprises for Christian Hermann (bitBeans).

Our audit targeted git commit 22e71cb720cb96f754a8e78447bf0d756a7cd050, which was 
committed on June 18, 2015.

This report was prepared by Scott Arciszewski, CDO, and reviewed by Robyn Terjesen, CEO.

Audit Results Summary

After a comprehensive code review of the TahoeSmart and TahoeWorker projects, we did not
identify any security vulnerabilities in either project. However, our investigation did uncover a 
few helper classes that could benefit from security enhancements.

II. Audit Scope

We have limited the scope of this audit to focus specifically on the two Bytejail projects that 
were provided:

• TahoeSmart, the bytejail API based on Nancy and Tahoe-LAFS gateway
• TahoeWorker, the bytejail backend worker

We excluded the following from our scope (although we did verify that their features were 
being used safely):

• Microsoft .NET Framework
• Nancy Web Framework
• Devart's MySQL connection driver
• The Sodium cryptography library (and its .NET bindings)

III. Issues

No security vulnerabilities were discovered in the TahoeSmart or TahoeWorker projects.



Paragon Initiative Enterprises Source Code Audit
ByteJail Backend 20-21 June 2015

IV. Other Findings
Note: The findings in this section are not necessarily vulnerabilities.

1. Consistently use CSPRNG for new Jail names

The GetJailName and GetRandomString methods in the TahoeSmart.Helper.Utils class 
depend on another method called GetRandomNumber. Both methods were marked for 
migration to libsodium-net (pending a stable release with 
Sodium.SodiumCore.GetRandomNumber).

GetRandomNumber obtains 4 bytes from a cryptographically secure pseudorandom number 
generator, converts them into an integer with bit-shifting and binary OR operations, then 
seeds the (non-cryptographically secure) System.Random class with the 32-bit integer derived
from the CSPRNG, and uses that for the output.

Additionally, when GetJailName invoked GetRandomNumber, it did so to select a random 
value between 1 and 30 out of an array with indices ranging from 0 to 30. As a result, the 0 th 
value in the array would never appear in a randomly generated jail name.

We provided a stop-gap solution that generates random integers from the system CSPRNG 
until the next stable release for libsodium-net is available. Our solution was accepted before 
this report was completed.

2. Escape Variables Before Concatenating with Shell Command Arguments

There are many points in both applications where the Shell.ExecuteShellCommand helper is 
invoked. Although this helper separates the arguments from the command, there were 
several places which a variable was concatenated with the argument string. None of these 
variables were escaped for shell meta characters. (Fortunately, none of the variables we 
analyzed can be controlled by an attacker on the network.) For example:

Shell.ExecuteShellCommand("/bin/sh", "/root/secure/tahoe-
worker/sign_bjcfg.sh " + connectionConfigPath);

Because passing arguments to /bin/sh allows multiple commands to execute, if an attacker 
could remotely set the connectionConfigPath to something like “/some/file; rm -rf / &” 
(without the previous file existence check failing, which is unlikely), they could make the 
TahoeWorker process attempt to delete the entire filesystem.

We provided a patch that adds and utilizes an Escape() method to the Shell helper in both 
projects. Our patch was merged before this report was completed.



Paragon Initiative Enterprises Source Code Audit
ByteJail Backend 20-21 June 2015

V. Conclusion

After carefully reviewing the source code for both projects, we are highly confident that the 
Bytejail backend projects, TahoeSmart and TahoeWorker, are secure against both remote 
and local attackers.

Every Nancy API endpoint we reviewed was consistently validated by libsodium's public key 
signature verification, which means even getting a forged API request to be accepted by the 
application, an attacker would need to either break the Ed25519 asymmetric signature 
algorithm or steal a private key from a legitimate client. Even when armed with a stolen key, 
we did not identify any ways for an attacker to forge a request to take over the server running 
either project.

Of our two findings, one was already known by the developer and the other was not 
exploitable due to application logic. If, going forward, the Bytejail development team 
meticulously escapes all variables before concatenating with the arguments string, remote 
code execution vulnerabilities will never surface in the Shell helper. Given the extremely high 
quality of both projects, we don't anticipate they will overlook any such instances in their final 
product.


